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Abstract 

In this paper, we investigate use of the Bayesian Information Criterion (BIC) in the 

development of Bayesian two-stage designs robust to model uncertainty. The BIC 

is particularly appealing in this situation as it avoids the necessity of prior specifi­

cation on the model parameters and can readily be computed from the output of 

standard statistical software packages. 

Keywords: Two-stage procedures, BIC, prior probabilities, integrated likelihood, 

posterior probabilities, bias, lack of fit 

1 Introd uction 

D-optimality (and alphabetic optimality criteria in general) has been criticized for being 

too dependent on the assumed model and for making no provision for model checking. 

Research in the recent years has concentrated on developing algorithms that retain the 

flexibility of the D-optimal approach but also reduce model dependence by providing 

protection against the bias induced by incorrect model specification and also making 

provision for detection of lack of fit. In that context, a recent development in the area 

is the two-stage procedure of Ruggoo and Vandebroek (2003), henceforth referred to 

as RUVA. They assume that the true model comprises some primary terms that will 

eventually be fitted, and some potential terms. In the first stage they use a criterion 

that facilitates the improvement of the proposed model by detecting lack of fit. The 

design in the second stage then uses model information from the first stage and attempts 
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to minimize bias with respect to potential terms. Their two-stage procedure generates 

designs with significantly smaller bias errors compared to standard single stage designs 

used in the literature. They also improve the coverage over the factor space. We now 

outline the development of the two-stage approach of RUVA in Section 2. 

2 RUVA's two-stage design robust to model uncer­

tainty 

Suppose the linear model that will be fitted by the experimenter is of the form 

with Xpri being a p-dimensional vector of powers and products of the factors and f3pri the 

p-dimensional vector of unknown parameters attached to the primq.ry terms. Let X~otf3pot 

contain the terms that one wishes to protect against in designing the experiment, so that 

the model is actually of the form 

where Xpot is the q-dimensional vector containing powers and products of the factors not 

included in the fitted model and f3pot is the q-dimensional vector associated with the po­

tential terms. The model is also reparametrized in terms of the orthonormal polynomials 

with respect to a measure f-L on the design region. Since the primary terms are likely 

to be active and no particular directions of their effects are assumed, the coefficients of 

the primary terms are specified to have a diffuse prior distribution. On the other hand, 

potential terms are unlikely to have huge effects and the assumption f3 pot ~ N(O, T2{T2Iq) 

proposed by DuMouchel and Jones (1994) (DMJ) is appropriate. The parameter T2 is 

the common prior variance of the potential terms' coefficients, measured in units of the 

random error variance (T2. Following the orthonormalization procedure, which ensures 

that the effects are well separable and independent, the joint prior distribution assigned 

to f3 pri and f3pot is N(O, (T2T2K-l) where K is a (p + q) x (p + q) diagonal matrix, the 

first p diagonal elements of which are equal to zero and the remaining q diagonal ele­

ments are equal to one. Assume that y;ff3 ~ N(Xif3, {T2 InJ for each stage i (i = 1,2) 

and that the first and second stage comprises nl and n2 runs respectively so that the 
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total number of design points in the combined design is n = n1 + n2. X is the extended 

design matrix of dimension n x (p + q) for the combined stages, so that X' = [X~ X2 J. 
Xl = [ Xpri(l) X pot(l) ] is of dimension n1 x (p + q) and X 2 = [ X pri(2) X pot(2) ] is of 

dimension n2 x (p + q). They represent respectively the first and second stage designs 

expanded to full model space. Xp.i(i) and Xpot(i) correspond to the primary and potential 

terms respectively for each stage i (i = 1,2). 

Before observing the first stage data, the experimenter has specified a set of (p + q) 

regressors defining the full model. The true relationship between the response and the 

input variables is believed to contain all primary terms and a subset qi (0 ::; qi ::; q) 

of the potential terms. Consequently the total number of possible models is m = 2Q• 

Let us consider the subset models M1 , M2 , . .. , Mm, with each model Mk defined by its 

corresponding parameters 13k' RUVA assign prior probabilities, p(Mi)'s to each of the 

competing models using the effect inheritance assumption used in screening experiments, 

i.e. an interaction is more likely to be important if one or more of its parent factors is 

also important. 

2.1 Development of the first stage design 

A Bayesian first stage Generalized D (GD) optimal design for model Mk is the set of 

d · . t X(k) [ X(k) X(k) ] h' h .. . eSlgn pom s 1 = pri(l) pot(l) W 1C m11l1ffilZeS 

GD(k) = ~ log I (X(k)' X(k) ) -11 + aL log L(k) + !L [ ( 
(k») -1] 

1 P prt(l) prz(l) q 1 7 2 (1) 

(See RUVA for more details). It can be seen that criterion (1) is made up of two compo­

nents; the first corresponding to precision of primary terms and the second has a weight 

aL, to attach importance on the lack of fit expression to improve knowledge on the true 

model. X;~;(l)' Lik) and I~k) are the matrices corresponding to Xpri(l), L1 and IQ expanded 

to model space Mk where 

L1 = X~ot(l)Xpot(l) - X~ot(l)Xpri(l) (~ri(l)Xp.i(l») -1 X~ri(l)Xpot(l)' 

is the familiar dispersion matrix encountered in the literature on model-sensitive designs. 
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It is interesting to note that the first stage design criterion is similar to the weighted com­

bination of the D-optimum design for (3pri and the DB-optimum design for (3pot suggested 

by Atkinson and Donev (1992). For some weight a (0 ::::: a ::::: 1), they propose to find 

exact designs for model Nh by minimizing 

a I( (k)' (k) )-11 I-a i (k)i- l P log Xpri(l) Xpri(l) + -q-log Ll (2) 

Their dual-purpose criterion ensures efficient estimation of parameters of the assumed 

primary model and detection of departures from that model. It is crucial to recognize 

that Atkinson and Donev (1992) composite design criterion does not depend on any form 

of prior assumption on the model parameters, (3. By adding the matrix ~ to L;k) in 

(1), RUVA use the idea of DuMouchel and Jones (1994) to allow smaller design matrices 

and avoid singularity problems. 

Since the prior probabilities, p(Mi)'s, reflect a priori model importance, RUVA incor­

porate them as weights in the first stage criterion so that the first stage design Xl = 

[ Xpri(l) Xpot(l) 1 is obtained by minimizing 

2.2 Development of the second stage design 

The Bayesian second stage GD optimal design for model Mk is the set of design points 

X (k) [ X(k) X(k) ] h· h .. . 
2 = pri(2) pot(2) W IC mllllmlzes 

GD(k) = [~IOgl(X(k)' X(k) +X(k)' X(k) )-11 + aB 10giA(k)'A(k) +I(k)i] (3) 
2 P pr.(l) pr.(l) pn(2) pn(2) q 2 2 q , 

(k) (k) (k) (k) . . 
where Xpri(l)' X pri (2)' A2 and Iq are the matnces correspondmg to Xpri(l), X pri(2), A2 

and Iq expanded to model space Mk and 

is the alias matrix in the combined stage. The objective of the second stage is to use 

model information from first stage data to minimize bias with respect to potential terms. 
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Box and Meyer (1993) propose a general way for calculating the posterior probabilities of 

different candidate models within the framework of fractionated screening experiments. 

Given the first stage data Y1, the posterior probability of model Mi given Y1 is 

(4) 

where P(Mi) is the prior probability of model Mi and p(Y1IMi) is the integrated likelihood 

of Y1 given model Mi' The resulting posterior probability for model Mi given Y1 can then 

be obtained along the lines shown in Box and Meyer (1993): 

(5) 

where Xi is the first stage design in model Mi space and 

(3i = (X:Xi + ~;) -1 X:Y1 = E(,Bi IY1), assuming model M i , 

8((3i) = (Y1 - Xi(3i)'(Y1 - Xi(3;) = Residual Sum of Squares for model Mi 

and finally C is the normalization constant that forces all probabilities to sum to one. 

Since the Box and Meyer posterior probabilities computed from first stage data in (5) 

reflect a posteriori model importance, RUVA incorporate them as weights to average the 

GD criterion in (3) when the second stage is selected. This is achieved by choosing the 

second stage design points X 2 so as to minimize 

LP(Mk IY1) GD~k). 
Mk 

RUVA refers to this two-stage approach as the Bayesian MGD-MGD two-stage procedure, 

the acronym MGD enforcing the analogy that model uncertainty is taken care in the GD 

criterion in both stages by sweeping over the different possible models. RUVA's two­

stage designs have good properties with respect to precision of important terms, lack of 

fit and bias properties with respect to a true assumed model in various simulation studies. 
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The two-stage procedure of RUVA is in-built within the realm of the Bayesian paradigm 

and consequently requires prior densities for the model parameters and also the prior 

model probabilities. As is often the case the problem of determining a prior distribution 

from available information is the most delicate matter in Bayesian methodology. Recall 

that the joint prior distribution assigned to f3pri and f3pot was N(O, (T2T2K-l). Conse­

quently the second stage procedure depends on the parameter T2, which controls both 

the individual integrated likelihoods, p(Y1IMi) 's and the adaptivity of the Box and Meyer 

posterior model probabilities in (5). Improper specification of 7 2 will affect the posterior 

weights used as measures of fit in the second stage criterion. RUVA propose to use the 

default value of T = 1 in both stages of the MGD-MGD approach to achieve satisfactory 

designs with respect to a combined criterion involving precision, lack of fit and bias prop­

erties. 

The objective of this paper is to modify the second stage procedure of RUVA, so that 

it is independent on prior specification of the parameter T2. This will have the signal 

advantage of one less parameter to specify, which is usually hard to know a priori, when 

obtaining the two-stage designs. We shall for that purpose approximate the integrated 

likelihood, p(Y1IMi), using the Bayesian Information Criterion (BIC). The BIC avoids 

the necessity of prior specification on the model parameters and is reasonable for many 

practical purposes. Consequently we shall compute a new set of posterior probabilities, 

p(MiIYl), (i = 1,2, ... , m) to be used as measures of fit in the second stage criterion. 

The paper will be organized as follows: In Section 3, we briefly review the Bayesian 

approach to model averaging and present the BIC as a simple and accurate approximation 

to the integrated likelihood. We recast the MGD-MGD procedure of RUVA so that it 

is independent of specification of the parameter T 2 in Section 4. The performance of 

our modified two-stage procedure is evaluated in Section 5, and we show that it yields 

very good and comparable results to the MGD-MGD procedure of RUVA and also to 

the classical single stage D-optimal and Bayesian D-optimal procedures. We end with a 

conclusion in Section 6. 
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3 The Bayesian approach to model averaging 

The appealing characteristic of the two-stage procedure of RUVA is the incorporation of 

model uncertainty by averaging the criterion over all possible models in both stages. In 

doing so, the procedure allows incorporation of several competing models and does not 

depend on specification of a single model. This approach can be thought of as a particular 

case of the Bayesian Model Averaging (BMA) procedures reviewed by Hoeting, Madigan, 

Raftery and Volinsky (1999). BMA provides a mechanism to account for model uncer­

tainty by estimating some quantity under each model and then averaging the estimates 

according to how likely the model is (Wasserman, 1997). In the context of the two-stage 

procedures, the quantities are the posterior model probabilities computed from (5), that 

let the data give the competing models different weights of evidence, and are then used as 

measures of fit to average the GD-optimality criterion in the second stage. Madigan and 

Raftery (1994) note that averaging over all models in this fashion provides better average 

predictive ability than using any single model. 

Let us consider the subset models M I , M2 , .•. , Mm described previously with each model 

Mk defined by its corresponding parameters f3k' Each model consists of a set of probability 

densities for the random variable y. Once we obtain first stage data Yl, the posterior 

probability for model M j can be easily evaluated from Bayes' theorem and is 

(6) 

r 

From classical probability theory, p(YIIMj ) can be obtained by integrating over f3 j , i.e. 

where p(YIIf3j , M j ) is the likelihood function for model M j . The quantity p(YIIMj) is usu­

ally called the integrated likelihood for model Mj . Evaluating the integrated likelihood 

involves specifying priors for f3 j and usually complex integration. The prior and integra­

tion problems can be solved in the following manner for regular statistical problems: 
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Let i j = £j(f3j) denote the maximized log-likelihoods under model Mj and dj be the 

dimension of (3 j' Then 

(7) 

is a fairly accurate approximation of IOgp(YIIMj) for a specific choice of prior called the 

"unit-information prior" on the parameter space, that says that the amount of infor­

mation in the prior equals to the amount of information in one observation (See Kass 

and Wasserman, 1995, for more details). Raftery (1996) gives further evidence for the 

accuracy of this approximation. We observe that expression (7) is the familiar Schwarz 

criterion (Schwarz, 1978) and minus twice the Schwarz criterion is often referred to as the 

BIC (Kass and Raftery, 1995), i.e. 

(8) 

From (8), we have an approximate but easy way of obtaining the integrated likelihood 

which does not depend on prior specification of the model parameters and 

(9) 

For the linear regression with normal errors, Raftery (1995) shows that the most conve­

nient form of BIC is 

(10) 

where R; is the usual R2 (coefficient of determination) value for model Mj and kj is the 

number of regressors (not including the intercept) in the model. Using our results from 

(9) and (10), the posterior probability of each model is easily found from (6) to be 

(11) 

where C is a normalizing constant that forces all posterior probabilities to sum to unity. 

The expression in (9) indicates that BIC is a Bayesian procedure that does not require 

the specification of a prior on model parameters, but provides a way to obtain an accu­

rate approximation of the integrated likelihood. As explained by Kass and Wasserman 
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(1995), the BIC uses an implicit unit information prior, i.e. a multivariate normal prior 

with mean at the maximum likelihood estimate and the amount of information in the 

prior equal to the average amount of information in one observation. Since the prior is 

based on only one observation, it is vague yet proper. Further it involves readily avail­

able regression statistics for all candidate models which can be obtained from the output 

of standard statistical software packages. The appealing property of BIC which avoids 

prior specification on model parameters continues to be investigated and justified, see for 

example Pauler (1998) who motivates the BIC and propose two useful modifications of 

the criterion applicable to other types of problems. Recently Volinsky and Raftery (2000) 

have investigated BIC for variable selection in models for censored survival data. 

Wasserman (1997) also shows that if model Mj denote the model containing the true 

density, i.e. the model that generates the data, then for i i= j and under weak conditions, 

in probability. This means that the posterior probability of the true model goes to one 

and the posterior probabilities of the other models go to zero. Further Wasserman (1997) 

indicates that the BIC has the same asymptotic behavior as it selects the true model 

asymptotically. From this result, we would expect the BIC to provide a close approxi­

mation to the posterior probabilities and consequently satisfactory results in the second 

stage procedure. 

4 Development of the two-stage procedures using the 

BIC 

We now recast the two-stage MGD-MGD procedure of RUVA and use the posterior model 

formulation from (11) in our second stage procedure. 

As argued in Section 2.1, we can view the first stage design as an extension of the composite 

design criterion of Atkinson and Donev (1992), which does not depend on specification 

of 7 2 . We thus propose the first stage MGD optimal design Xl = [ Xpri(l) X pot(1) 1 to be 
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obtained by minimizing 

where 

GD(k) = [ ~ 10 I (X(k)' X(k) ) -11 + aL IL(k) 1-1] . 
1 P g pn(l) pn(l) q 1 (12) 

X;~;(I) and Lik) are the matrices corresponding to X pri(l) and Ll expanded to model space 

M k . In practice, we observe that Lik) may be singular. The problem is avoided in the 

algorithmic construction of designs by the addition of a small multiple of the identity 

matrix. That is, we let 

where E is a small number typically between 10-4 and 10-6 Such type of matrix regular­

ization is common in the construction of exact D-optimal designs (see for e.g. Atkinson 

and Donev (1992), Chapters 10 & 15). 

The second stage design is then obtained by choosing the second stage design points X 2 

so as to minimize 

I>(MkIYl) GD~kl, 
Mk 

where p(MkIYl) is computed for each model using (11) instead of (5) and GD~k) is as in (3). 

The modifications in the two-stage MGD-MGD procedure implicitly avoid specification 

of the additional parameter 7 2 in the second stage optimality criterion and provide, as we 

shall see later, an attractive alternative to the procedure of RUVA. 

5 Evaluation of the two-stage procedures 

The performance of our Bayesian two-stage procedure presented in Section 4, will now be 

evaluated relative to the two-stage approach of RUVA and the classical one-stage designs. 
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Since the second stage design is dependent on first stage data through the posterior model 

probabilities, a simulation approach is required. The performance of each design will be 

measured by its efficiency relative to a true assumed model in 200 simulations. The er­

ror c '" N(O, 1) is assumed in all the simulations. The unique stage competitors to the 

Bayesian two-stage optimal design are the traditional D-optimal design for the primary 

terms model and the Bayesian D-optimal design of DMJ. 

As proposed by RUVA, the values of the following determinants will be used as measures 

of efficiency of the precision, lack of fit and bias components. The measure of precision 

of the primary terms is given by Dxp" = IX;;'i X;ril-1/ p , a measure of the lack of fit 

component is DiDf = IL*I-1/ q and Dbia.s = IA*'A* + Il/q represents the degree of bias, 

where 

X;ri and X;ot represent the combined first and second stage design points for the primary 

and potential terms expanded to contain regressors in the true model only. Dxpd ' DiDf and 

Dj,ia.s have been defined such that the smaller the value obtained, the better the design 

performs with respect to that criterion. The minimum bias design arises when A * = 0 

and so Dj,ia.s = IIq11/q = l. 

The performance of the two-stage procedures are then measured by the average of DXpd ' 
DiDf and Dj,ias over the 200 different simulations, i.e. 

200 

"'" D* L...J Xpri 

AD* = -"i=",l,=.,,---_ 
xp" 200 

200 200 

LDiDf LDj,ia.s 
* i=l 

AD1Df =200' A * ;=1 
Dbia.s = 200 

The one-stage traditional non-Bayesian D-optimal design and one-stage Bayesian D­

optimal design of DMJ are not data dependent and can thus be evaluated over the n 

design runs by the single measures DXpd ' DiDf and Dbias for the true model. In con­

nection with sample sizes for each stage, RUVA suggest using two-stage designs of size 

n = 2(p + q + 2) with half of the design points allocated to each stage of the design. 

CtL = 20 is the default value used in the first stage and CtB = 10 is used in the second 

stage. RUVA argues that these choices leads to satisfactory designs with respect to a 
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combined criterion involving precision, lack of fit and bias properties. 

To enable comparison as to how our BIC based posterior model probabilities perform 

compared to the Box and Meyer probabilities used by RUVA in their two-stage approach, 

we shall consider first stage data simulated from the same true models in the three cases 

outlined by RUVA. The design region they consider is the 5 x 5 x 5 grid on [-1,+1]3. 

Case I : 

The true model from which first stage data is simulated is 

y = 42.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi - 7.4 x~ + c. 

The true model comprises all the five primary terms, {1, Xl, X2, X3, xn and one compo­

nent, namely the quadratic effect of X2, from the three potential terms, {XIX2, x~, xn. 

Case II : 

RUVA consider in Case II a model with p = 5 primary terms, {1, Xl, X2, X3, xlxd and 

q = 4 potential terms, {xi, XlX3, x~, xn. First stage data is then simulated from 

y = 42.0 + 11.2 Xl + 14.5 X2 + 10.6 X3 + 12.5 XIX2 + 8.9 xi - 9.9 XIX3 + c. 

CasellI: 

Finally in this case, RUVA examine data simulated from 

y = 40.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi + 9.8 XIX2 - 7.4 XIX3 - 8.7 x~ + c 

and with the full model comprising five primary terms namely, {1, Xl, X2, X3, xn and 

an additional five potential terms, {XIX2, XIX3, X2X3, x~, xn. 

We present in Table 1, the prior and posterior model probabilities for the m = 23 = 8 

possible models from the five primary and three potential terms for Case 1. The last two 

columns of Table 1 correspond respectively to the posterior probabilities obtained using 

(11) and (5). The results shown are from one simulated first stage data set only. Other 

simulations showed similar good results. It is interesting to see that the BIC provides a 
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Table 1: BIC and Box & Meyer based posterior model probabilities 

Plausible Models Prior Probabilities Posterior Probabilities 

BIC Box & Meyer 

1 Xl X2 X3 X~ (Primary model) 0.5787037 0 0.0008668 

1 Xl X2 X3 X~ XIX2 0.1157407 0 0.0000427 

1 Xl X2 X3 X~ X~ (True model) 0.1157407 0.7374309 0.8383601 

1 Xl X2 X3 X~ X~ 0.1157407 0 0.0010012 

1 Xl X2 X3 X~ XIX2 X~ 0.0231481 0.1406869 0.0424615 

1 Xl X2 X3 X~ XIX2 X~ 0.0231481 0 0.0000526 

1 Xl X2 X3 X~ X~ X~ 0.0231481 0.0905888 0.1112121 

1 Xl X2 X3 xi XIX2 X~ X~ 0.0046296 0.0312934 0.006003 

very good approximation to the integrated likelihood as reflected by the fact that the pos­

terior probability of the true model is largest. In general the Box and Meyer probability 

is larger than the BIC based posterior probability for the true model. Intuitively, this is 

expected as the Box and Meyer posterior probabilities are more accurate since they in­

volve actual integration of the integrated likelihood and also additional prior information 

on the model parameters in their computations. 

The results of the evaluations for all the cases are shown in Tables 2 to 4. Using the 

BIC as an approximation to the marginal likelihood is reassuring as it gives very good 

and comparable results to the ones obtained by RUVA. The approach also gives excellent 

reductions in the bias in all three cases when compared to the unique stage D-optimal 

and Bayesian D-optimal design, whilst still maintaining good precision of the estimation 

of the effects of the primary terms. Interestingly the bias is smaller than the ones of 

RUVA in Cases II and III. The injection of additional prior information in the MGD­

MGD procedure of RUVA may account for the slightly better precision for the effects of 

the primary terms in all the cases. 
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Table 2: Comparison of the two-stage procedure of RUVA and the one developed using 

BIC with the single stage design procedures. 

Case I y = 42.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi - 7.4 x~ + c. 

Two-Stage Approach AD* xprl ADiof AD bias 
(nl = n2 = 10) 

MGD-MGD (RUVA) 0.046084 0.046428 1.004525 

MGD-MGD (BIC) 0.048125 0.046865 1.004937 

One-Stage Approach D* Diof Dbias 
(n = 20) 

Xprl 

D-optimal (Primary Terms) 0.034299 2.428570 

DuMouchel & Jones (1994) 0.038914 0.049374 1.279301 

Table 3: Comparison of the two-stage procedure of RUVA and the one developed using 

BIC with the single stage design procedures. 

Case II y = 42.0 + 11.2 Xl + 14.5 X2 + 10.6 X3 + 12.5 XlX2 + 8.9 xi 
- 9.9 XIX3 + c. 

Two-Stage Approach ADxp<I ADiof ADbias 
(nl = n2 = 11) 

MGD-MGD (RUVA) 0.036782 0.036739 1.008554 

MGD-MGD (BIC) 0.041773 0.039452 1.006493 

One-Stage Approach D* Diof Dbias 
(n = 22) 

Xpri 

D-optimal (Primary Terms) 0.022887 1.581590 

DuMouchel & Jones (1994) 0.02958 0.031216 1.273629 
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Table 4: Comparison of the two-stage procedure of RUVA and the one developed using 

BIC with the single stage design procedures. 

Case III y = 40.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi + 9.8 XIX2 

- 7.4 XIX3 - 8.7 x~ + c. 

Two-Stage Approach ADxp" ADiof ADbias 
(nl = n2 = 12) 

MGD-MGD (RUVA) 0.037010 0.031256 1.006440 

MGD-MGD (BIC) 0.037740 0.033366 1.004922 

One-Stage Approach D* Diof Dbias 
(n = 24) 

Xprl 

D-optimal (Primary Terms) 0.028421 1.344158 

DuMouchel & Jones (1994) 0.031606 0.023785 1.135410 

6 Conclusions 

We are all aware of the criticism of the dependence on an assumed model for the class of 

alphabetic optimal designs. Experimenters rarely have a model in hand and are faced with 

several competing candidate models. Clearly an algorithmic procedure that encompasses 

different possible model is desirable. The two-stage procedure we study, borrows tools 

from Bayesian methods and accounts for model uncertainty by considering all possible 

competing models. In this way we are not confined to defend any specific model in our 

criterion. We are currently unaware of any design procedure that explicitly uses the BIC 

to attack model uncertainty in experimental design problems in this way. The fact that 

computation of the BIC does not require introduction of prior distributions on the model 

parameters and relies on the unit-information which is the average amount of information 

in one observation, makes it intuitively appealing. We encourage further research on the 

BIC in work on optimal designs. 
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