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Abstract. This paper presents an optimization model for the selection of sets of clients
that will receive an offer for one or more products during a promotion campaign. The
complexity of the problem makes it very difficult to produce optimal solutions using
standard optimization methods. We propose an alternative set covering formulation and
develop a branch-and-price algorithm to solve it. We also describe five heuristics to
approximate an optimal solution. Two of these heuristics are algorithms based on re-
stricted versions of the basic formulation, the third is a successive exact k-item knapsack
procedure. A heuristic inspired by the Next-Product-To-Buy model and a depth-first
branch-and-price heuristic are also presented. Finally, we perform extensive computa-
tional experiments for the two formulations as well as for the five heuristics.

Keywords: promotion campaign; minimum quantity commitment; integer program-
ming; branch-and-price algorithm; non-approximability; heuristics; business-to-business;
business-to-consumer.

1. Introduction

Promotion campaigns are fundamental direct marketing tools for improving the economic
profit of a firm, either by acquiring new customers or by generating additional revenue from
existing customers [13]. The former action is called “acquisition” while the latter is “reten-
tion” [27]. In this paper we are concerned with the latter case: campaigns that generate
additional revenue by offering new products to existing customers. This study is justified
by at least two practical facts. Reinartz et al. [27] point out that “When firms trade off
between expenditures for acquisition and those for retention, a suboptimal allocation of re-
tention expenditures will have a greater impact on long-term customer profitability than will
suboptimal acquisition expenditures”. Moreover, models and methods used for data analysis
are more suited for retention [12] since more information is available. Retention boosts the
customer lifetime value, which is defined by Kumar et al. [14] to be “the sum of cumulated
cash flows – discounted using the weighted average cost of capital – of a customer over his
or her entire lifetime with the firm”. Customer lifetime value usually serves as a metric for a
ranking or segmentation of the firm’s customers [28]. During the last decades, the advances
in data analysis coupled with the availability of customer data have pushed firms to develop
a more customer-oriented strategy. Nowadays, such a strategy is globally accepted, but its
practical implementation is far from being accomplished. This implementation delay is ob-
served both in business-to-business and business-to-consumer settings, and is particularly
pronounced in financial institutions such as large banks and insurance companies, which
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often have a large number of customers with full data available but may lack sophisticated
tools that efficiently take into account these advantages in decision making [7].

In literature, promotion campaign models are also frequently referred to as optimal prod-
uct targeting models [12]. The latter examine “Which products should be targeted to which
customers to maximize profits, under the constraints that only a limited number can be
targeted to each customer, and each product has a minimum sales target”, which is men-
tioned by [12] as an interesting issue for future research. A promotion campaign problem is
essentially characterized by two steps, which are “data analysis” and “problem formulation
and solution”. The first step, which is mainly statistical, has received an increasing atten-
tion with the advances in data analysis. Recently, numerous models that carry the name
“response models” have been developed and are currently being used in practice [5,12]. Al-
though this step is necessary for an application in financial institutions (as its outputs are
used as inputs for the second step), its use can be less important for an application in other
areas. De Reyck and Degraeve [6], for example, have developed a model mainly based on
the second step for an advertisement company.

This paper investigates the development of optimization models for promotion campaigns
based on integer programming. Motivation for studying this problem comes from a case
occurring at FORTIS [10], one of the leading banks in Belgium. We aim to maximize the
profit (return on investment) subject to business constraints such as the campaign’s return
on investment hurdle rate that must be met, a limitation on the funding available for each
product, a restriction on the maximum number of possible offers to a client and a minimum
quantity commitment (MQC) on the number of units of product to be offered in order for that
product to be part of the campaign. This constraint has been briefly mentioned by Cohen [5]
as technical issue for an application in a bank. However, he did not explicitly incorporate
it into his model. Our model takes into account this constraint, making it an extension of
the model used by Cohen. In our formulation, we also impose a more general version of
the MQC constraint, allowing the fixed minimum quantity to depend on the product, which
distinguishes the constraint from comparable MQC restrictions studied in the analysis of
transportation problems [18], bottleneck problems [19], and assignment problems [17].

In this paper, we present a basic integer programming formulation for the optimization
of promotion campaigns. We show the non-approximability of the problem, which makes
the existence of an algorithm that will always provide a feasible solution and guarantee a
specified proportion of optimal profit in polynomial time, highly unlikely. We next present
a set covering formulation and develop a branch-and-price algorithm for solving it. A dy-
namic programming algorithm and a 2-approximation algorithm are presented for solving
the pricing problem, which is closely related to the k-item knapsack problem. The size
of instances that can be solved optimally using this algorithm allows its efficient use for
business-to-business promotion campaigns (which have moderate size and high variable and
fixed costs) and for sampling approaches in financial institutions [5]. We then present five
heuristics to approximate an optimal solution, which can be used for large instances and
hence for business-to-consumer promotion campaigns. These heuristics are either variants
of the algorithms used in practice for application in a bank (see [10]) or developed based on
the structure of the problem.

This paper is organized as follows. Section 2 describes the basic integer programming
formulation for deciding on the composition of promotion campaigns. The complexity of
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the basic formulation makes it very difficult to produce optimal solutions using standard
optimization methods. We propose an alternative formulation called the set covering for-
mulation in Section 3 and develop a branch-and-price algorithm to solve it. In Section 4,
we describe five heuristics to approximate an optimal solution. The first two are algorithms
based on restricted versions of the basic formulation, while the third is a successive exact
k-item knapsack procedure (E-kKP), the fourth is a heuristic inspired by the Next-Product-
To-Buy model used by Knott et al. [12] and the last one is a depth-first branch-and-price
heuristic. Section 5 contains some ideas pertaining to the implementation issue of these
algorithms. The experimental results for the two formulations (basic formulation and set
covering formulation) as well as for the five heuristics are presented in Section 6. Finally,
two extensions of the studied model are presented in Section 7, followed by some conclusions
in Section 8.

2. Basic formulation

The objective of a promotion campaign is to find a way to achieve a maximum profit by
offering n different products to m customers while taking into account various business
constraints. We incorporate the following restrictions: the return on investment hurdle rate
must be met for the campaign, the budget allocated to each product is limited, an upper
bound is imposed on the number of products that can be offered to each client and there
is also a MQC constraint for each product. We define the parameter rij as the probability
that client i reacts positively to an offer of product j (or the probability that product j is
the next product bought by client i [12]) and DFVij as the expected return for the firm
when client i responds positively to the offer of product j. The latter is termed the Delta
Financial Value by FORTIS [10]. These two parameters are the basis for the computation
of customer lifetime value [28]. Practically, these parameters are estimated using response
models based on historical data [5, 12, 26] and are assumed to be available within the firm.
Further, there is a variable cost cij associated with the offer of product j to client i, the
upper bound Mi of offers that can be made to a client i (this quantity is related to the status
of the client), the minimum quantity commitment bound Oj associated with product j, the
budget Bj allocated to the product j, a fixed cost fj needed for a product j if used for the
campaign and finally the corporate hurdle rate R. The value of R is dependent on the firm
and the riskiness of the investment. In practice, most firms use their weighted average cost
of capital (WACC) as an estimation of R [3]. Let xij and yj be binary decision variables
defined by:

xij =

{
1, if product j is offered to client i,
0, otherwise,

yj =

{
1, if product j is used during the campaign,
0, otherwise.

A basic formulation for the promotion campaign problem can be expressed as:

(M1) maximize
m∑
i=1

n∑
j=1

(rijDFVij − cij)xij −
n∑
j=1

fjyj (1)
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subject to
m∑
i=1

n∑
j=1

rijDFVijxij ≥ (1 +R)

[
m∑
i=1

n∑
j=1

cijxij +
n∑
j=1

fjyj

]
(2)

m∑
i=1

cijxij ≤ Bj j = 1, . . . , n, (3)

n∑
j=1

xij ≤Mi i = 1, . . . ,m, (4)

m∑
i=1

xij ≤ myj j = 1, . . . , n, (5)

m∑
i=1

xij ≥ Ojyj j = 1, . . . , n, (6)

yj, xij ∈ {0, 1} i = 1 . . . ,m, j = 1, . . . , n. (7)

The objective function (1) is the maximization of the total net benefit received from the offer
of products to clients minus the fixed cost of using the products for the campaign. The first
constraint (2) is the corporate hurdle rate constraint, which makes sure that the campaign’s
return on investment is at least R, and was first suggested by Cohen [5] for an application in
a bank. The set of constraints (3) enforces that we should not exceed the budget Bj allocated
to the product j. Here, the product dependency of the budget reflects the situation in a
large firms where an individual business unit is responsible for the production and the sale
of a product. Hence, each business unit has its own budget. The set of constraints (4) states
that we cannot propose more than a certain number Mi of products to client i; the sets
of constraints (5) and (6) constitute the MQC constraint, which specifies that a product
j taking part in the campaign will be offered to at least a certain number Oj of clients
(Oj > 0), and finally the last set of constraints (7) is the integrality constraint. We denote
by pij the return to the firm (revenue) when client i reacts positively to the offer of product
j, so pij = rijDFVij. In the remainder of this paper, we will mostly use pij.

The graph depicted in Figure 1 represents an instance of the promotion campaign problem
with two products and three clients.

Example 1. An integer program corresponding to the example described by Figure 1 is given
by:

maximize −2x11 + 3x21 + 3x31 + x12 − 2x22 + 2x32

subject to −8

3
x11 +

8

3
x21 +

5

3
x31 −

1

3
x12 −

8

3
x22 +

4

3
x32 ≥ 0

2x11 + x21 + 4x31 ≤ 4, 4x12 + 2x22 + 2x32 ≤ 5

x11 + x12 ≤ 1, x21 + x22 ≤ 2, x31 + x32 ≤ 1

x11 + x21 + x31 ≥ 2y1, x12 + x22 + x32 ≥ 2y2

x11 + x21 + x31 ≤ 3y1, x12 + x22 + x32 ≤ 3y2

yj, xij ∈ {0, 1} i = 1, 2, 3, j = 1, 2.

An optimal solution offers Product 1 to client 1 and client 2. So, we have x11 = x21 = y1 = 1,
x31 = 0 and x12 = x22 = x32 = y2 = 0 for an optimal objective value of 1. On the
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Figure 1: An example of a promotion campaign with two products and three clients.

other hand, an optimal solution to the linear programming relaxation of this example is
x21 = x31 = 4

5
, x12 = x32 = 1

5
, y1 = 4

5
, y2 = 1

5
with optimal objective value 5.4.

Definition 1. A non-trivial feasible solution for the basic formulation (M1) is a feasible
solution which achieves a non-zero objective value.

The following result shows that there is little hope for finding a polynomial time algorithm
for solving (M1).

Proposition 1. The promotion campaign problem defined by the formulation (M1) is strongly
NP-hard, even for Oj = 1 for all j.

Proof: This result follows directly from the fact that the basic formulation (M1) has the
generalized assignment problem (GAP) [21, 29] as a special case for R = 0, Mi = 1, ∀i, and
Oj = 1, fj = 0, ∀j and pij ≥ cij for all i and j. The latter problem is known to be strongly
NP-hard [29]. �

Moreover, the basic formulation (M1) is difficult to solve even approximately. We prove
this non-approximability result by showing that it is NP-hard to find a non-trivial feasible
solution for (M1). The proof uses the following variant of Partition (see [8]; by adding |A|
dummy elements of size 0 to an instance of the usual Partition problem, one easily sees that
this variant of Partition is as hard as the original problem):
INSTANCE: A finite set A = {1, 2, . . . , 2q} with size s(i) ∈ Z for each i ∈ A, K =
1
2

∑
i∈A s(i).

QUESTION: Does there exist a subset A′ ⊂ A with |A′| = q and
∑

i∈A′ s(i) = K?

Proposition 2. Finding a non-trivial feasible solution for the basic formulation (M1) is
NP-hard.
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Proof: For a given arbitrary instance of Partition, consider the following polynomial reduc-
tion to an instance of (M1). Each i ∈ A indicates a client with a unit upper bound, so m = 2q
and Mi = 1 for all i = 1, 2, . . . , 2q. Suppose there is one product, n = 1. Let δ = 2K + 1.
For each client i = 1, 2, . . . , 2q, the cost ci1 = δ + s(i), the revenue pi1 = δs(i). Suppose also
that for our product, product 1, the lower bound O1 = q, the budget B1 = qδ + K, and
the fixed cost f1 = 0. Finally, we set the hurdle rate R = (K−q)δ−K

qδ+K
. Now we prove that a

non-trivial feasible solution for (M1) exists if and only if there is a solution A′ to Partition.
On one hand, if Partition has a solution A′, we offer the product to the clients in A′.

This is a non-trivial feasible solution to the instance for (M1) constructed above since: (i)
the lower bound O1 = q is met, (ii) the budget is met (qδ +

∑
i∈A′ s(i) = qδ + K = B1)

and (iii) the hurdle rate is achieved:
∑

i∈A′ pi1 = δ
∑

i∈A′ s(i) = δK = δK
qδ+K

(qδ + K) =(
1 + (K−q)δ−K

qδ+K

)
(qδ +K) = (1 +R)(qδ +K).

On the other hand, if we have a non-trivial feasible solution, then consider the set of clients
A′ receiving the product. We have |A′| = q and

∑
i∈A′ ci1 =

∑
i∈A′ δ + si ≤ B1 = qδ +K. In

fact, we have
∑

i∈A′ ci1 = qδ+K. Suppose that
∑

i∈A′ ci1 < qδ+K, then
∑

i∈A′ ci1 = qδ+K1

with K1 < K. Thus∑
i∈A′

pi1 = K1δ = Kδ
K1

K
< Kδ

qδ +K1

qδ +K
= (qδ +K1)

Kδ

qδ +K

=

(
1 +

(K − q)δ −K
qδ +K

)
(qδ +K1) = (1 +R)(qδ +K1),

contradicting the fact that we have a non-trivial feasible solution because the corporate
hurdle rate constraint is not satisfied. Therefore |A′| = q and

∑
i∈A′ ci1 = qδ + K, which

implies that A′ is a solution to the variant of Partition defined above. �

The results of Proposition 1 and Proposition 2 justify the intensive use of heuristics in
practice [5, 6, 12].

The basic formulation (M1) can be strengthened by using the following disaggregate
version of constraints (5):

xij ≤ yj i = 1, . . . ,m, j = 1, . . . , n. (8)

The following result allows the relaxation of the integrality constraint on yj for all j.

Proposition 3. The convex hull of the feasible solutions to the integer program (M1) is
identical to the convex hull of the solutions that satisfy the constraints (2), (3), (4), (6), (8)
and 0 ≤ yj ≤ 1, xij ∈ {0, 1} for all i, j.

Proof: Denote the convex hull of the feasible solutions to (M1) by CH(M1) and the convex
hull of the solutions that satisfy the constraints (2), (3), (4), (6), (8) and 0 ≤ yj ≤ 1, xij ∈
{0, 1} for all i, j by CH∗. Because any feasible solution to (M1) satisfies (2), (3), (4), (6),
(8) and 0 ≤ yj ≤ 1, xij ∈ {0, 1}, the set of feasible solutions to (M1) is included in CH∗,
therefore, the convexity of CH∗ implies that CH(M1) ⊆ CH∗.

On the other hand, let (x0, y0) be an extreme point of CH∗, (x0, y0) satisfies (2), (3),
(4), (6) and xij ∈ {0, 1}, and (x0, y0) satisfies (8) which implies that (x0, y0) satisfies (5).
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Furthermore y0
j ∈ {0, 1} for all j because if there was a j0 such that 0 < y0

j0
< 1, then

x0
ij0

= 0 for all i and constraints (6) will be violated. We then have y0
j ∈ {0, 1} for all j and

therefore (x0, y0) is a feasible solution to (M1), so belongs to CH(M1). Since (x0, y0) is an
extreme point of CH∗, it is also an extreme point of CH(M1) (because CH(M1) ⊆ CH∗)
implying that CH∗ ⊆ CH(M1). �

A similar proof has been derived by Lim et al. in [18] for the transportation problem with
minimum quantity commitment.

3. Branch-and-price

This section is devoted to the application of a branch-and-price algorithm for solving the
promotion campaigns problem. In the first subsection, we derive an appropriate formulation,
called a set covering formulation. The next subsection studies the pricing problem and the
last subsection presents a branching strategy.

3.1 A set covering formulation

Proposition 3 and the inequalities (8) lead to the following strengthened formulation of our
problem:

(M2) maximize
m∑
i=1

n∑
j=1

(pij − cij)xij −
n∑
j=1

fjyj (9)

subject to
m∑
i=1

n∑
j=1

pijxij ≥ (1 +R)

[
m∑
i=1

n∑
j=1

cijxij +
n∑
j=1

fjyj

]
(10)

n∑
j=1

xij ≤Mi i = 1, . . . ,m, (11)

m∑
i=1

cijxij ≤ Bj j = 1, . . . , n, (12)

m∑
i=1

xij ≥ Ojyj j = 1, . . . , n, (13)

xij ≤ yj ≤ 1 i = 1, . . . ,m, j = 1, . . . , n, (14)

yj ≥ 0, xij ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n. (15)

We investigate a relaxation of (M2), in which we consider (10) and (11) to be coupling
constraints and for each product j = 1, . . . , n, we have the special constraints given by (12),
(13), (14) and (15). For j = 1, . . . , n, we define Aj = {(x.j, yj);

∑m
i=1 cijxij ≤ Bj,

∑m
i=1 xij ≥

Ojyj, xij ≤ yj, i = 1, . . . ,m, yj ≤ 1, yj ≥ 0, x.j ∈ {0, 1}m}, where x.j is a vector with m
entries xij. Because (0.j, 0) ∈ Aj, Aj is nonempty. Furthermore, Aj is bounded as 0 ≤
yj, xij ≤ 1. For every product j, Aj = {(x0

.j, y
0
j ), (x

1
.j, y

1
j ), (x

2
.j, y

2
j ), . . . , (x

kj

.j , y
kj

j )}. Explicitly,
Aj consists of (0.j, 0) and all the (x0

.j, 1) with
∑m

i=1 cijxij ≤ Bj,
∑m

i=1 xij ≥ Oj, xij ∈ {0, 1},
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that is the empty set of clients coupled with 0 and any subset of clients of cardinality greater
than or equal to Oj and total cost less than or equal to Bj, coupled with 1. We assume that

(x0
.j, y

0
j ) = (0.j, 0) so that Aj = {(0.j, 0), (x1

.j, 1), (x2
.j, 1), . . . , (x

kj

.j , 1)}.
We relax (M2) by considering conv(Aj) for each product j, where conv(Aj) is the convex

hull of Aj. Any element (x.j, yj) ∈ conv(Aj) is a convex combination of its extreme vertices

and hence can be represented in the form (x.j, yj) =
∑kj

p=0 zpj(x
p
.j, y

p
j ) where the coefficients

zpj are nonnegative and satisfy
∑kj

p=0 zpj = 1, j = 1, . . . , n. A Dantzig-Wolfe decomposition
of the relaxation of (M2) is then given by the master problem (MP).

(MP) maximize
n∑
j=1

 kj∑
p=0

[(
m∑
i=1

(pij − cij)xpij

)
− fjypj

]
zpj

 (16)

subject to
n∑
j=1

 kj∑
p=0

[(
m∑
i=1

(pij − (1 +R)cij)x
p
ij

)
− (1 +R)fjy

p
j

]
zpj

 ≥ 0 (17)

n∑
j=1

kj∑
p=0

xpijzpj ≤Mi i = 1, . . . ,m, (18)

kj∑
p=0

zpj = 1 j = 1, . . . , n, (19)

zpj ≥ 0 j = 1, . . . , n, p ∈ {0, 1, . . . , kj}. (20)

In what follows, we will consider the subset of extreme points without (0.j, 0), subsequently

denoted as Āj = {(x1
.j, 1), (x2

.j, 1), . . . , (x
kj

.j , 1)}. This change requires that each constraint in
(19) become an inequality in order for the optimal value to remain unaffected.

For every product j, we map each extreme point (xp.j, y
p
j ) ∈ Āj to Spj where Spj =

{i ∈ {1, . . . ,m} |xpij = 1}. Using the equalities
∑m

i=1 pijx
p
ij =

∑
i∈Spj

pij and
∑m

i=1 cijx
p
ij =∑

i∈Spj
cij, an integer programming version of (MP) is

(M3) maximize
n∑
j=1

 kj∑
p=1

∑
i∈Spj

(pij − cij)− fj

 zpj

 (21)

subject to
n∑
j=1

 kj∑
p=1

∑
i∈Spj

(pij − (1 +R)cij)− (1 +R)fj

 zpj

 ≥ 0 (22)

n∑
j=1

∑
p:i∈Spj

zpj ≤Mi i = 1, . . . ,m, (23)

kj∑
p=1

zpj ≤ 1 j = 1, . . . , n, (24)

zpj ∈ {0, 1} j = 1, . . . , n, p ∈ {1, . . . , kj}. (25)

In the formulation (M3), the binary variable zpj indicates whether the product j is offered
to the set of clients Spj (zpj = 1) or not (zpj = 0). The first constraint (22) enforces that
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the campaign’s return on investment must be at least R, the set of constraints (23) ensures
that at most Mi products are offered to client i and the set of constraints (24) states that
at most one nonempty set of clients is selected for each product. We call the formulation
(M3) a set covering formulation to reflect the fact that its solution can be viewed as a cover
for the set of clients. The set covering formulation (M3) is then essentially obtained by
applying Dantzig-Wolfe decomposition to a relaxation of the basic formulation (M2). As
a consequence, the value of the bound provided by the LP relaxation of (M3) is equal to
the value of the Lagrangian dual obtained by dualizing the constraints (2) and (4) [24].
Furthermore, the example described by Figure 1 illustrates that the LP relaxation of (M3)
is stronger than the LP relaxation of (M1). We denote S11 = {1, 2}, S12 = {2, 3} and z11, z12

the corresponding variables. The associated LP relaxation of (M3) is

maximize 1z11 + 0z12

subject to 0z11 −
4

3
z12 ≥ 0

0 ≤ z1j ≤ 1 j = 1, 2.

Remark that the constraints (23) and (24) are obviously satisfied. The optimal solution is
(1, 0) with an optimal value of 1, which is also the optimal objective function value of the
integer program. The result highlighted in the above example has been observed for the
GAP by Savelsbergh [29].

Let z be any feasible solution to the LP relaxation of (M3) and let x∗ij =
∑

p:i∈Spj
zpj,

y∗j =
∑kj

p=1 zpj, then (x∗, y∗) is a feasible solution to the LP relaxation (LPM2) of (M2).
Furthermore, we have the following result, which is useful for the branching strategies.

Proposition 4. Given a feasible solution z to the LP relaxation of (M3), for a given product
j, if zpj is fractional, then there must be an i such that x∗ij =

∑
p:i∈Spj

zpj is fractional.

Proof: Suppose there is no client i such that x∗ij is fractional. Let F = {p ∈ {1, . . . , kj} | 0 <
zpj < 1} be the set of fractional variables associated with product j. We may assume that
|F | ≥ 2, otherwise the hypothesis (there is no client i such that x∗ij is fractional) will be
violated. We have

∑
p∈F zpj = y∗j ≤ 1 for j = 1, . . . , n and

∑
p∈F :i∈Spj

zpj = x∗ij ∈ {0, 1}, i =

1, . . . , n. In particular for i ∈ ∪p∈FSpj, we have
∑

p∈F :i∈Spj
zpj = 1. But

∑
p∈F :i∈Spj

zpj =∑
p∈F x

p
ijzpj = 1 and

∑
p∈F zpj = 1. Hence, xpij = 1, ∀p ∈ F , meaning that for all p1, p2 ∈ F ,

we have Sp1 = Sp2 , contradicting |F | ≥ 2. �

Proposition 4 implies that the bound provided by the LP relaxation of the set covering
formulation is stronger than that obtained by the LP relaxation of the basic formulation.

3.2 The pricing problem

We consider the LP relaxation (LPM3) of (M3) obtained by replacing constraints (25) by

zpj ≥ 0 j = 1, . . . , n, p ∈ {1, . . . , kj}. (26)

Formulation (LPM3) has an exponential number of variables, making it difficult to solve even
for average size instances. Instead of solving the full master problem (LPM3), we consider
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a restricted problem that includes only a subset of variables (columns) and can be solved
directly. Additional columns for the restricted problem can be generated by looking at the
dual of (LPM3) given by:

(DLPM3) minimize
m∑
i=1

Miui +
n∑
j=1

vj

subject to
∑
i∈Spj

[(pij − (1 +R)cij)d+ ui]− (1 +R)fjd+ vj

≥
∑
i∈Spj

(pij − cij)− fj, ∀p, j, (27)

ui, vj ≥ 0, d ≤ 0 i = 1, . . . ,m, j = 1, . . . , n, (28)

where we use the dual variables d corresponding to (22), ui corresponding to the set of
constraints (23) and vj corresponding to (24). The optimal solution found for the restricted
problem is not optimal for the master problem if the associated dual variables u, v and d
violate one of the constraints (27). Note that the set of constraints (28) is automatically
satisfied by the dual variables. Since it is not computationally viable to compute and check
the inequality (27) for all couples (p, j) not included in the restricted problem, we propose
to proceed as follows. First, we drop the index j and assume that the product is given. We
then solve the following question called the pricing problem:

∃Sp such that
∑
i∈Sp

[pi(d− 1) + ci(1− (1 +R)d) + ui] + v + f(1− (1 +R)d) < 0 ? (29)

Remark that for a given product j, the left hand side of the inequality is exactly the re-
duced cost of the variable zpj, so that the pricing problem (29) checks the primal optimality
condition [2].

Solving the pricing problem

A solution to the pricing problem (29) for a fixed product j can be obtained by solving the
following variant of the k-item knapsack problem (kKP). For ease of exposition, we define
wi = pi(d− 1) + ci(1− (1 +R)d) + ui for all i.

(kKP) minimize
m∑
i=1

wixi (30)

subject to
m∑
i=1

cixi ≤ B (31)

m∑
i=1

xi ≥ O (32)

xi ∈ {0, 1} i = 1, . . . ,m. (33)

We take the wi’s as the weights and the ci’s as the costs. Notice that in general the problem
(kKP) is weakly NP-hard. Furthermore in our case, the wi need not always be positive nor
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are they always integers. These last observations make the use of dynamic programming by
weight [11] for solving (kKP) inefficient. Kellerer et al. [11] derive a dynamic programming
algorithm for the case where the cardinality constraint (32) is replaced by

∑m
i=1 xi ≤ O. We

show here that this algorithm is easily modified to deal with (30)−(33).

Exact algorithm

We propose a dynamic programming algorithm based on the algorithm describe in [11] for
solving (kKP) in pseudopolynomial time. Let k be the optimal value of the following problem

maximize
m∑
i=1

xi

subject to
m∑
i=1

cixi ≤ B

xi ∈ {0, 1} i = 1, . . . ,m.

Clearly, since ci ≥ 0, k can be computed by taking the items with smallest cost ci until the
constraint is violated. If k < O then the problem (kKP) is infeasible. Assuming that k ≥ O,
we define the two-dimensional dynamic programming function Yi(c, l) for i = 0, 1, . . . ,m; l =
0, 1, . . . , k; c = 0, 1, . . . , B, as the optimal solution value of the following problem:

Yi(c, l) = min

{
i∑

j=1

wjxj |
i∑

j=1

cjxj = c,
i∑

j=1

xj = l, xj ∈ {0, 1}

}

An entry Yi(c, l) = q means that among the clients 1, 2, . . . , i, there exists a subset of exactly
l of these clients with total cost c and minimal weight q among all such subsets.

The initialization is given by Y0(c, l) = +∞ for l = 0, 1, . . . , k; c = 0, 1, . . . , B and
Y0(0, 0) = 0. Then, for i = 1, . . . ,m, the entries Yi can be computed from those of Yi−1 by
the following recursion

Yi(c, l) =

{
Yi−1(c, l) if ci > c
min {Yi−1(c, l), Yi−1(c− ci, l − 1) + wi} if l > 0, ci ≤ c.

(34)

After computing all the values of Y from Y1 up to Ym, the optimal objective function value
of (kKP) is given by

min {Ym(c, l) | l ≥ O, c = 0, 1, . . . , B} .
We observe that only entries in Yi−1(c, l) need to be stored in order to derive Yi(c, l). Caprara
et al. [4] propose an implementation based on pointers that achieves a space complexity of
O(k2B) and a time complexity of O(mkB).

Approximation algorithm

An approximation algorithm for (kKP) is based on the LP relaxation of the problem, which
is obtained by replacing constraints (33) by

0 ≤ xi ≤ 1 i = 1, . . . ,m. (35)

11



Denoting the optimal objective function value of the LP relaxation of (kKP) by zLP , the
following result proved in [4, 11] holds.

Lemma 1. An optimal basic solution x∗ of the LP relaxation (30), (31), (32) and (35),
has at most two fractional components. Let J1 := {l |x∗l = 1}. If the basic solution has
two fractional components x∗i and x∗j , supposing without loss of generality cj ≤ ci, then
wi +

∑
l∈J1

wl ≤ zLP and the solution defined by J1 ∪ {j} is feasible for the (kKP).

The following algorithm describes an approximation algorithm for (kKP).

1 Approximation algorithm for (kKP)

1: Let xLP be an optimal solution of the LP relaxation of (kKP)
2: J1 := {l |xLPl = 1}
3: F := {l | 0 < xLPl < 1} // fractional variables
4: if F = ∅ then
5: zA := zLP

6: end if
7: if F = {i} then
8: zA := min{

∑
l∈J1

wl,
∑

l∈{i}∪Ri
wl} where Ri is the set of the k−1 items with the smallest

weight in {1, . . . ,m} \ {i}
9: end if

10: if F = {i, j} with cj ≤ ci then
11: zA := min{

∑
l∈J1∪{j}wl,

∑
l∈{i}∪Ri

wl} where Ri is the set of the k − 1 items with the

smallest weight in {1, . . . ,m} \ {i}
12: end if

Proposition 5. Approximation algorithm for (kKP) is a 2-approximation algorithm for
(kKP) and runs in O(m) time.

Proof: This follows from an easy modification of a proof in [4, 11]. �

Using the column generation procedure outlined above, we can solve the master problem
(LPM3) in reasonable time. There is no guarantee, however, that the solution found will be
an integer solution; if this is not the case we will proceed with a branch-and-bound algorithm.

3.3 Branch-and-bound

Branching is needed when the optimal solution to (LPM3) turns out not to be integral.
However, as Savelsbergh points out in [29], a naive branching strategy may sometimes lead
to a conflict between the variable used for branching and the one generated. Hence, it is
worth looking for a branching strategy compatible with the pricing problem.

Proposition 4 allows the use of a hybrid branching policy [1, 29]; that is to perform
branching using the basic formulation while working with the set covering formulation. We
will then fix a single variable (variable dichotomy) [29,31]. This variable dichotomy branching
strategy is exactly the branching scheme proposed by Ryan and Foster for set partitioning
master problems [1].
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In the basic formulation, fixing xij to zero forbids product j to be offered to client i, and
fixing xij to one requires product j to be offered to client i. In the set covering formulation,
this is done by adding (not explicitly) one extra constraint. Fixing xij to zero leads to∑

p:i∈Spj
zpj = 0 and fixing to one leads to

∑
p:i∈Spj

zpj = 1. Hence, at the node u of the tree,

let H(u) ⊆ {1, . . . , n} be the subset of products j for which there exists a non-empty set
of clients Ru

j ⊆ {1, . . . ,m}, (Ru
j 6= ∅) who must receive an offer of product j. Similarly, let

L(u) ⊆ {1, . . . , n} be the set of products j for which there exists a non-empty set of clients
Nu
j ⊆ {1, . . . ,m}, (Nu

j 6= ∅) who cannot receive an offer of product j. The LP problem to
be solved at the node u is the following:

(LPu) maximize
n∑
j=1

 kj∑
p=1

∑
i∈Spj

(pij − cij)− fj

 zpj

 (36)

subject to
n∑
j=1

 kj∑
p=1

∑
i∈Spj

(pij − (1 +R)cij)− (1 +R)fj

 zpj

 ≥ 0 (37)

n∑
j=1

∑
p:i∈Spj

zpj ≤Mi i = 1, . . . ,m, (38)

∑
p:Ru

j⊆Spj

zpj = 1 j ∈ H(u), (39)

∑
p:Nu

j ∩Spj 6=∅

zpj = 0 j ∈ L(u), (40)

kj∑
p=1

zpj ≤ 1 j = 1, . . . , n, (41)

zpj ≥ 0 j = 1, . . . , n, p ∈ {1, . . . , kj}. (42)

The branching scheme resulting from the variable dichotomy branching strategy is compat-
ible with the pricing problem for it does not render the pricing problem more difficult. To
meet the set of constraints (40), we set xi = 0, ∀i ∈ Nu

j when solving the pricing problem
associated with the product j ∈ L(u). Similarly, for the set of constraints (39), we set
xi = 1, ∀i ∈ Ru

j when solving the pricing problem corresponding to the product j ∈ H(u).
The constraints (31) and (32) are updated and the remaining problem is still a (kKP), of
reduced size. Moreover, the inequality (24) of the restricted master will be changed into
equality for the product j ∈ H(u).

It is not clear how the generalized upper bound (GUB) branching strategy (see [29], for
an application to GAP) can efficiently be applied here. In fact, the use of the GUB branching
strategy does not partition the set of feasible solutions into two subsets. Therefore, to cover
the whole set of feasible solutions, an important number of branches is needed.

An upper bound at node u is provided by the optimal solution to the master problem
(LPu) or estimated by dualizing some constraints; details on these computations are provided
in Section 5.1 and in the Appendix.
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4. Heuristics

We have shown (see Proposition 2) that even finding a non-trivial feasible solution to the
promotion campaign problem given by the formulation (M1) is NP-hard, which justifies an
intensive use of heuristics in practice [5, 6, 12]. In this section, we present five heuristics
for the promotion campaign problem. These heuristics are either variants of the algorithms
used in practice for application in a bank or specifically developed based on the structure of
the problem. The first is a variant of the algorithm developed by FORTIS [10]. It assumes
that the variable cost and the profitability of the different clients are identical and that
the campaign involves all products. The second heuristic is also based on these simplifying
assumptions, but allows for choosing the products to be used for the campaign. The third
is a procedure that successively solves a number of Exact k-item knapsack problems (E-
kKP) (which are kKP’s with an equality for the cardinality constraint (32)). It uses an
approximation algorithm for solving the (E-kKP) to identify the best product to be offered
as well as the selected set of clients at each iteration. The fourth heuristic is also an iterative
algorithm, inspired by the Next-Product-To-Buy model used by Knott et al. [12] for an
application in a retail bank. Finally, the last heuristic is a depth-first branch-and-price
heuristic. In this section, we will say that client i is active if it has not yet received Mi offers.

4.1 Heuristic 1

Heuristic 1 is a variant of the algorithm developed by FORTIS. It uses the average cost and
the average revenue for each product. These quantities are defined by

Cj :=

∑
i cij

number of clients
and Pj :=

∑
i rijDFVij

number of clients
.

This heuristic ignores the selection of products for the campaign and simply imposes the
minimum quantity Oj on the number of offers of each product j. Using a new decision vari-
able uj := number of clients that receive an offer for the product j, the simplified formulation
used by FORTIS is the following.

(M4) maximize
n∑
j=1

[(Pj − Cj)uj − fj]

subject to
n∑
j=1

[Pj − (1 +R)Cj]uj ≥ (1 +R)

(
n∑
j=1

fj

)
Cjuj ≤ Bj j = 1, . . . , n,

Oj ≤ uj ≤ m j = 1, . . . , n,

uj ∈ N j = 1, . . . , n.

We remark that the problem formulated here is still NP-hard as it includes an integer knap-
sack problem [11] as a special case. On the other hand, (M4) does not take into account
the third constraint (4) of the basic formulation (M1); that is it does not enforce the upper
bound constraint on the number of products that can be offered to a client.
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Heuristic 1 solves (M4) and uses the outcome to build a solution (potentially infeasible)
to our original problem.

2 Heuristic 1
1: for each product j, compute the average revenue Pj and the average cost Cj
2: solve the resulting integer programming formulation (M4)
3: sort products by decreasing profit such that P1u1 ≥ P2u2 ≥ . . . ≥ Pnun
4: for each product j, sort customers in decreasing profit
5: offer the products in increasing order and for each product j offer it to the uj most profitable

active clients
6: choose the best solution between this solution and the trivial solution

4.2 Heuristic 2

Heuristic 2 is an improvement of Heuristic 1; here the average revenue and the average cost
per product are still used, but the choice of products to be offered during the campaign
is taken into account. Using the same variable uj defined above and a new binary vari-
able yj that equals 1 if product j takes part in the campaign and 0 otherwise, the integer
programming problem to be solved is

(M5) maximize
n∑
j=1

[(Pj − Cj)uj − fjyj]

subject to
n∑
j=1

[(Pj − (1 +R)Cj)uj − (1 +R)fjyj] ≥ 0

Cjuj ≤ Bj j = 1, . . . , n,

Ojyj ≤ uj ≤ myj j = 1, . . . , n,

yj ∈ {0, 1}, uj ∈ N j = 1, . . . , n.

Notice that (M5) generalizes (M4), since (M4) arises when we set yj = 1 for all j. This
formulation also does not take into account the upper bound on the number of products
that can be offered to a client. However, unlike formulation (M4), (M5) does incorporate the
choice of products to be offered during the campaign. Heuristic 2 proposes a procedure to
find a solution (potentially infeasible) to the promotion campaign problem by solving (M5).

3 Heuristic 2
1: for each product j, compute the average revenue Pj and the average cost Cj
2: solve the resulting integer programming formulation (M5)
3: sort selected products by decreasing profit
4: for each selected product j, sort customers in decreasing profit
5: offer the selected products in increasing order and for each product j offer it to the uj most

profitable active clients
6: choose the best solution between this solution and the trivial solution
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Notice that the outcome of Heuristic 2 (as well as of Heuristic 1) may be an infeasible
solution; the last line (line 6:) merely guarantees that the value of the solution (potentially
infeasible) is nonnegative.

4.3 Heuristic 3

This is a successive Exact k-item knapsack problem (E-kKP) procedure. For a given product
j, we have the following (E-kKP):

(E-kKPj) maximize
m∑
i=1

[pij − (1 +R)cij]xij − (1 +R)fj

subject to
m∑
i=1

cijxij ≤ Bj

m∑
i=1

xij = Oj

xij ∈ {0, 1} i = 1, . . . ,m.

Remark that the LP relaxation of (E-kKPj) has a solution with either 0 or 2 fractional
components. The approximation algorithm for (kKP) is used as 2-approximation algorithm
for (E-kKPj).

4 Heuristic 3
1: val := 0, V := {1, . . . ,m} //objective value

2: for each j = 1 . . . , n, solve E-kKPj
3: while there exists a product j such that val + zEj ≥ 0 do
4: select product j∗ with the highest profit zEj∗
5: yj∗ := 1
6: val := val + zEj∗
7: for i ∈ JEj∗ do
8: xij∗ := 1
9: Mi := Mi − 1

10: if Mi = 0 then
11: V := V \ {i}
12: end if
13: forbid any further offer of the product j∗ to client i //by setting cij∗ greater than Bj∗

14: end for
15: Oj∗ := 1
16: fj∗ := 0
17: update Bj∗

18: for each j = 1 . . . , n satisfying Oj ≤ |V |, solve E-kKPj
19: end while
20: if val < max{zAj , j = 1, . . . , n} then
21: val := max{zAj , j = 1, . . . , n}
22: end if
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Heuristic 3 describes an iterative procedure for finding a solution to the problem using a
2-approximate solution for (E-kKPj). We denote the objective value found by Approximation
algorithm for (kKP) for the problem (E-kKPj) by zEj and the set of solution components equal
to 1 by JEj . The notation zAj used by Heuristic 3, refers to the notation of Approximation
algorithm for (kKP). Heuristic 3 works as follows: it first selects the product j∗ with the
highest positive val+ zEj∗ , this product is then offered to the set of clients JEj∗ , the problem is
updated and the procedure is repeated until no more product can be offered to clients; the
quantity val represents the objective function value of the solution obtained by the algorithm
at each stage of its execution. Notice that after each iteration, the reconstructed problem is
still a promotion campaign problem.

4.4 Heuristic 4

This heuristic is inspired by the Next-Product-To-Buy model proposed by Knott et al. [12]
for an application in a retail bank. For a given product j, the offer is made to active clients
in decreasing order of the probabilities rij until no more budget is left. We refer to this
heuristic as Heuristic 4.

5 Heuristic 4
1: for j = 1, . . . , n do
2: sort the probabilities rij in decreasing order {1, . . . ,m}
3: for i = 1, . . . ,m do
4: if i is active then
5: if enough budget then
6: xij∗ := 1, Mi := Mi − 1
7: if Mi = 0 then
8: i becomes inactive
9: end if

10: else
11: xij∗ := 0
12: end if
13: else
14: xij∗ := 0
15: end if
16: end for
17: end for
18: choose the best solution between this solution and the trivial solution

Like Heuristic 1 (and Heuristic 2), the last line Heuristic 4 simply guarantee that the
value of the solution (potentially infeasible) is nonnegative.

4.5 Heuristic 5

This is a depth-first heuristic based on the branch-and-price logic. This heuristic is used
to find a feasible and high-quality solution as quickly as possible. Figure 2 describes the
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Figure 2: Flow chart of the branch-and-price heuristic (Heuristic 5)

steps to follow. To start the algorithm, we need an initial restricted master problem with
a feasible LP relaxation. Therefore, we generate one column (if it is identified by the 2-
approximation algorithm) for each product; this is an approximate solution to kKP. We then
solve the restricted master problem (RLPM3). Next, columns are generated by running the
2-approximation algorithm for kKP per product built based on the dual variables. If there is
no column to add to the master problem RLPM3, we check whether the solution obtained is
integral or not. If yes, we stop the algorithm, otherwise we branch and repeat the procedure.
On the other hand, if new columns are identified, they are added to the RLPM3 and it is
resolved. Remark that here, we do not solve the RLPM3 until optimality. Moreover, as the
goal of this heuristic is to find a good feasible solution and not necessarily an optimal one,
we do not have to branch such that the solution space is divided evenly. Thus, using the
hybrid branching strategy, we choose to branch on the fractional variable xij closest to 1,
and we set xij = 1 in one branch and xij = 0 in the other branch. In case of a tie, we select
the variable with the highest revenue pij. With this branching rule, we are more likely to
find a good solution in the node with xij = 1, and we investigate that node first. Similar
heuristics have been used successfully for raw materials logistics planning [20] and for the
airline crew pairing problem [1].

The first four heuristics present many advantages, among which their simplicity. Their
implementation does not require many efforts as the size of the integer program to be solved
for Heuristic 1 and Heuristic 2 is usually very small, the solution to the linear program used
by Heuristic 3 can be found in linear time and the fourth heuristic is based on an algorithm
for sorting, which can easily be done in polynomial time. There is no guarantee, however,
that the solutions obtained by these four heuristics are non-zero feasible solutions for the
basic model (M1). Heuristic 5, on the other hand, is guaranteed to provide a feasible solution
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(often non-zero) but may take more time.

5. Implementation issues

5.1 Branch-and-price algorithm

Initial restricted Master Problem

To start the column generation procedure, an initial restricted master problem with a feasible
LP relaxation has to be provided to ensure that the dual variables used to derive the pricing
problem are properly computed. We have chosen to start with the solution of Heuristic 3
(which is a non-trivial feasible solution that is usually of good quality and that is obtained
quickly) as a starting solution. If Heuristic 3 fails to provide a non-trivial feasible solution,
then we generate one column per product corresponding to an optimal solution of the k-item
knapsack problem.

Column generation subproblem

Any column with negative reduced cost is a candidate to enter the basis. The exact algo-
rithm (dynamic programming) for the pricing problem (29) finds the column with the lowest
reduced cost for each product. If there is a column with negative reduced cost, dynamic
programming will always identify a candidate column.

However, solving the LP relaxation (LPu) at a node u involves the solution of several
pricing problems (k-item knapsack problems), which is computationally intensive. As it is
not necessary for the column generation scheme to always select the column with the lowest
reduced cost, we first use the 2-approximation algorithm for solving the pricing problem. If
it fails to identify a column with negative reduced cost, the dynamic programming algorithm
is invoked to prove optimality or generate a column with negative reduced cost. This two
phase procedure is repeated until an optimal (or near optimal) solution to the LP relaxation
is found.

Tailing off and upper bound

At each node of the branching tree, the tailing off effect can be observed. That is: many
columns have to be added in order to prove the optimality of the LP solution, but its value
(almost) does not change any more [30]. To prevent excessive running times, we have adopted
the following rule: if during 30 iterations the objective value has not changed, we stop. Hence,
we do not necessarily solve the linear program to optimality. This figure 30 was chosen after
many trials. In this way, however, the value found does not provide an upper bound as it
is not necessarily optimal. We next describe how we still obtain an upper bound in this
case; the method used has been investigated in [15,30]. At a given node u, consider the LP
relaxation problem to be solved (LPu). Let Γ∗j =

∑m
i=1wijx

∗
i be the optimal objective value of

the k-item knapsack problem (kKP) (30)-(33) for a given product j, obtained by the dynamic
programming algorithm and J = {j ∈ {1, . . . , n} \H(u) : Γ∗j + fj(1 − (1 + R)d) + vj < 0}.
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We have an upper bound given by the right hand side of

z ≤
m∑
i=1

Miui +
n∑
j=1

vj −
∑

j∈H(u)∪J

Γ∗j + fj(1− (1 +R)d) + vj.

We detail the procedure to obtain this upper bound in the Appendix. Notice that the com-
putation of this upper bound needs an optimal solution of (kKP). To meet this requirement,
we solve the (kKP) problem exactly using the dynamic programming algorithm at the last
iteration (30th iteration) of the tailing off.

Branching scheme

We have shown that the hybrid branching strategy is compatible with the pricing problem
(Proposition 4). Moreover, in Section 3.3, we have shown that variable dichotomy is com-
patible with the pricing problem. Therefore, we branch on the fractional variable xij closest
to 1

2
. We set xij = 1 in one branch and xij = 0 in the other branch. In case of a tie, we

select the variable with the highest revenue pij.

5.2 Heuristics

Heuristic 1 & 2

The implementation of the first two heuristics is straightforward. For Heuristic 1 (respec-
tively Heuristic 2), the reduced integer program (M4) (respectively (M5)) is solved using
CPLEX 10.2 and the solution then serves as the basis for the implementation of the heuris-
tic.

Heuristic 3

The efficiency of the implementation of Heuristic 3 is essentially based on the efficiency of
the algorithm used for solving the linear relaxation of the Exact k-item Knapsack problem.
The linear time complexity is achieved using the method proposed by Megiddo [22,23].

Heuristic 4

Heuristic 4 is based on sorting the rij’s, which can easily be done in polynomial time.

Heuristic 5

The implementation of Heuristic 5 follows that of the branch-and-price algorithm under the
modifications described above. Firstly, we do not use the solution of Heuristic 3 as starting
solution, but we generate one column per product (if it is identified by the 2-approximation
algorithm). This column is the solution found by the 2-approximation algorithm for (kKP).
If for any product there is no column obtained, then we call the dynamic programming
algorithm for (kKP). Secondly, at each node we use only the first phase of the two phase
procedure of the branch-and-price algorithm. Hence, only the 2-approximation algorithm for
(kKP) is used to identify the columns that can be added to the master problem. Therefore, it
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may happen that although a column with a negative reduced cost exists for a given product,
the 2-approximation algorithm for (kKP) does not identify it. This implies that we do not
necessarily compute an optimal solution to the LP relaxation, hence we do not have an upper
bound for the best solution reachable from that node. Unlike branch-and-price, however, we
do not need an upper bound here. Thirdly, the branching is performed in a greedy fashion,
as explained in Section 4.5.

6. Computational experiments

6.1 Generating test instances

The instances used for the experiments are randomly generated, with cost cij randomly gen-
erated from the set {1, 2, 3} and the return to the firm pij = rijDFVij is an integer randomly
generated between 0 and 16. The choice of these figures is guided by examining the real-life
data used by Cohen [5]. The corporate hurdle rate R belongs to the set {5%, 10%, 15%}.
There are six different values for the number of clients m: these are 100, 200 and 300 clients
(small size; S1, S2 and S3), 1 000 and 2 000 clients (medium size; M1 and M2) and 10 000
clients for instances of large size (L). For each number of clients, we have three different
numbers of products n; these are 5, 10 and 15 products. In total, we have 54 groups of
instances, as described in Table 1.

Group rate R number of clients (m) number of products (n)
S1 5%, 10% or 15% 100 5, 10 or 15
S2 5%, 10% or 15% 200 5, 10 or 15
S3 5%, 10% or 15% 300 5, 10 or 15

M1 5%, 10% or 15% 1 000 5, 10 or 15
M2 5%, 10% or 15% 2 000 5, 10 or 15

L 5%, 10% or 15% 10 000 5, 10 or 15

Table 1: Size of the generated inputs

For each group, we generate a minimum quantity commitment bound Oj as a random

integer selected between d
∑

i Mi

n
e and d2

∑
i Mi

n
e. We consider three values for the budget Bj,

namely a random integer chosen between Oj

∑
i cij
m

and 2
∑

i cij
n

and the two extreme budgets

which are bOj

∑
i cij
m
c and d2

∑
i Mi

n

∑
i cij
m
e. The fixed cost fj is a random integer between

Oj

2m(1+R)

∑
i[pij − (1 +R)cij] and

Oj

m(1+R)

∑
i[pij − (1 +R)cij]. These bounds have been chosen

in such a way that the instances become feasible and consistent. We generate one instance
with a small upper bound Mi for any client, selected between 1 and n

5
, and another one

with a large random upper bound Mi for each client, selected between dn
3
e and d2n

3
e. In

conclusion, we have in total 3× 2× 54 = 324 test instances.
Since Heuristic 4 requires as input rij (and not pij), we have decided to generate for each

of the 324 test instances, three different sets of values for rij. The first set is generated
randomly from ]0, 1[, while the second is also randomly generated in ]0, 1[ but proportional
to cij and the last is inversely proportional to pij. Note that by choosing rij in ]0, 1[, we
discard certainty. These 3× 324 = 972 test instances are solved using Heuristic 4.
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We have implemented all algorithms in Visual Studio C++ 2005; all the experiments
were run on a Dell Optiplex GX620 personal computer with Pentium R processor with 2.8
GHz clock speed and 1.49 GB RAM, equipped with Windows XP. CPLEX 10.2 was called
as subroutine for solving the linear programs.

6.2 Computational results

In this section, computation time is expressed in seconds, while Gap is a percentage |zAP−zUB |
zUB

×
100%, where zUB is either the optimal objective value or an upper bound of the optimal ob-
jective value and zAP is the objective value obtained by our algorithm.

Basic formulation Set covering formulation

Group n M Gap
Time

Gap
Time

min mean max min mean max

S1

5
s 8.33 0.06 0.16 0.31 5.05 4.88 16.13 51.70
` 6.51 0.08 0.30 0.55 0.03 1.70 95.62 784.97

10
s 3.11 0.05 0.13 0.23 0.62 6.09 13.71 24.98
` 3.26 0.08 0.26 0.50 0.18 3.70 14.31 41.33

15
s 2.96 0.05 0.14 0.27 0.45 6.89 11.59 34.56
` 1.28 0.06 0.25 0.53 0.07 1.73 105.06 805.14

S2

5
s 2.51 0.11 0.31 0.67 0.78 166.03 705.97 2862.80
` 12.80 0.19 0.93 2.31 5.47 0.47 115.57 531.11

10
s 3.37 0.11 0.46 0.91 0.21 105.60 287.50 518.71
` 10.51 0.20 1.06 2.28 0.80 0.45 305.50 1047.98

15
s 2.47 0.11 0.43 0.83 0.15 80.75 190.46 271.88
` 5.00 0.16 1.12 2.23 0.00 120.67 225.42 458.99

S3

5
s 8.65 0.17 0.97 1.99 7.57 784.69 3004.44 11052.67
` 5.92 0.44 2.14 4.28 0.20 14.63 674.21 1575.14

10
s 3.48 0.19 0.51 0.88 0.58 1407.73 2322.51 3404.60
` 16.73 0.47 1.91 3.86 0.03 0.91 1838.27 8277.15

15
s 2.23 0.19 0.42 0.75 0.69 1766.64 3158.25 4804.45
` 13.65 0.48 2.54 5.74 0.77 1.09 588.26 1480.95

Table 2: LP relaxation of the basic formulation and the set covering formulation

Table 2 shows a comparison of the LP relaxation of the basic formulation and the set
covering formulation. Notice that each cell is the average of 9 values, described by three
values for R and three values for the budget B. The table confirms the theoretical result
obtained in Section 3.1 that the set covering formulation is strong: that is, it gives a solution
very close to the optimal solution compared to the solution obtained by the basic formulation.
This difference is reflected by Gap for the set covering formulation. We observe that Gap is
less than 1% for many groups. However, this quality of the LP relaxation of the set covering
formulation comes with a relatively high computation time. Notice that this computation
time increases with the size of the problem (number of clients). Table 2 explicitly displays
the trade-off between the solution quality and the computation time. Remark that the
computation time displayed in Table 2 for the set covering formulation is not necessarily
the computation time spent by the branch-and-price algorithm at the root node as we stop
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solving the root node when we go through 30 iterations without an improvement of the
objective value (as discussed in Section 5.1).

Table 3 compares three different strategies of traversing the branching tree. These are
breadth first, depth first, and best first. The main difference between these three strategies
is observed after the branching, when selecting the child to investigate first [29].

breadth first depth first best first

S1

n M Time Nr Nodes Time Nr Nodes Time Nr Nodes

5
s 10131.57 178 7365.78 74 2031.13 26
` 64.68 8 38.75 6 72.85 2

10
s 5057.54 936 1141.08 210 3035.86 410
` 9967.78 754 20172.64 1395 8587.53 208

Table 3: Comparison of different tree traversal strategies for the branch-and-price algorithm

The comparison is made for 36 instances from Group S1. We clearly see from Table
3 that the output of the breadth-first branch-and-price algorithm is dominated either by
the output of the depth-first branch-and-price algorithm or by the output of the best-first
branch-and-price algorithm. Remark that the number of nodes might be important here as
more nodes is likely to imply more columns generated. The generation of these columns is
time consuming, and too many columns may sometimes lead to a memory problem for our
branch-and-price algorithm.

Table 4 displays the results of the exact algorithms for the promotions campaigns prob-
lem. The basic formulation (M2) is solved using the MIP (mixed-integer programming) solver
of CPLEX 10. In Table 4, the minimum, the mean (average) and the maximum computation
time are recorded. For Group S1, CPLEX was able to solve each instance. However, the
computation time increases when we move to Group S2. For that group, CPLEX could not
solve four instances, due to memory problems. Amongst these four instances, three have a
small upper bound per client Mi (more precisely Mi = 1) and only one was an instance with
large upper bound. For Group S3, up to ten instances were not solved by CPLEX. In that
group, all unsolved instances have a small upper bound Mi. The above observations coupled
with an analysis of the computation time given in Table 4 for the basic formulation lead to
the following conclusions. Computation time seems to increase exponentially with the size
of the instance (number of clients). Moreover, instances with small upper bound Mi seem
to be harder to solve than instances with large upper bound.

Table 4 also shows the computation times obtained by the branch-and-price algorithms.
We concentrate only on depth-first and best-first branch-and-price algorithms as Table 3
has shown that these two dominate the breadth-first branch-and-price algorithm. It is clear
that using the Mixed Integer Optimizer of CPLEX 10.2 for solving the basic formulation
(M2) (enhanced with the default cutting planes) is much faster than the branch-and-price
approaches. Although the pricing problem is solved fast and Gap is smaller at the root node,
the number of nodes in the branching tree can be excessive, as witnessed in Table 4. We do
not apply the branch-and-price algorithms for solving the instances in Group S3.
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Heuristic 2 Heuristic 3 Heuristic 5
Group n Pos Gap Time Feas Pos Gap Time Feas Pos Gap Time Feas

S1
5 61.11 84.99 0.01 1.64 100 7.07 0.14 100 100 2.90 95.34 100

10 66.67 83.02 0.01 1.50 100 10.27 0.14 100 100 6.68 168.14 100
15 77.78 83.42 0.02 0.00 100 11.51 0.15 100 100 6.43 363.33 100

S2
5 50.00 86.85 0.02 0.00 100 8.19 0.55 100 100 14.81 2190.56 100

10 77.78 87.37 0.01 2.57 100 9.22 0.62 100 100 6.77 1892.39 100
15 58.82 83.62 0.02 1.70 100 9.22 0.62 100 100 14.72 2217.17 100

S3
5 41.18 82.97 0.02 0.00 100 8.46 2.93 100 58.82? 4.68 869.59 100

10 41.18 87.55 0.01 0.00 100 8.70 9.97 100 58.82? 14.15 339.68 100
15 41.18 82.65 0.01 0.00 100 9.47 1.74 100 58.82? 13.12 434.03 100

? identifies the groups where there is an effect of the time limit.

Table 5: Heuristics comparison

In Table 5, the outcomes of the heuristics are exhibited. Again, Gap is a percentage
|zAP−zUB |

zUB
× 100%, where zUB is the optimal objective value and zAP is the objective value

obtained by the heuristic. Pos is the percentage of (potentially infeasible) solutions with
positive objective value and Feas is the percentage of feasible solutions among solutions with
positive objective value. Unlike the previous tables, here each cell is the average of 18 values,
described by three values for R, three values for the budget B and the two values of M .
The experimental results of Heuristic 1 are not displayed in Table 5 because the solutions
produced by Heuristic 2 are better.

The results of Table 5 confirm the existence of a trade-off between computation time
and solution quality. Heuristic 2 is the fastest heuristic in the table. This is mainly because
the reduced formulation to be solved is very small (the size is proportional to the number
of products). This low computation time comes with a high Gap (more than 80%) which
expresses a very poor solution quality. Moreover, the solutions obtained are usually not
feasible (at most 3% of the solutions with positive objective value). Heuristic 3, however,
gives a feasible solution with positive objective value for all the test instances. Moreover,
Gap (at most 12%) and the computation time (at most 10s) make it an attractive heuristic.
The solutions provided by Heuristic 5 are of good quality with Gap of at most 15%. However,
unlike Heuristic 3, Heuristic 5 requires much more time. This computation time increases
with the size of the problem. Therefore, Heuristic 5 is applied for Group S3 (instances with
300 clients) with a time limit of one hour; we were able to provide solutions with positive
objective value (and feasible) for more than 50% of these instances.

Table 6 depicts the results of Heuristic 4 for the three categories of probabilities (random,
proportional to cost and inversely proportional to revenue). Although Heuristic 4 does not
find any feasible solution, we see different results for the three categories. The best behavior
of Heuristic 4 is observed for the random probabilities (which is close to the real life situation)
with the percentage of solutions with positive objective value around 80% and a gap usually
less than 80%. Also, remark that Heuristic 4 achieves the smallest running time among all
heuristics.
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Heuristic 4
Cost Revenue Random

Group n Pos Gap Time Feas Pos Gap Time Feas Pos Gap Time Feas

S1
5 5.56 88.61 0.00 0.00 16.67 94.48 0.00 0.00 83.33 80.73 0.00 0.00

10 11.11 82.10 0.00 0.00 55.56 88.89 0.00 0.00 88.89 75.26 0.00 0.00
15 11.11 80.22 0.00 0.00 72.22 89.35 0.00 0.00 94.44 78.35 0.00 0.00

S2
5 6.25 89.01 0.00 0.00 25.00 91.91 0.00 0.00 62.50 80.98 0.00 0.00

10 33.33 84.52 0.00 0.00 38.89 83.67 0.00 0.00 94.44 81.20 0.00 0.00
15 23.53 84.24 0.00 0.00 47.06 88.49 0.00 0.00 88.24 76.62 0.00 0.00

S3
5 17.65 78.31 0.00 0.00 47.06 86.40 0.00 0.00 82.35 75.36 0.00 0.00

10 17.65 81.76 0.00 0.00 47.06 90.34 0.00 0.00 82.35 80.64 0.00 0.00
15 17.65 70.95 0.00 0.00 47.06 84.12 0.00 0.00 82.35 72.71 0.00 0.00

Table 6: Heuristic 4

To summarize the comparison between the five heuristics, we formulate the following
advice. If the solution quality is the only criterion to be taken into account, the use of
Heuristic 5 or Heuristic 3 is advised if an efficient exact algorithm is not available. However,
if both the computation time and the solution quality are relevant, we strongly recommend
the use of Heuristic 3. Finally, we advise not to use Heuristic 2 or Heuristic 4 unless no other
choice is available as they do not guarantee feasibility nor good quality of the solutions.

6.3 Large instances

Heuristic 2 Heuristic 3 Heuristic 4 (random)
Group n Pos Gap Time Feas Pos Gap Time Feas Pos Gap Time Feas

M1
5 38.89 84.51 0.01 0.00 100 12.56 156.26 100 83.33 83.73 0.01 0.00

10 50.00 88.33 0.01 2.00 100 13.45 454.52 100 88.89 84.41 0.01 0.00
15 55.56 82.41 0.01 0.00 100 14.76 324.82 100 100 78.06 0.01 0.00

M2
5 44.44 83.36 0.01 2.25 100 14.01 2135.32 100 66.67 85.05 0.01 0.00

10 44.44 86.44 0.01 2.25 100 13.35 2331.94 100 94.44 82.20 0.01 0.00
15 61.11 88.10 0.01 0.00 100 12.82 1197.70 100 88.89 81.67 0.01 0.00

L
5 38.89 90.70 0.03 0.00 100 34.04 3573.92 100 100 84.74 0.08 0.00

10 38.89 78.25 0.04 0.00 100 33.52 3143.41 100 100 78.91 0.08 0.00
15 38.89 85.45 0.04 1.50 100 37.80 3353.81 100 100 75.40 0.07 0.00

Table 7: Heuristics comparison for large instances

In Table 7, Pos and Feas have the same meaning as in Table 5, but Gap is a percentage
|zAP−zUB |

zUB
× 100%, where zUB is an upper bound of the the optimal objective value obtained

by solving the LP relaxation and zAP is the objective value obtained by the heuristic.
Due to time constraints, Heuristic 3 was run for at most one hour per instance in Group

L. Hence, the solution output by the Heuristic 3 for instances in that group is not necessarily
the best solution it can provide. Similarly, for some instances, the LP relaxation was not
solved until optimality, and we impose a time limit of one hour and consider the value
obtained at that time as an upper bound of the optimal objective value.
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Table 7 confirms the difficulty experienced by Heuristic 2 and Heuristic 4 in finding
a feasible solution. Moreover, we observe a slight reduction (respectively increase) in the
percentage of non-zero solutions for Heuristic 2 (respectively Heuristic 4) compared with
smaller instances, while the gap remains quite large (more than 80% for Heuristic 2 and
more than 75% for Heuristic 4) and the percentage of feasible solutions is not promising.
The only good news comes from the computation time, which increases very slowly.

Heuristic 3, by contrast, behaves very well for large instances: Gap is less than 15% for
Group M1 and Group M2. Although this Gap increases up to 38% for the instances with
10 000 clients, Heuristic 3 still outperforms all the other heuristics.

In practice, there may be instances with millions of clients [5]. When dealing with such
instances, one often-used technique is to cluster the clients into groups (these techniques
are also called aggregate techniques [5]). Next, clients within a group are treated as being
identical. We point out here that a variant of (M1) provides a model for this situation where
xij is then defined as the number of clients of group i that receive the product j and the
parameters cij and pij are redefined accordingly. Let T be the number of groups thus built
and size(i) be the cardinality of group i.

(GM1) maximize
T∑
i=1

n∑
j=1

(pij − cij)xij −
n∑
j=1

fjyj

subject to
T∑
i=1

n∑
j=1

pijxij ≥ (1 +R)

[
T∑
i=1

n∑
j=1

cijxij +
n∑
j=1

fjyj

]
T∑
i=1

cijxij ≤ Bj j = 1, . . . , n,

n∑
j=1

xij ≤ size(i)Mi i = 1, . . . , T,

T∑
i=1

xij ≤ myj j = 1, . . . , n,

T∑
i=1

xij ≥ Ojyj j = 1, . . . , n,

yj ∈ {0, 1} xij ∈ {0, . . . , size(i)} i = 1 . . . , T, j = 1, . . . , n.

Often in practice, instead of solving the integer program (GM1), its LP relaxation is solved
and the outcome is used to build an assignment problem for each group.

7. Extensions

In this section we deal with two additional constraints regularly encountered in financial
institutions [5, 12]. The first constraint is a single time window constraint. So far, our
formulations take into account only the probability that client i reacts positively to an offer
of product j, missing the question of when client i is likely to accept an offer of j. This
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condition can be incorporated in our formulations by taking for a given time window T the
probability rTij that client i reacts positively to an offer of product j over the next period
T . These quantities are computed using well known statistical and probability tools [12].
The extension with sequentially ordered products over multiple time windows [16, 25] is an
avenue for future work.

The second constraint is related to the maximum number of offers that can be made for
a given product during the campaign. This constraint is easily incorporated into the basic
formulation by adding a constraint of the form

∑
i xij ≤ Njyj for each product j, where

Nj represents the maximum number of offers allowed for the product j. The set covering
formulation (M3) remains valid under a slight modification in the definition of Spj such that
it contains at least Oj clients and at most Nj clients. The major effect appears in the pricing
problem: instead of solving the k-item knapsack problem (kKP) ((30)-(33)), we have to solve
the following k1|k2-item knapsack problem:

(k1|k2KP) minimize
m∑
i=1

wixi (43)

subject to
m∑
i=1

cixi ≤ B (44)

k1 ≤
m∑
i=1

xi ≤ k2 (45)

xi ∈ {0, 1} i = 1, . . . ,m. (46)

The dynamic programming recursion applied for the k-item knapsack problem is also valid
for the k1|k2-item knapsack problem if we replace k by min{k, k2}, while the 2-approximation
algorithm is valid without any modification. This is due to the fact that a solution to the
k1|k2-item knapsack problem has at most two fractional components. This second constraint
is also easily incorporated in all the heuristics defined above after some minor modifications.

8. Conclusions and future works

This text explicitly models the promotion campaign problem taking into account both busi-
ness constraints and customer preferences and specificities. Our research shows that the
problem is strongly NP-hard and that it is unlikely that a constant factor approximation
algorithm can be proposed for solving this problem. We have also presented a set covering
formulation for the promotion campaign problem in which each product is associated with
a subset of clients (which can be empty) in the optimal solution and developed a branch-
and-price algorithm for solving it. We have shown that this last formulation is stronger than
the basic formulation. These two formulations are used to produce optimal solutions to the
promotion campaign problem. Experimental results confirm that these two formulations are
limited by the size of instances that they can efficiently solve, which makes their application
more suited for business-to-business applications in which variable (and fixed) costs are more
important and the number of clients is not very large (around 1000 clients [9]).

To extend the application to a business-to-consumer environment with considerably more
customers, we have presented five heuristics. Some of these heuristics are currently used
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in practice (Heuristic 1, 2, 4), while others are new (Heuristic 3, 5). Based on extensive
experimental results, we provide a comparison and comments on the efficiency and quality
of the results obtained using the different formulations and the heuristics. These results
clearly show a trade-off between computation time and solution quality and suggest the use
of optimal algorithms for small and medium size instances, while heuristics are prererable
for large size instances and when time is an important factor.

An important immediate further research direction that might be pursued is an extension
of this work to multichannel offers where the products can be offered through many different
channels and each channel has its own constraints (e.g. minimum and maximum number of
offers through this channel [5]). For the long term, we may extend this work to take into
account sequentially ordered products over time that is when different related products are
offered over multiple time windows [16,25].
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Appendix: upper bound computation

In this section, we describe how to obtain an upper bound at a node u of a branch-and-price
tree where we observe the tailing off effect. The method used has been investigated in [15,30].
At a given node u, the LP relaxation problem to be solved (LPu) can be reformulated as
follows.

(LPu) max
n∑
j=1

 kj∑
p=1

∑
i∈Spj

(pij − cij)− fj

 zpj

 (= z) (47)

subject to
n∑
j=1

 kj∑
p=1

∑
i∈Spj

(pij − (1 +R)cij)− (1 +R)fj

 zpj

 ≥ 0 (d ≤ 0) (48)

n∑
j=1

∑
p:i∈Spj

zpj ≤Mi (ui ≥ 0) i = 1, . . . ,m, (49)

∑
p:Ru

j⊆Spj

zpj = 1 (vj free) j ∈ H(u), (50)

kj∑
p=1

zpj ≤ 1 (vj ≥ 0) j ∈ {1, . . . , n} \H(u), (51)

zpj ∈ Eu
j , j = 1, . . . , n, (52)

where Eu
j is defined by

if j /∈ H(u) ∪ L(u), Eu
j = {zpj ≥ 0 : p ∈ {1, . . . , kj}},

if j ∈ H(u) \ L(u), Eu
j = {zpj ≥ 0 : p ∈ {1, . . . , kj}, Ru

j ⊆ Spj},
if j ∈ L(u) \H(u), Eu

j = {zpj ≥ 0 : p ∈ {1, . . . , kj}}, Nu
j ∩ Spj = ∅},

if j ∈ H(u) ∩ L(u), Eu
j = {zpj ≥ 0 : p ∈ {1, . . . , kj}}, Ru

j ⊆ Spj, N
u
j ∩ Spj = ∅}.
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By dualizing the constraints (48)-(51), we obtain:

z ≤ max
n∑
j=1

∑
p

∑
i∈Spj

(pij − cij)− fj

 zpj


−d


n∑
j=1

∑
p

∑
i∈Spj

(pij − (1 +R)cij)− (1 +R)fj

 zpj


+

m∑
i=1

Miui −
n∑
j=1

∑
p

(
∑
i∈Spj

ui)zpj

+
n∑
j=1

vj −
n∑
j=1

∑
p

vjzpj

subject to zpj ∈ Eu
j , j = 1, . . . , n.

The above inequality is rewritten as:

z −
m∑
i=1

Miui −
n∑
j=1

vj ≤ max
n∑
j=1

∑
p

−


∑
i∈Spj

pij(1− d) + cij(1− (1 + R)) + ui


+fj(1− (1 + R)d) + vj} zpj ]

subject to zpj ∈ Euj , j = 1, . . . , n

≤ max
n∑
j=1

∑
p

−


∑
i∈Spj

wij

+ fj(1− (1 + R)d) + vj

 zpj


subject to zpj ∈ Euj , j = 1, . . . , n

≤ max
n∑
j=1

[∑
p

−

{(
min

xi ∈ Xu
j

m∑
i=1

wijxi

)
+ fj(1− (1 + R)d) + vj

}
zpj

]
subject to zpj ∈ Euj , j = 1, . . . , n

where wij = pij(d− 1) + cij(1− (1 +R)d) + ui and Xu
j is defined by

if j /∈ H(u) ∪ L(u), Xu
j =

{
xi ∈ {0, 1} :

m∑
i=1

cijxi ≤ Bj,
m∑
i=1

xi ≥ Oj

}
,

if j ∈ H(u) \ L(u), Xu
j =

{
xi ∈ {0, 1} :

m∑
i=1

cijxi ≤ Bj,
m∑
i=1

xi ≥ Oj, xi = 1, ∀i ∈ Ru
j

}
,

if j ∈ L(u) \H(u), Xu
j =

{
xi ∈ {0, 1} :

m∑
i=1

cijxi ≤ Bj,

m∑
i=1

xi ≥ Oj, xi = 0, ∀i ∈ Nu
j

}
,

if j ∈ H(u) ∩ L(u), Xu
j =

{
xi ∈ {0, 1} :

m∑
i=1

cijxi ≤ Bj,
m∑
i=1

xi ≥ Oj,
xi = 1, ∀i ∈ Ru

j ,
xi = 0, ∀i ∈ Nu

j

}
.
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Let Γ∗j =
∑m

i=1wijx
∗
i be the optimal objective value of the k-item knapsack problem (kKP)

(30)-(33) obtained by the dynamic programming algorithm. We have

z −
m∑
i=1

Miui −
n∑
j=1

vj ≤ max
n∑
j=1

[∑
p

−
{

Γ∗j + fj(1− (1 +R)d) + vj
}
zpj

]
subject to zpj ∈ Eu

j , j = 1, . . . , n

≤ max
n∑
j=1

[
−
{

Γ∗j + fj(1− (1 +R)d) + vj
}∑

p

zpj

]
subject to zpj ∈ Eu

j , j = 1, . . . , n

We know that
∑

p zpj = 1 for j ∈ H(u) and
∑

p zpj ≤ 1 for j ∈ {1, . . . , n} \ H(u). Let
J = {j ∈ {1, . . . , n} \H(u) : Γ∗j + fj(1 − (1 + R)d) + vj < 0}, we set

∑
p zpj = 1 for j ∈ J

and
∑

p zpj = 0 for j /∈ H(u) ∪ J . At a node u, we have an upper bound given by the right
hand side of

z ≤
m∑
i=1

Miui +
n∑
j=1

vj −
∑

j∈H(u)∪J

Γ∗j + fj(1− (1 +R)d) + vj.
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