
KATHOLIEKE 
UNIVERSITEIT 

LEUVEN 

DEPARTEMENT TOEGEPASTE 
ECONOMISCHE WETENSCHAPPEN 

RESEARCH REPORT 0009 

AN ARCHITECTURE FOR BRIDGING 00 
AND BUSINESS PROCESS MODELLING 

by 
M. SNOECK 

S. POELMANS 
G. DEDENE 

D/2000/2376/09 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An architecture for bridging 00 and Business Process 
Modelling 

M. Snoeck - S. Poelmans -G. Dedene 

submittedfor TOOLS Europe 2000 

Abstract. Workflow systems and object-oriented (00) technology 
have undoubtedly been some of the most important domains of 
interest of information technology over the past decade. Both 
domains however, have largely evolved independently, and not much 
research can be found in which 00 principles and concepts have 
been applied to workflow systems or vice versa. In this paper we 
show how the two domains can be integrated. By integrating both 
domains, business process modelling can benefit from the advantages 
of the object-oriented approach. On the other hand, a more process 
oriented approach to object-oriented development would enhance the 
organisational fit in of object-oriented information systems 
development. The architecture that results from this integration is a 
tier-based one with a separate tier for workflow aspects. 

Keywords: object-oriented analysis, business process modelling, 
architecture 

1. INTRODUCTION 

Workflow systems and object-oriented (00) technology have undoubtedly 

been some of the most important domains of interest of information 

technology over the past decade. Both domains however, have largely 

evolved independently, and not much research can be found in which 00 

principles and concepts have been applied to workflow systems or vice versa. 

In fact, both domains are complementary: what is missing in one domain is 

present in the other and vice versa. The next two paragraphs briefly sketch the 

situation of both domains. The third paragraph lists some of the advantages 

that can be gained by integration. 



1.1 The lack of afunctional view in Process Modelling 

A workflow system can be defmed as information technology that can be 

used to model, enact and adapt business processes [6]. A business process 

consists of a number of activities that have to be executed in some order by 

several end-users in order to fulfil the business goal. In the modelling phase, 

the activities, their order of execution and the agents that are responsible for 

the activities are determined. One of the principal issues of workflow systems 

is their ability to cope with changing requirements inside and outside an 

organisation. 

Workflow (management) systems have been developed to design, execute, 

control and adapt busines~ processes in an organisational context. Workflow 

systems originate from office automation developments in the 80's. Whereas 

typical office automation applications (like text editors, spreadsheets and 

databases) are designed to support individual end-users, workflow systems are 

created to support a process view on business activities. Not only individual 

users with individual activities but also an entire process with several 

interdependent users and activities directed towards one common business 

goal should be supported. In this way, costs can be diminished and/or 

(customer) services can be improved so that workflow systems can be used as 

a strategic advantage. 

In the literature on workflow modelling, several techniques are proposed to 

define and represent the structure of a business process (petri-nets, flow charts, 

etc.). In most cases, the method to be followed is imposed by the vendor of the 

workflow package [10]. The philosophy and theoretical approach that are 

implicitly or explicitly applied in a particular workflow system, often leaves 

the designer with no choice. The Action Workflow System for example is 

built according to the principles of the speech act theory and forces the 

developer to use the specific diagrams and representations of this theory [13]. 

Another example is the Trigger Model of Joosten [9], that uses petri-nets to 

model activities. 

Nevertheless, some general requirements can be put forward that are 

necessary to be able to model a process: 

2 



1. Processes, activities and operations need to be defined in a hierarchical 

manner: 

A process is the highest level of the hierarchy. Process design typically 

requires a top down decomposition of high level processes into sub-processes 

down to atomic operations. More precisely, a process might be composed of 

procedures, which are defined as a limited sequence of activities. Each activity 

(also called a process step) can be further subdivided into sub-activities or 

subtasks. Notice that it is the division of labour in the organisation that 

determines the subdivision in activities and sub-activities. Activities and tasks 

might have a different meaning in different organisational theories. In the field 

of workflow modelling however, both terms are often used interchangeably 

and we will do the same in this paper. 

2. The sequence of procedures, activities and sub-activities is crucial: 

The main goal of a workflow system is in fact the automation or support of 

the co-ordination between activities and between activities and agents. Co

ordination can be defined as the management of dependencies [12]. In what 

way does one activity depend on the results of another activity? The modelling 

of dependencies constitutes the heart of workflow modelling. The existence of 

dependencies implies a certain order of execution. Some (sub)tasks cannot be 

performed before previous tasks have been completed; other tasks need to be 

executed in parallel, and so on. 

3. Agents are humans or computer applications: 

Not only the dependencies of activities need to be modelled, but also the 

interaction between activities and actors (from now on called "agents") needs 

to be planned ahead. An agent is able to perform different activities, and 

different agents can perform a specific activity. Agents can be human end

users or computer applications that perform activities. When human agents 

execute certain tasks, they might be assisted by computer applications to 

3 



support them. Only when applications are directly coupled to the workflow 

system, they are considered as agents. When an application is evoked by the 

workflow system and when the application performs a certain activity without 

any intervention of the end-user, it is called an autonomous agent. An agent is 

called semi-autonomous when it is directly coupled to a workflow system, 

although an intervention of the end-user is still required. 

4. Agents are assigned to roles: 

Agents are assigned to activities via the construction of roles. A role defines 

the responsibility for the performance of a (collection of) task(s). In general, 

the responsibility for one activity should not be assigned to more than one 

role. One role may be responsible for several activities, but one activity should 

belong to one role [11]. 

5. The specification of the business process (or workflow) needs to be a 

persistent artefact: 

The workflow process is specified as a model in a formal textual and/or 

visual language. This model specification or definition is used whenever a new 

workflow instance needs to be created. Each time a workflow instance is 

created, the persistent workflow model is needed for controlling, supervising 

and recording the performed activities. Moreover, in order to monitor and 

improve performance, it is often also required to save the states of instantiated 

processes that have been enacted. Historical data regarding the actual course 

of processes can be useful and even necessary to improve the persistent 

process model. 

The dependencies between activities and between activities and agents can 

be considered as the control logic of business processes. The functional part 

contains the necessary data and the applications that (partly) perform the 

activities (the non-human agents). The isolation of the control structure from 

the data and functional structure is a typical characteristic of workflow 

4 



systems [21]. The process logic is modelled but the functional part is not taken 

into consideration. In this way, alterations in the progress of the work can be 

represented in the workflow system by simply adapting the parameters of the 

process logic. Since the functional part is not considered, it is not clear 

however how the functional part will be affected by a change in the control 

logic. A simple change in the process might have considerable consequences 

for the functional part [15]. 

In sum, when modelling a business process (or workflow), an activity-view 

is advocated. Activities and roles are defined (either or not on a detailed level 

of granularity) and coupled in a global process. Hence, a business process is 

divided into a function-oriented part - the activities - and a process-oriented 

part - the relationship between activities. In a workflow system, the function

oriented part is supposed to be given, whereas the process-oriented part (the 

process logic) is modelled and supported [16]. 

1.2 The lack of a process view in 00 development 

In object-oriented development, the situation is just the opposite: the 

primary emphasis is on the specification and development of the functional 

part, whereas the process part is largely neglected or supposed to be given 

[e.g. 1,2,4,5,7, 8, 14, 19]. 

The dynamic behaviour and interaction between object (classes) is 

modelled in 00 development systems by means of several representations like 

event charts, state transition diagrams, sequence diagrams, etc. Whereas a state 

transition diagram only models the behaviour of one class, other diagrams 

(like the sequence or collaboration diagram) model the interaction of several 

classes. In this way, process logic is implicitly represented and a process

oriented view is in fact not completely omitted. However, some process 

modelling requirements that we proposed in the previous paragraph are not 

met. In the first place, the top down decomposition of processes (requirement 

1) is barely supported in object-oriented development. Functional 

decomposition, a vital concept from the structured programming world, is 

5 



often considered as old-fashioned and uneffective by object-oriented 

developers [22]. In addition agents are not assigned to activities (requirement 

3 and 4); and process logic is not designed to be implemented as an 

(persistent) application (requirement 6). 

One way to introduce some of the business process aspects information 

systems analysis is the use of Use Cases [8, 2]. Use cases describe what the 

system is supposed to do from the actor's perspective. They do not describe 

how the system should be designed and implemented. In fact, the use cases 

serve as input for the construction of formalised and structured object classes. 

The object classes should provide the functionality to support the use cases. 

The concept of actor in use cases does however not completely match with the 

concept of agent in workflow modelling. Moreover, use cases are not 

intended to model the assignment of agents to activities and the co-ordination 

between activities. 

Next to use cases, other dynamic representations (like state transition 

diagrams and sequence diagrams) are created in the development phase. These 

diagrams are built on the basis of one or more object classes and they 

represent processes or procedures. The process logic in this type of diagrams 

is however mainly relevant for the functional aspects of the application. In 

some cases, aspects of a business process can be found in this type of 

diagrams. However, such business process logic is not explicitly and 

separately implemented. It is embedded in the classes and changes in business 

rules need to be done on object(class) level. In this way, an adaptation of 

object classes is necessary to change the business process logic. 

1.3 Advantages that can be gained by integration 

Advantages for workflow systems 

Workflow systems have been designed to capture and optimise business 

processes. However, state-of-the-art workflow systems are mostly not object-

6 



oriented and they have intrinsic disadvantages that can be solved by applying 

the object-oriented methodology. 

A first disadvantage has to do with the separation of the process-oriented 

part from the function-oriented part. Computer agents that support certain 

activities are regarded as a monolithic black boxes. This means that 

adaptations in the process logic might have considerable consequences for the 

supporting applications. As a result, adaptability is not guaranteed. Because of 

its modularity and encapsulation, the 00 approach is well suited to solve this 

problem. Required changes in the functional part can be limited to the object 

classes involved, without jeopardising the consistency of the entire system. 

Schreyjak [16] points to another disadvantage of workflow systems. 

Workflow systems are often used in a heterogeneous infrastructure. Therefore, 

they need to be platform independent. However, this places a burden on the 

supporting applications that need to support the activities. When applications 

are black boxes, it is not sure how well they are suited to be ported to 

heterogeneous environments. Therefore, Schreyjak advocates the use of 

components to build autonomous agents. Components can be off-the-self of 

newly built. Using the advantages of the object-oriented approach and 

standards like CORBA, their portability can more easily be guaranteed. 

Applying the 00 approach should also be considered when modelling the 

process-oriented part. An 00 workflow model can claim the same advantages 

of 00 information systems in general. Using the object-oriented method 

results in workflow object classes (representing the process logic) that can be 

reused, ported (for example by making them compliant with international 

standards) and adapted. 

Advantages for 00 development 

A separation of concerns is a key elements in keeping systems maintainable 

and adaptable. In current object-oriented system development practice, the 

organisational aspect of an information system is often not explicitly 

modelled. And when it is, it is not always taken as important element in 

guiding design decisions. By integrating business modelling concepts into 

7 



object-oriented modelling, the link between the services that an information 

system has to render and the organisational elements becomes more apparent. 

This can be an important help in designing more adaptable systems. In 

addition, when workflow elements are not modelled separately, they are often 

hidden in the procedural logic of class-methods. The explicit separation of 

workflow elements from process elements that are inherent to the domain or to 

the procedural logic of an implementation also allows for more adaptable 

systems. For example, sequence constraints on events that result from the 

business logic are part of the domain model (e.g. in a library, the return of a 

copy to the library must be preceded by a borrowing event). These type of 

sequence constraints are less likely to change over time than sequence 

constraints that are the result of workflow aspects (e.g. if a member of the 

library does not show up after five reminders, set all the books (s)he borrowed 

to the state "lost"). 

2. THE MISSING LINK: BUSINESS EVENTS 

A full-fledged information systems development method should take all 

aspects into account: aspects of business process modelling and aspects of the 

functional part should be linked together. In the architecture proposed below, 

business events are used as hinge concept between business process modelling 

concepts and object-oriented modelling concepts. 

Business process modelling takes an action- and process-oriented view on 

the domain. As a result , task and activities are easier to formulate in terms of 

business events than in terms of business objects (which are better for 

modelling to structural aspects). From a business modelling perspective, only 

business events are of particular interest. Information system events such as 

keyboard actions and mouse clicks are modelled as elements in the 

information system, but are not relevant elements in a business process model. 

Also in object-oriented modelling, business events have an essential role to 

play: they appear as triggers for the execution of object methods. Some 

object-oriented development methods go even one step further and identify 

8 



business events as a fundamental component of an object-oriented real-world 

model. This is, for example, the case for Syntropy [4], OO-SSADM [14] and 

MERODE [18,19]. 

In fact, events are a fundamental part of the structure of experience [4]. 

Events are atomic units of action: they represent things that happen in the 

world. Without events nothing would happen: they are the way information 

and objects come into existence (creating events), the way information and 

objects are modified (modifying events) and disappear from our universe of 

discourse (ending events). Events are not objects. However, we might choose 

to record the fact that an event has happened by recording the occurrence of 

this event as an object. For example in a banking environment, "withdraw 

money" is an event that modifies the state an object "BANK ACCOUNT". We can 

keep track of all withdrawals by defining "WlTlIDRA W AL" as an additional 

object type. An event withdraw will from then on have a double effect: it will 

modify the state of an account and create a withdrawal. During the analysis 

stage, it would be irrelevant to determine how both objects will be notified 

from the occurrence of the withdrawal event. We therefore assume, just as in 

Syntropy [4], OO-SSADM [14] and MERODE [18, 19], that events are 

broadcasted. 

The separation of business events (also called real-world events) from 

information-system events allows a more user-oriented and task-oriented view 

of information system design. Business events are those events that occur in 

the real-world, even if there is no information system around. Information

system events are directly related to the presence of a computerised system 

They are designed to allow the external user to register the occurrence of or 

invoke a real-world event. For example, the use of an ATM-machine to 

withdraw money from one's account will invoke the business event 

"withdraw" by means of several information-system events such as "insert

card", "enter PIN-code", "enter amount", and so on. Once events have been 

identified in the domain model, the whole domain model can be considered as 

one component, which interface is the set of all events that allow to create, 

modify and update the information contained in the domain model. User 

functions (or information system services) are then nothing more than a way to 

9 



invoke these business events. The user function will translate information

system events such as mouse clicks and keystroke actions into the invocation 

of one or more domain model event. 

The figures below represent a meta-model for the concepts used in this 

system development approach. In the proposed architecture, business events 

are used as the bridging concept between workflow activities and information 

system design. In a first step, business processes are modelled at a conceptual 

level by decomposing them down to the activity level and by indicating which 

business event each activity invokes. The domain is modelled at the 

conceptual level by identifying domain object classes and by indicating by 

which business event they are affected. The effect of an event on a domain 

object class is recorded in a domain object class method. Fig. 1 shows a meta

model relating the modelling concepts at this stage of the specification 

process. By using business events as linking concept, business process 

modelling and domain modelling can be performed at conceptual level. 

Notice that we assume here that workflow concepts are modelled in an object 

oriented way, such as for example in the TriGSflow model [11]. 

Domain 
Object Class 

Method 

Fig. 1. Meta-model for conceptual modelling 

In a second step the business processes and the business domain are 

analysed in search for information support. So, next to the description of the 

domain of interest in the domain model, we need a specification of the 

services (also called user functions) that the information system has to render 

to the prospective users. This part of the specification is closely related to the 

specification of the workflow model: it is the description of the functional 

support for the tasks of the workflow model. The activities that have to be 

10 



performed by agents can be further classified as manual, interactive or fully 

automated. Interactive and automated activities are realised by means of an 

information system service. These information systems services interact with 

the domain model by invoking business events. Fig. 2. represents the meta 

model for this more detailed level of specifications. 

Fig. 2. Information systems modelling meta-model. 

3. A CASE-STUDY 

In the next paragraphs, the ideas are explained and illustrated by means of a 

real-life case-study taken from the university administration. The domain that 

is covered in this case -study is the acquisition of materials by the university 

and the payment of bills. First a business process model is developed. Next, 

an object-oriented real-world model is developed. In the third paragraph we 

move into a more detailed analysis. The required information system services 

are identified and linked to the tasks identified in the business process model. 

3.1 The Business Process Model 

The main stakeholders in the acquisition and financial processes are the 

local university units (such as faculties, departments, research groups, labs, 

... ), the central financial unit, the central acquisition unit and the suppliers. 

I I 



When a local unit wishes to acquire some materials, an order has to be created 

using the information system (rather than a word-processing tool). The order 

is then printed, signed and sent to the supplier. The supplier delivers the 

goods and sends the bill to the central financial unit of the university. The bill 

is scanned and registered in the system. A notification is sent to the local unit 

that placed the order. There the electronic image of the bill can be viewed to 

check the bill. If the bill is approved, the central financial unit is notified of 

the approval so as to be able to pay the bill. When something is wrong with 

the bill or the delivered goods, step 5 is followed by a letter to the supplier and 

the business process is resumed at step 3. The basic business process is shown 

in Fig. 3 In this figure, full arrows represent a paper-based communication 

and dashed arrows represent an electronic communication. 

Fig. 3. Acquisition Business Process 

This business process is the "standard" way of working on which a lot of 

variants exist. The first variant deals with acquisitions without order. For 

12 



example, a researcher goes to a book store, buys a book, and does not pay the 

book but instead requests a bill which has to be paid by the department. In 

this case, the local unit will create a "request for payment". In the information 

system, this type of document contains the same information as an order. 

After the request for payment has been created, the local unit sends the bill to 

the central financial unit. Because the bill refers to a request for payment, it 

has not to be approved any more and is thus directly paid. This business 

process is shown in Fig. 4. 

Sometimes however, the goods are paid directly by the purchaser (usually a 

member of the personnel), and refund is requested afterwards. In that case, 

from the point of view of the university, the supplier is the member of the 

personnel that becomes the supplier of the goods, because it is this person that 

has to be paid. Rather than making a bill, the person to be refunded has to fill 

in a form called "refund request". The rest of the process is similar to the 

direct acquisition process (see Fig. 5). 

A third variant on this business process is the acquisition of materials that 

falls under the regulation of public contracts. If the amount of the acquisition 

exceeds a certain limit, the university has to invite at least three possible 

suppliers for a tender. This task is taken care of by the central acquisition unit. 

The local unit now creates a "request for order". This request is handled by 

the Central acquisition unit. Once agreement is reached on the supplier that 

will receive the order, the central acquisition unit converts the request for 

order into an order and the basic business process is followed (Fig. 6 ). 

Local University Central Financial Supplier 
Unit Service 

o acquire goods 

@ @ 

create request . make bill 
for payment 

0 
scan, register and 

pay bill; 

Fig. 4. Direct acquisition 

13 



Local University 
Unit 

Central Fina.ncial 
Service 

Personnel 
member 

(Supplier) 

Fig. 5. Direct prepaid acquisition 

dsend request 
for correction to 

supplier 

Fig. 6. Acquisition under the regulation of public contracts 

14 



3.2 The domain model 

The domain model specifies business rules in terms of objects, associations 

between objects and business events. The structural part of the domain model 

for the acquisition and financial administration domain is given in Fig. 7. 

Notice that a bill refers to exactly one payment document. This means that 

whenever the central financial service receives a bill, they must be able to link 

it to an existing payment document to be able to register it in the system. 

The behavioural part of the domain is modelled in terms of business events 

and the way these events affect the domain objects. This can be modelled by 

means of an object-event table as shown in Fig. 8. The business process 

descriptions are an obvious input for finding relevant business event types. 

In the object-event table, there is one column for each business object and 

one row for each business event. A row-column intersection is marked with a 

'C' when the event creates the object, with a, 'M' when it modifies the state of 

the object and with an 'E' when it ends the life of the object. A marked entry 

in a column means that the object class has to be equipped with a method to 

implement the effect of the event on the object. For example, the 'M' in the 

fifth column on the row labeled 'registecdelivery' means that the event 

register_delivery modifies the state of an order. The class ORDER will thus be 

equipped with a method registecdelivery that allows to record the change of 

state and its associated effect on the object. The table in Fig. 8 shows a 

minimal set of marked entries. For example the event cr_orderline is only 

marked as creating event for ORDER LINE. It could also be marked as 

modifying event for ORDER as adding an order line modifies the total price of 

the order. The discussion of which entries to mark or not to mark is beyond 

the scope ofthis paper but can be found in [18, 19]. 

15 



I SUPPLIER I 
1 

Fig. 7. Object-relationship diagram for the acquisition and financial 

administration. 

Additionally, ordering on business events can be specified. These can 

originate from two sources: either form business rules (e.g. it is impossible to 

modify an order that was not created before) or from a work-organisational 

point of view (it is not allowed to pay a bill for which no payment document 

was created). In the first case, the sequence constraints are modelled as 

lifecycles attached to object classes. These can for example be specified by 

means of state machines. The second type of sequence constraints are 

modelled as part of the workflow specifications. 

16 



Local Unit Supplier Payment document Order Product Bill Request 
line for_Order 

Order Payment 
reguest 

cr local unit C 
end local_unit E 
cr supplier C 
end supplier E 
r _payment document C 

end _paymentdocument E 
cr order C 
end order E 
cr _payment request C 
end _payment request E 
register delivery M 
k:r orderline C 
end orderline M 
mod orderline E 
~r_poduct C 
end _product E 
r bill C 

mod bill M 
approve bill M 
reject bill M 
end bill E 
pay_bill M 
cr request for order C 
Convertrequest to order C E 

Fig. 8. Object-event table with basic participations 

3.3 The service model 

Next to the description of the domain of interest in the domain model, we 

need a specification of the services (also called user functions) that the 

information system has to render to the prospective users. This part of the 

specification is closely related to the specification of the workflow model: it is 

the description of the functional support for the tasks of the workflow model. 

From the business processes described in section 1, we can derive a list of 

services that must be present in the information system. Table 1 lists the 

services that are required by the local-unit staff and Table 2 lists those 

required for the staff of the Central Financial Unit. A similar table can be 

made for the Central Acquisition Unit. Each table identifies the basic 

activities that require functional support for the information system. The link 

17 



with the domain model is established by identifying which business event is 

invoked by the service. 

The specification of the services can then further be refined by the 

specification of the dialogue structure by means of regular expressions [3, 20] 

or state charts [2], by the specification of user interface part, and by the 

identification of the required objects and their co llaborations [17]. 

Table 1: Services for Local Unit staff 

Services for Local Unit Business Process Task Invoked business event 
Create Order Basic Acquisition Process 0 cr_order, ccordeUine, 

end_ordecline, mod_order_line 

Print Order Basic Acquisition Process 8 

Approve bill Basic Acquisition Process 0 approve 
Public contract 0 

Notify central financial Basic Acquisition Process 0 
service of approval of bill Public contract 0 
Create Request for Direct Acquisition 0 ccpaymenUequest, 
payment Direct prepaid Acquisition ccorderjine, end_ordecline, 

mod order line 
Create Request for order Public Contract 0 cuequesUoc order, 

ccorderjine, end_order_line, 
mod order line 

Register delivery of goods Public Contract e register delivery 

Table 2: Services for Central financial Unit staff 

Services for Central Business Process Task Invoked business event 
Financial Unit 
Register bill Basic Acquisition Process e cr_bill 

Direct Acquisition e 
Direct Prepaid Acquisition e 
Public Contract 0 

Scan bill Basic Acquisition Process e mod_bill 
Direct Acquisition e 
Direct Prepaid AcqUisition e 
Public Contract 0 

Notify creator of order of Basic Acquisition Process e 
pending approval of bill Public Contract 0 
register payment of bill Basic Acquisition Process 0 Pay_bill 

Direct Acquisition e 
Direct Prepaid Acquisition e 
Public Contract fj 

18 



4. CONCLUSION 

In this paper we have proposed an architecture that integrates the concepts of 

object-oriented modelling with those of business process modelling. The 

integration leads to advantages for both fields of interest. The main 

advantages for workflow systems are a better adaptability for the functional 

part and the general advantages of the object-oriented approach such as e.g. 

portability across platforms. The main advantages for object-oriented 

development are a better organisational fit in and a better separation of 

concerns in the design of systems. 

A closer look at the proposed meta-model reveals that the separation of 

concerns is already apparent in the structure of the meta-model (Fig. 9). The 

resulting architecture is a tier-based one, with a specific tier for business 

process modelling concepts. If we add the user interface tier, we obtain the 

full picture (Fig. 10). In the object-oriented community, a generally accepted 

architectural structure is not yet agreed upon. In general, a three-tier 

architecture is widely approved. The specific contents and meaning of the 

tiers can vary considerably however. Jacobson et al.[8] for instance, 

distinguishes three tiers: the domain tier (that is persistent), the control tier 

(with business rules and application logic) and the aUI tier (with only 

presentation logic). Fowler [7] proposes the data tier, the domain tier (with 

business logic) and the application logic tier (with specific application and 

presentation logic). The architecture that we propose has 

- a domain tier, which contains persistent domain objects and the business 

domain rules. This tier can also be extended with controller classes such as an 

event handler and with DBMS classes. 

- an information service tier which contains most application logic. This tier 

will mainly contain transient objects, although additional persistent object can 

be defined to support services. Commit and roll-back features and scheduling 

aspects are also defined at information service level. 

19 



- a User Interface tier, which contains the presentation logic and other 

interface aspects such as a first validation of user input. 

- and an Workflow tier, which contains all business process logic and acts as 

a driver and controller for business procedures. 

Interactive 
Workflow 
Activity 

Information System tier 

Fig. 9. Tiers in the integrated meta-model. 

USER 
INTERFACE 

TIER 

WORKFLOW 
TIER 

TIER 

DOMAIN 
TIER 

Fig. 10. A tier-based architecture with four tiers 

20 



For a better integration of workflow aspects in object-oriented systems 

development, we should at least consider the addition of a workflow tier to the 

classical three tier architectures. The paper has also demonstrated that 

business events can be used as hinging concept between the workflow tier and 

the information systems concepts. 

5. REFERENCES 

1. Booch, G., J. Rumbauch & 1. Jacobson, The Unified Model Language User 
Guide, Addison-Wesley, 1999,482 pp 

2. Booch Grady, Rumbaugh James, Jacobson Ivar, The unified modelling language 
user guide, Addison Wesley, 1999 

3. Coleman Derek et aI, Object-oriented development: The FUSION method, 
Prentice Hall, 1994 

4. Cook Steve, Daniels John, Designing object systems: object-oriented modelling 
with Syntropy, Prentice Hall, 1994 

5. D'Souza, D.F. & A. C. Wills, Objects, Components and Frameworks with UML, 
The Catalysis Approach, Addison-Wesley, 1999,785 pp .. 

6. Ellis C.A. & G.J. Nutt, Modelling and Enactment of Workflow Systems, 
Technical report, Department of Computer Science, University of Colorado, 
1993. 

7. Fowler, M., Analysis Patterns, Reusable Object Models, Addison Wesley 
Longman, 1997,357 pp. 

8. Jacobson, 1., Christerson, M., Jonsson P. et aI., Object-Oriented Software 
Engineering, A use Case Driven Approach, Addison Wesley, Rev. 4th pr., 1997. 

9. Joosten, S. Trigger modelling for workflow analysis. In Proceedings of CON '94: 
Workflow Management, Challenges, Paradigms and Products, October 1994, 
Munchen,pp.236-247. 

10. Joosten, S. Werkstromen : een overzicht, in Informatie, jaargang 37, nr. 9, pp. 
519-528. 

11. Kappel, G., P. Lang, S. Rausch-Schott, & W. Retschitzegger, Workflow 
management based on objects, rules and roles, In Bulletin of the Technical 
Committee on Data Engineering, March 1995,18(1), pp. 11-18. 

12. Malone, T. W. & K. Crowston, The Interdisciplinary Study of Co-ordination, In 
ACM Computing Surveys, Vol. 26, No.1, March 94, pp.87-119. 

13. Medina-Mora, R., Winograd, T., Flores, & Flores, F. The Action workflow 
approach to workflow management technology. In Proceedings of the Conference 
on Computer Supported Co-operative Work '92, New York, Nov. 1992, pp. 281-
288. 

14. Robinson Keith, Berrisford Graham, Object-oriented SSADM, Prentice Hall, 
1994 

15. Schreyjak, S., Coupling of Workflow and Component-Oriented Systems, In 
Second International Workshop on Component-Oriented Programming, 9 pp. 

21 



16. Schreyjak, S., Using Components in Workflow Activities, In Proceedings of the 
Second and Third International Workshop on Business Objects, 1998, 12 pp. 

17. Simons Anthony J H , Snoeck Monque, Hung Kitty S Y, Using design pattterns 
to reveal the competence of object-oriented methods in system design level, 
International Journal of Computer systems Science & Engineering, Vo1.14, No.6, 
november 1999, pp.343-352 

18. Snoeck M., Dedene G. Existence Dependency: The key to semantic integrity 
between structural and behavioural aspects of object types, IEEE Transactions on 
Software Engineering, Vo!' 24, No. 24, April 1998, pp.233-251 

19. Snoeck M., Dedene G., Verhelst M; Depuydt A.M., Object-oriented Enterprise 
Modelling with MERODE, Leuven University Press, 1999 

20. Snoeck M., Dedene G. Modelling the dialogue aspects of an information system, 
submitted for EClS'2000 

21. Vaishnavi, V., Joosten, S. & B. Kuechhler, Representing Workflow Management 
systems with Smart Objects, 1997, 7 pp. 

22. Wolber David, Reviving Functional Decomposition in Object-oriented Design, 
JOOP, October 1997, pp. 31-38 

22 


