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ABSTRACT 

This paper describes two experiments exploring the poten-
tial of the Kriging methodology for constrained simulation 
optimization. Both experiments study an (s, S) inventory 
system with the objective of finding the optimal values of s 
and S. The goal function and constraints in these two ex-
periments differ, as does the approach to determine the op-
timum combination predicted by the Kriging model. The 
results of these experiments indicate that Kriging offers 
opportunities for solving constrained optimization prob-
lems in stochastic simulation; future research will focus on 
further refining the methodology.   
 

1 INTRODUCTION 

A metamodel, also called a response surface, is an ap-
proximation of an Input/Output (I/O) function that is de-
fined by an underlying simulation model (see Kleijnen, 
2007). The metamodel is the surrogate for the simulation 
model of the real-world system. This metamodel is used to 
guide experimentation and analysis. Experimentation with 
the actual system is far too costly and time consuming, so 
that computer-based experimentation, or simulation, is pre-
ferred. 

Most metamodeling studies focus on low-order poly-
nomial regression using factorial-based designs. The cen-
tral composite design (CCD) is a popular experimental de-
sign for estimating a quadratic regression in a local,  
unimodal region of the design space. The difficulty with  
factorial-based designs such as the CCD is that they are not 
space-filling, as illustrated in Figure 1. In this figure, the 
“sum” values at the right end of each row and the bottom 
of each column show this situation quite clearly; that is, the 
many zeros among these “sum’ values demonstrate the 
non-space filling characteristic of CCD designs. The pres-
3551-4244-1306-0/07/$25.00 ©2007 IEEE
ence of “sum” values > 1 signify yet another undesirable 
feature of CCD designs from the standpoint of  
Kriging; that is, CCD designs are collapsing, and as such 
are undesirable for the application of Kriging. 

 
   S  s 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38Sum

40        1        1
45                0
50   1          1   2
55                0
60                0
65                0
70                0
75 1      5       1 7
80                0
85                0
90                0
95                0

100   1          1   2
105                0
110        1        1
 Sum 1 0 2 0 0 0 0 7 0 0 0 0 2 0 1 13
                  
  

Figure 1: A central composite design for two inputs 
 

An alternative to factorial-based designs such as the 
CCD are space-filling designs such as the Latin Hypercube 
Design or LHD (McKay et al. 1979). These designs have 
especially favorable characteristics when applied in a con-
strained optimization experimental setting in that there is a 
high probability that one or more design points will not 
only fall within the feasible region (which is not known a 
priori), but will actually fall close to a constrained opti-
mum solution. LHD designs are also especially well suited 
for Kriging in that they can be made to cover the design 
space in such a way that design points are almost equidis-
tant from one another in k-dimensional space where k de-
notes the number of factors (also called inputs). Figure 2 
illustrates a non-collapsing, space-filling LHD, as con-
trasted to the CCD in Figure 1; the fact that in Figure 2 all 
the “sum” values are 1 is an indication of the non-
collapsing, space-filling features of LHD designs. Designs 
such as illustrated in Figure 2 are preferred when applying 
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Kriging to simulation experimentation. Popular software 
for obtaining a LHD is Crystal Ball, @Risk, and Risk 
Solver; also see the references in (Kleijnen 2007). 
 
s  S 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78  Sum 
20      1                 1 
21           1            1 
22                1       1 
23                     1  1 
24  1                     1 
25       1                1 
26            1           1 
27                 1      1 
28          1             1 
29   1                    1 
30        1               1 
31             1          1 
32                  1     1 
33               1        1 
34    1                   1 
35         1              1 
36              1         1 
37                   1    1 
38                    1   1 
39     1                  1 
                        
Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  20 
  

Figure 2: A latin hypercube design for two inputs 

2 KRIGING: BASICS 

Kriging is an interpolation method that predicts unknown 
values of a random function. The simplest Kriging model 
is displayed in (1): 
 

 ( ) ( )xzxy += βˆ    (1) 
 
where ( )xŷ denotes the Kriging predictor for input or factor 
combination (point) x, β a constant, and ( )xz a covariance-
stationary process; see, for example, Cressie (1993) and 
Wackernagel (2003). 

A Kriging prediction is a weighted linear combination 
of all output values already observed: 

 

Yλxx ⋅′=∑ = ⋅= n
i iYiY 1 )()0(ˆ λ  with ∑=

=
n

i i1
1λ . (2) 

 
 The weights ),,( 1 ′= nλλ Kλ  in (2) depend on the 
distances between the input to be predicted 0x  and the in-
puts already observed ix . Kriging assumes that the closer 
the input data are, the more positively correlated the pre-
diction errors are. This assumption is modeled through the 
correlogram (or the related variogram). In simulation, a 
popular class of correlograms is 
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where k denotes the number of inputs, ),,( 1 ′= khh Kh  the 
distance vector between two inputs, say ix  and i′x , jθ  the 
importance of input j; that is, the higher jθ  is, the less ef-
fect input j has, and jp  the smoothness of the correlogram 
function. Often, these powers jp  are chosen  as 

2== pp j . Then, the resulting correlogram is the infi-
nitely differentiable so-called “Gaussian” correlation func-
tion. 

The criterion to select the weights λ  is mean-squared 
prediction error 2

eσ  defined as 
 
 ( )2

00
2 )( )()( xx YYEe

)
−=σ . (4) 

 
Minimizing (4) under the constraint (2) gives the op-

timal weights 
 

 1
/

1/

1/
/ 1 −

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+= Γ

1Γ1
γΓ11γλ  (5) 

 
where γ  denotes the vector of (co)variances 

/
010 ))(,),(( nxxxx −− γγ K , Γ  denotes the nn×  matrix 

whose (i, j)th element is )( ji xx −γ , /)1,,1( K=1 is the 
vector of ones; also see Cressie (1993, p. 122). Note that 
some of the weights iλ  may be negative. 

The optimal weights (5) give the minimal mean-
squared prediction error (also see (Cressie 1993, p. 122)) 
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Actually, )(hγ used in (5) and (6), is unknown. The 

usual estimator of this covariance is 
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where )(hN  denotes the number of distinct pairs in 

}{ ,,1,;:),()( njiN jiji K==−= hxxxxh ; see 
Matheron (1962). These estimates imply estimates of the 
corresponding correlations, so the parameters jθ  and jp  
in (3) can be fitted. For this fitting, standard Kriging soft-
ware uses Maximum Likelihood Estimation (MLE); Van 
Beers and Kleijnen (2003), however,  use Weighted Least 
Squares (WLS) estimation for a linear correlogram func-
tion. These estimated covariances are substituted into (5) to 
estimate the optimal weights. The statistical complications 
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arising from this estimation are discussed in Den Hertog, 
Kleijnen, and Siem (2006). 

3 KRIGING IN CONSTRAINED OPTIMIZATION 

Kleijnen and van Beers (2004) applied Kriging for sensi-
tivity analysis of stochastic simulation with a single output. 
Now we explore the use of Kriging in constrained optimi-
zation. 

We studied two experiments with an (s, S) inventory 
system.  In such a system, a replenishment order is placed 
as soon as the inventory position (= on-hand inventory + 
outstanding orders – backlogs) drops to or below the reor-
der point s. This replenishment order brings the inventory 
position back to the order-up-to level S. Note that S conse-
quently denotes the maximum inventory position. We de-
fine an auxiliary variable Q = S – s (the actual order size is 
a random variable that is obviously at least equal to Q). 

In general, the objective of our optimization problem 
is to find those values of s and S (or, equivalently, s and Q) 
that minimize a given cost function subject to a number of 
constraints: 
 
 min y0(X) (8) 
such that 
 yj(X)  ≥  aj  (j = 1, …, m) 
 x1  ≥  0, x2  ≥  0 
 
where the vector X = (x1, x2) refers to an (s, S) (or, equiva-
lently (s, Q)) combination. 

In our two experiments we studied different objective 
functions and different constraints. In the next two subsec-
tions, we describe these two experiments and their results. 

3.1 Experiment 1: An (s, S) Inventory System With 
Holding Cost And Shortage Cost Constraints 

In the first experiment, the objective is to minimize the ex-
pected “total” cost y0(X) (defined as the sum of holding, 
shortage and ordering cost) subject to limitations on the 
expected holding cost y1(X) (as there is a scarcity of stor-
age space for the product) and shortage cost y2(X) (as man-
agement wishes to maintain customer satisfaction). More 
specifically, we have: 
 
 min y0(X) (9) 
 
such that 

y1(X) ≤  25 
y2(X) ≤  10 

x1 ≥ 0, x2 ≥ 0 
 
where x1 stands for s, and x2 stands for S.  The parameters 
for this (s, S) inventory control model were as follows: 
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•  The simulated period was 120 days, with costs 

maintained on a $/day basis.  
• The ordering cost was $32 per order plus $3 per 

unit ordered. 
• The order lead-time was uniformly distributed be-

tween 0.5 and 1: U(0.5, 1). 
• The inventory review interval was one day. 
• Demand was Poisson distributed with a rate of λ = 

10 customers/day. 
• The number of units demanded per customer var-

ied between 1 and 4 and followed the (cumulative) 
distribution (0.17, 1; 0.5, 2; 0.83, 3; 1, 4). 

• The holding cost was $1/unit/day. 
• The shortage cost was $5/unit/day. 
An Arena-based (s, S) model with these parameters 

was simulated for r = 5 replications at each design point in 
the 20-point LHD shown earlier in Figure 2. For each of 
these points, five replicates were simulated; each replicate 
started with an inventory of S units. The average results for 
holding, shortage and total cost are displayed in Table 1; 
the three rightmost columns show whether the design point 
violates the holding cost constraint (CVh), the shortage 
cost constraint (CVs), or the Boolean OR for these results 
(CV). The last columns shows that one-half of the 20 de-
sign points turned out to be feasible, which indicates that 
the design points were well placed in the experimental re-
gion. 
 
Table 1: Simulation results for the LHD applied to the (s, S) 
inventory system. 
 

       

Trial s S Hold Short Total CVh CVs CV
1 20 48 11.60 18.84 124.99 0 1 1
2 21 58 16.53 13.33 119.63 0 1 1
3 22 68 21.45 10.49 121.41 0 1 1
4 23 78 26.69 8.88 123.27 1 0 1
5 24 40 9.73 15.04 128.18 0 1 1
6 25 50 14.18 12.23 122.06 0 1 1
7 26 60 18.89 8.68 118.24 0 0 0
8 27 70 25.03 6.27 120.27 1 0 1
9 28 56 17.71 8.01 120.62 0 0 0

10 29 42 12.16 8.95 125.62 0 0 0
11 30 52 16.98 7.46 121.96 0 0 0
12 31 62 20.79 6.06 120.23 0 0 0
13 32 72 27.38 4.03 124.79 1 0 1
14 33 66 24.08 4.18 119.68 0 0 0
15 34 44 14.16 6.68 126.22 0 0 0
16 35 54 20.41 3.86 125.45 0 0 0
17 36 64 24.63 3.55 128.18 0 0 0
18 37 74 30.60 1.98 125.95 1 0 1
19 38 76 31.70 2.35 126.97 1 0 1
20 39 46 15.95 4.91 127.47 0 0 0  

 
The graphical function of Minitab (2007) gave the re-

sponse surfaces shown in Figure 3. The total cost function 
y0(X) is very well behaved and follows a nearly quadratic 
form (Minitab uses all design points to fit the surface – 
hence, we observe a slight departure from a perfect quad-
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ratic form). The surfaces for the constraint functions for 
holding cost and shortage cost are highly planar in the re-
gion of interest defined by 10 ≤ x1 ≤ 40 and 40 ≤ x2 ≤ 90.  

Excel Solver gave as the optimal solution: x1 = 25, x2 = 
63, y0 = $118.47, y1 = $20.56, and y2 = $8.13. Hence, a re-
sponse surface approach to optimization yielded an uncon-
strained optimum; i.e., the two constraints in (8) are not 
binding. 

Next, we applied Lophaven et al. (2002)’s DACE, a 
Matlab Kriging toolbox, to the data x1, x2, and y0; see the 
variables s, S, and Total in Table 1.  

Figure 4 shows the plot for the total cost produced 
through a 20-by-20 grid of Kriging predictions.  The result-
ing optimum is s = 27, S = 60,  y0 = $118.56, y = $19.30, 
and y2 = $7.94. Again, neither of the constraints is binding.  
However, this grid used  only  the even  values of  S over  
the  range from 40 to 80. To find a possibly better solution, 
we conducted a localized Kriging search for s  is 26, 27, 
and 28 and S is 59, 60, and 61. These Kriging predictions 
confirmed the above optimum. 

 

20
25

30
35

40

40
50

60

70
80

118

119

120

121

122

123

124

little sBig S

Figure 4. Plot of Kriging predictions for the (s, S) inven-
tory system 
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(a) Holding cost plot 
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(b) Shortage cost plot 
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Figure 3. Plots for (a) Holding cost, (b) Shortage cost, and 
(c) Total cost for the (s, S) inventory system. Resulting 
from a 20-point LHD. 
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3.2 Experiment 2: An Integrated Production-
Inventory System with an (S, S) Policy and A 
Service Level Constraint 

The second experiment illustrates the application of 
Kriging to determine the optimal values of s and S in an 
integrated production-inventory system. In this system, 
every time a replenishment order is triggered, the produc-
tion system needs to first produce the order before it ends 
up in inventory.  

The optimal policy is defined as the policy that mini-
mizes expected partial cost per time unit (consisting of in-
ventory holding cost and ordering cost), subject to the con-
straint of a target Customer Service Level (CSL) (defined 
as the percentage of units ordered that could be immedi-
ately delivered from stock). 

The production time per product unit at the factory is 
random. Hence, the replenishment lead-time will depend 
on the size of the replenishment order. Moreover, the dy-
namic behavior of the production system implies that re-
plenishment orders may need to queue until the production 
system is available. Obviously, this influences the replen-
ishment lead times and, consequently, the CSL that is ob-
tained. 
 The model was coded entirely in the Matlab language 
(The MathWorks 2001). Our steady-state experiment has 
the following parameters: 
 

• The simulation run length consists of 100,000 
customer orders. 

• Each simulation run starts with a finished goods 
inventory of S units. 

• Customer orders arrive at the inventory subsystem 
according to a Poisson process with parameter 

2=λ . 
• Customer order sizes follow the shifted Poisson 

distribution 1 + Poiss(μ) with 2=μ . 
• Production time for one unit at the production site 

is gamma distributed with mean mX and squared 
coefficient of variation SCVX defined as follows. 
SCVX is an input parameter, namely SCVX = 2. 
Furthermore, mX is based on a given target utili-
zation rate ρ of the factory, namely ρ = 0.8. This 
ρ refers to the fraction of time that the factory will 
be busy, and is given by ( ) .1 mXμλρ +=  

• The inventory holding cost per inventory unit per 
time unit  is chold =  0.1. 

• The cost per replenishment order is corder = 6.5. 
 

We studied this setting for the experimental area de-
fined by 45 ≤ s ≤ 65 and 40 ≤ Q ≤ 60 where Q = S - s. We 
used Common Random Numbers (CRN) for the three ran-
dom inputs (interarrival times of customer orders, customer 
order sizes, and unit processing times). The transient pe-
359
 
riod was determined by means of Welch’s method (Law 
and Kelton 2000, p. 520). To estimate the partial cost per 
time unit and the CSL for a given (s, Q) combination, we 
used the replication-deletion approach described in (Law 
and Kelton 2000, p. 525). 

The initial number of replications for any input com-
bination is set at two. Next, extra replications are added se-
quentially, to obtain 95 % confidence interval with a target 
relative error of 0.01 for the partial cost per time unit for a 
given (s, Q) combination. So, based on m0 replications, we 
obtain 
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denotes the partial cost per time unit observed during the 
data collection period of the jth replication; yhold,j  denotes 
the corresponding holding cost; yorder,j denotes the ordering 
cost; tj denotes the length of the data collection period in 
the jth replication, in time units. 

For CSL we used formulas similar to (10) through (12); 
however, (13) is replaced by 
 

 
j

j
j D

d
CSL = , (14) 

 
which denotes the customer service level observed during 
the data collection period of the jth replication; dj is the 
number of units delivered from stock, while Dj is the total 
number of units demanded during that same period. 

Our approach in this experiment may be summarized 
as follows: 

Step 1: simulate the 25 design points defined by the 
full factorial (or grid) with 45 ≤ s ≤ 65 and step size 5, and 
40 ≤ Q ≤ 60 and step size 5. 

Step 2: fit Kriging metamodels to the data from Step 1, 
and use these Kriging results to estimate the optimum. 



Biles, Kleijnen, van Beers, and van Nieuwenhuyse 
 

 

 
Figure 5. Averaged simulated CSL for the design points in 
experiment 2 

Figure 6. Averaged simulated partial cost per time unit for 
the design points in experiment 2 

 
Step 3: confirm the optimum estimated in Step 2 by  

simulating each integer (s, Q) combination in the 
neighborhood of that optimum, and checking whether the 
Kriging model succeeds in approximating the true opti-
mum. 

Now, we discuss these steps, in more detail.  
Step 1: simulate design points  
Figures 5 and 6 show the resulting plots for CSL, and the 
objective function. Figure 5 shows that the CSL is increas-
ing in s: higher s offers more protection against stockouts. 
The CSL is decreasing in Q: in our replenishment system, 
the replenishment lead time of an order depends on the size 
of the order, so larger values of Q lead to longer replen-
ishment lead times, having an adverse effect on CSL. 

Figure 6 shows that the partial cost per time unit is in-
creasing in s, and decreasing in Q. This is the result of the 
combined behavior of the order cost per time unit and  
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Figure 7. Kriging predictors for partial cost and CSL  

 
the holding cost per time unit. The order cost per time unit 
is decreasing in Q, and insensitive to s. The holding cost 
per time unit is increasing in s, and slightly decreasing in Q. 
The latter is as expected, given that large Q values in our 
setting lead to large replenishment batches and hence to 
long replenishment lead times. Consequently, with large Q 
values, it takes longer for the inventory to be replenished 
implying that in the meantime lower inventory levels are 
reached.  

 
Step 2: Kriging  
Next, we fit two Kriging models to the outputs observed in 
Step 1, namely the partial cost per time unit and the CSL 
(the Matlab DACE toolbox enables only univariate fitting). 
Figure 7 shows the Kriging predictions for the partial cost 
per time unit, and CSL..  
 The optimum based on Kriging was determined by 
first selecting only those integer (s, Q) combinations for 
which the predicted CSL is not lower than 95%; among 
these combinations, the one with minimum predicted par-
tial cost was considered to be the optimum. This gives  
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(s*, Q*) = (55, 48) so S* = 55 + 48 = 103, yielding a pre-
dicted partial cost 0y of 5.6472 and a CSL of 0.9511. 

The DACE toolbox can also be used to estimate the 
gradients of the goal (or objective) function (partial cost in 
this case) and the constraint (CSL) at the predicted opti-
mum (s* = 55, Q* = 48); see Lophaven et al. (2002, pp. 
15-16). This yields the gradients displayed in Table 2. 
 
Table 2. Gradients of the partial cost function and the CSL 
function, determined through DACE  

 partial cost  CSL 
),(

Q
f

s
ff

∂
∂

∂
∂

=∇  (0.0930, -0.0616) (0.0040, -0.0027)

f∇  0.1116 0.0048 

f
f

∇
∇  

(0.8338, -0.5520) (0.8313, -0.5558)

 
Dividing both gradients by their norm in Table 2 

shows that the gradients point roughly in the same direc-
tion—as the Karush-Kuhn-Tucker (KKT) first-order opti-
mality conditions require. In future research, we shall ap-
ply a statistical procedure to test whether the KKT 
conditions for constrained optimization indeed hold in the 
predicted optimum; see Bettonvil et al. (2007). 
 
Step 3: confirmatory simulation 
Finally, we compare the optima predicted by the Kriging 
model and an exhaustive simulation search. We therefore 
simulated each integer (s, Q) combination in the neighbor-
hood of the predicted optimum; i.e., we chose to explore 
the experimental area defined by 54 < s < 57 and 
46 < Q < 51, and a step size of 1 for both s and Q. This ex-
periment gives as the optimum (s*, Q*) = (56, 50) with a 
simulated partial cost 0y of 5.6218 and a simulated CSL of 
0.95. 

The minimum partial cost predicted by Kriging is 
close to the minimum simulated. The location of the  
optimum, however, does not coincide. Further analysis re-
veals that at  (s*, Q*) = (56, 50) Kriging predicts a partial 
cost 0y of 5.6191, which is very close to the simulated par-
tial cost; however, the Kriging model for CSL predicts a 
CSL of 0.9495 so the Kriging model considers  this point 
to be infeasible.  

We believe that the latter result indicates that the pre-
cision of the Kriging methodology for constrained optimi-
zation may benefit substantially from efforts to further im-
prove the Kriging prediction for the constraint in the 
neighborhood of the constraint’s cut-off value. This issue 
will be further explored in future research. 

4 CONCLUSIONS 

This paper considered the problem of constrained optimi-
zation in stochastic simulation. It described two experi-
361
ments in which Kriging was applied to solve this problem. 
Until now, Kriging has been applied chiefly to determinis-
tic simulations. Van Beers and Kleijnen (2003) have dem-
onstrated its application to sensitivity analysis of stochastic 
simulations with a single response. The present paper 
demonstrates that Kriging has potential for constrained op-
timization in stochastic simulation— though a number of 
issues remain to be investigated. 

Firstly, future research might aim at how to improve 
the precision of the Kriging model for the constrained re-
sponse, in the neighborhood where the constraint is bind-
ing; i.e., are the slacks significantly positive or negative? 
Secondly, additional work is underway to apply methods 
developed in Mathematical Programming to the Kriging 
approximations. 

Simulation optimization remains a problem solved by 
heuristics; i.e., it is impossible to identify a truly optimum 
solution in stochastic simulation. For example, in multiple 
comparison and ranking procedures the classical assump-
tion is that the simulation outputs are normally distributed 
with constant variance; hence, the procedures can only 
make probability statements about the optimum. In con-
strained simulation optimization, the problem is even more 
complicated. When dealing with an estimated optimum so-
lution at a boundary, we are faced with a more complicated 
probability statement involving possible violations of the 
constraints. In current research we are using a t statistic to 
test the feasibility of a candidate solution, and a boot-
strapped statistic to test whether the KKT conditions hold 
at that solution. 

Unlike many other simulation optimization heuristics 
(which have been discussed at recent Winter Simulation 
Conferences), our heuristic assumes neither many simu-
lated factor combinations nor many replications (per com-
bination). An advantage is that our heuristic is appropriate 
for computationally expensive simulation experiments. A 
disadvantage is that we have not yet succeeded in proving 
the convergence of our heuristic to the true optimum.  
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