-

View metadata, citation and similar papers at core.ac.uk brought to you byf’; CORE

provided by Research Papers in Economics

KATHOLIEKE UNIVERSITEIT

LEUVEN

Charlemagne's challenge:
the periodic latency problem

Sofie Coene, Frits C.R. Spieksma and Gerhard J. Woeginger

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

KBI 0911

https://core.ac.uk/display/6468710?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Charlemagne’s challenge:
the Periodic Latency Problem

Sofie Coene* Frits C.R. Spieksma* Gerhard J. Woeginger

Abstract

Latency problems are characterized by their focus on minimizing the
waiting time for all clients. We study periodic latency problems, a non-
trivial extension of standard latency problems. In a periodic latency prob-
lem each client has to be visited regularly: there is a server traveling at
unit speed, and there is a set of n clients with given positions. The server
must visit the clients over and over again, subject to the constraint that
successive visits to client ¢ are at most ¢; time units away from each other.

We investigate two main problems. In problem PLPP the goal is to
find a repeatable route for the server visiting as many clients as possible,
without violating their g;’s. In problem PLP the goal is to minimize the
number of servers needed to serve all clients. In dependence on the topol-
ogy of the underlying network, we derive polynomial-time algorithms or
hardness results for these two problems. Our results draw sharp separa-
tion lines between easy and hard cases.

Key words: latency problem, periodicity, complexity

Prologue

During his reign in the years 768-814, Charlemagne traveled constantly through
his empire in Western Europe. Counts had been appointed to govern different
pieces of Charlemagne’s empire (called counties). On his travels, Charlemagne
visited his counts regularly. One reason for these visits was to ensure loyalty of
his counts. Indeed, when a count was not visited for a certain period, the count
would no longer obey Charlemagne, and declare independence, thereby rising
against the emperor. Clearly, this would force Charlemagne to act, and start an
expensive war against the rebeling count. Charlemagne’s challenge was to find a
visiting sequence of his counts so that the time elapsed between two consecutive
visits to a count would not exceed the “loyalty period” of that count.

1 Introduction

Consider the following problem. We are given a set of customers N = {1,2,...,n}
with their positions x1,xs, ..., 2, in some metric space; for each pair of cus-

*Katholieke Universiteit Leuven, Operations Research Group, Naamsestraat 69, B-3000
Leuven, Belgium.

fDepartment of Mathematics, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands

tomers 4, j € N, there is a distance d;;. We are also given a server that travels
at unit speed (and always at full speed). There is a number ¢; associated with
every customer ¢ which indicates the periodicity of customer ¢, i € N. More
precisely, g; is the maximal amount of time that is allowed to pass between two
consecutive visits to customer i, ¢ € N. Each customer ¢ € N also has an associ-
ated profit p;. A customer i is called served when the time elapsed between each
two consecutive visits does not exceed ¢;, i € N. The goal is to find a travel-plan
for the server which maximizes the total profit of the customers served. This
travel plan can be represented by a list of customers (of infinite length) that
prescribes the sequence in which the served customers are visited. Thus, in a
feasible solution, (i) each served customer is visited an infinite number of times,
and (ii) the time elapsed between two consecutive visits to customer ¢ does not
exceed ¢;, i € N. We assume that all data are integral. We call this problem
the Periodic Latency Problem with Profits (PLPP).

Clearly, referring back to Charlemagne’s challenge, a count is a customer,
Charlemagne is the server, and the loyalty periods are represented by the ¢;’s.
If the profit of a customer represents the area of the county, Charlemagne’s
challenge is to maximize the size of his empire without having to fight internal
wars.

In this paper, we also consider the problem where multiple servers are avail-
able and all customers need to be served. We assume here that a customer must
be served by a single server; see Section 5 for the relevance of this assumption.
The goal is then to minimize the number of servers required to serve all cus-
tomers periodically. We call this problem the Periodic Latency Problem (PLP).
Further, we dedicate a short section to the periodic latency problem with prof-
its and multiple servers (MPLPP). Here again the goal is to find routes for the
servers such that total collected profit is maximized.

Why ‘latency’?

Latency problems are characterized by their focus on total waiting time as
an objective function, see e.g. de Paepe et al. [2004] and the references contained
therein. Latency problems differ from problems where travel time of the server
is the objective. Notice that the problems that we study here, share the same
fundamental property with latency problems: any period in time matters to all
customers. That is why we refer to the problems described here as periodic
latency problems; indeed, time matters for the customers, whereas the distance
traveled by the server is of no interest.

Motivation

We see the PLPP and the PLP as basic problems with applications in di-
verse areas. We describe here three different fields where these periodic latency
problems occur. Recently, Studer [2008] described “rounding”, a management
process that can help to improve management and leadership skills. Studer be-
lieves that managers should make regular rounds to check on their employees. In
that way, managers find out what matters to employees, and potential problems
can be dealt with before they occur. This “rounding” model is based on the
rounds doctors and nurses make to check on their patients in a hospital. Di-
mov et al. [2007] explore a method called “minirounds” that appears to improve
physician-patient communication and satisfaction at a hospital. Minirounds are
defined as follows: “A series of short patient encounters [each lasting about a

minute] during which the physician asks patients about any changes in their
condition and provide a concise daily update” (Dimov et al. [2007]). It is clear
that efficiently organizing these mini-rounds is an instance of PLP. Notice that
the latter application suggests a specific topology of the customers: Karuno
et al. [1997] mention the tree network as being relevant for representing the
corridor structure in hospitals and offices. We extensively study this topology
in this work.

Another field where periodic latency problems occur is maintenance, more
precisely preventive periodic maintenance. Machines, located at given positions
(say different plants) need to be inspected regularly. Obviously, when a machine
is viewed as a client, and when the periodicity of each machine is given, the
PLP arises. Although there is quite some literature on preventive periodic
maintenance, (see e.g. Dekker et al. [1997] for an overview), many contributions
are stochastic, and we are not aware of deterministic situations where distances
between machines are taken into account (see Anily et al. [1998] for a related
problem).

A third field motivating PLP and PLPP concerns real-time task scheduling.
In fact, periodic scheduling problems were already introduced in 1973 by Liu
and Layland [1973]. They study the problem of scheduling periodic tasks with
hard deadlines that coincide with the task periods. At that time, computers
where used more and more to monitor and control industrial processes and the
efficient scheduling of these control and monitor functions became important.
Since then computers have evolved, more recent papers such as Bar-Noy et al.
[2004] and Patil and Garg [2006], study periodic scheduling problems in the field
of wireless devices. Here, in order to reduce power consumption, the goal is to
find a periodic schedule such that wireless devices only need to be “awake” when
they are being served. In this case a client is served regularly after a predefined
amount of time (the period of the client), there is no travel time, each client,
however, requires a service time.

Related Problems

Many routing and scheduling problems require a periodic solution. In the
periodic TSP (Paletta [2002]), a set of customers each with a certain frequency
is given. Each customer needs to be visited according to its frequency within
a given planning period 7. A solution then consists in a set of routes, one
route for every day in the planning period 7. This setting can be generalized to
the periodic VRP, where more than one vehicle is available and several routes
can be performed each day of the planning horizon T' (Mourgaya and Vander-
beck [2006]). These problems, however, do not belong to the class of latency
problems.

Other applications of periodic scheduling problems can be found in schedul-
ing of robotic cells, see e.g. Crama et al. [2000]; or in digital-signal-processing,
see Verhaegh et al. [2001]. A signal processing algorithm consists in elementary
operations that need to be carried out repeatedly on successive samples of a
given digital signal. Korst et al. [1997] study the problem of nonpreemptively
scheduling periodic tasks on a minimum number of identical processors. They
mention an application where a number of continuous data streams must be
read from a minimal number of identical disk units. Any situation where there
is a repetitive execution of operations with strict timing requirements is relevant
(Verhaegh et al. [2001]). In these settings, precedence constraints might also be

present.

A non-periodic latency problem with profits is discussed in Coene and Spieksma
[2008]. There, a profit p; is associated with every customer i and these profits
go down linearly with time, while the customer is waiting to be served. The
goal is to select customers and to find a route for the server visiting these cus-
tomers such that the collected profit is maximal. A similar problem with time
windows is described by Frederickson and Wittman [2007]. Each service request
is assigned to a time window and the goal is to find a tour that visits the max-
imum number of locations during their time windows. Each request that the
repairman completes yields a given profit. These problems, however, are not
periodic.

A problem that is probably closest to our setting is the problem described
in Campbell and Hardin [2005]. In their problem, the number of servers needed
to serve all customers is minimized, under the assumption that each customer
i € N needs to be visited precisely every g; time-units. They show that a solution
exists which is periodic (see Section 3) with length T' = lem(q1, g2, .- ., qn)-

We give an overview of our results in Section 2. We elaborate on the issue
of periodicity in Section 3. In Section 4 we deal with the single server problem,
i.e., PLPP. In Section 5 we deal with PLP. The results of sections 4 and 5 can be
generalized to a setting with an arbitrary given number of servers where the goal
is to maximize the number of customers visited by these servers (the MPLPP),
this is shown in Section 6. Finally, Section 7 discusses possible extensions.

2 The results

Figure 1 summarizes our results concerning the complexity of the PLPP for
different settings of p; and g¢;, in different metric spaces. From Theorem 3 and
Corollary 2 it follows that in a general case with arbitrary profits and frequencies
(d), the PLPP on the line and the PLPP on the circle are solvable in polynomial
time. Hence, the same results hold for the more restricted topologies in (a), (b),
and (c). Figure 1(a) shows results for the PLPP with unitary profits and a
common frequency @; this result is due to Theorem 7 and Corollary 3. Figure
1(b) represents the results for the PLPP with unitary profits and arbitrary
frequencies; this follows from Theorem 5. Similarly, Figure 1(c) holds for PLPP
with arbitrary profits and a common frequency @, see Theorem 4.

In the PLP, the goal is to minimize the number of servers needed to visit
all customers. Profits are not applicable in this case. Results are represented
in Figure 2 and follow directly from Theorem 8, Corollary 4, and Theorem 9.
We see as our main contribution a complete classification of both PLPP and
PLP for the following topologies: line, circle, star, tree, general; and we consider
arbitrary profits p;, versus p; = 1, and arbitrary periodicities ¢;, versus ¢; = @,
for all € N. We achieve this classification by either describing a polynomial
time algorithm or giving an NP-hardness result. While some of these results
are standard, others are not. In particular, the O(n?) algorithm for PLPP on
the line and the O(n®) algorithm for PLP are not straightforward.

P / NP-complete P NP-complete

star—» tree —> general

line —> star——» tree general
\ circle
(a) PLPP with p; =1, ¢; = Q (b) PLPP with p; = 1, arbitrary ¢;
P NP-complete P NP-complete

star —» tree —> general line star—» tree —> general

(¢) PLPP with arbitrary p;, ¢; = Q (d) PLPP with arbitrary p; and ¢;

Figure 1: Complexity results PLPP

NP-complete

star—» tree —> general

Figure 2: Complexity results PLP

ot

3 Periodicity

In this section periodicity of solutions is being analyzed. The analysis in this
section is restricted to the PLPP. However, everything also holds for the PLP
as a solution to the PLP consists in s single server solutions, where s denotes
the number of servers used.

A solution to the PLPP can be represented by an infinite sequence of cus-
tomers: customer ¢ appearing on the p-th position of the sequence indicates
that the p-th customer visited is customer i. Let L be a sequence representing
a solution to the PLPP and S the subset of customers visited. Notice that for
|S| = 1, periodicity is trivial.

We call any sequence of customers of finite length a subsequence.

Definition 1 A subsequence is called a k-cycle if

e the subsequence starts and ends with some customer ¢ € N not appearing
elsewhere in the subsequence, and

e cach served customer j # i appears with a frequency of at least 1, and at
most k, in the subsequence.

Definition 2 We say that a solution to PLPP is periodic if, when viewed after
some position p, the sequence representing this solution is a concatenation of
identical subsequences.

Definition 3 We say that a solution to PLPP is a k-cycle if, when viewed after
some position p, the sequence representing this solution is a concatenation of
identical k-cycles (where it holds that when two consecutive visits are performed
to a single customer this can be considered a single visit to that customer).

Clearly, from the viewpoint of implementation and optimization, periodic
solutions are preferable over non-periodic ones. Fortunately, we lose nothing by
restricting the search for a solution to the class of periodic solutions:

Theorem 1 If there exists a feasible solution for an instance of PLPP that
visits customer-set S C N, then there exists a periodic feasible solution visiting

S.

Proof. Let) = max;cs q;. All customers are positioned at distinct locations
and d;; > 1. Consider any feasible solution to PLPP, represented by a sequence
L. Let us assume that the number of served customers is greater than 1, |S| > 2.
The proof relies on the following observation.

Observation 1 L consists of infinitely many k-cycles, for some k.

To argue that this observation holds, consider any position p in the sequence
L and the customer i visited at p. Then, at position p + 1, a customer j # 4
is visited and, at position p + 2, either again customer i is served or a “new”
customer /. At a certain position g > p, |S| — 1 different customers will have
been served since position p. Thus, one customer, say customer [, will then
necessarily be visited at a position ¢’ > ¢ and also at a position p’ < p; the
total number of time units elapsed between these two visits can be no more

than @. It follows that between two consecutive visits to this customer [, all
other customers are visited at least once. Since this holds for any position p,
the observation is valid.

Now, as for a specific customer at most n® different k-cycles exist, the total
number of different k-cycles that can appear in L cannot exceed n@*+1. O
Notice that we show here that the number of k-cycles is finite given that d;; > 1;
however, when d;; < 1 the number of k-cycles will be much larger but still finite.
The observation above then implies that a same k-cycle will appear more than
once. By repeating a subsequence that starts with this k-cycle, plus everything
that followed this k-cycle up to its next appearance, we modify L into a feasible
solution that is periodic.

4 The periodic latency problem with profits (PLPP)

In this section, we prove the results summarized in Figure 1. Section 4.1 deals
with the PLPP on the line or on a circle, Section 4.2 deals with the PLPP on
a star, Section 4.3 deals with the PLPP on a tree, and finally, Section 4.4 deals
with the PLPP on a arbitrary topology.

4.1 PLPP on the line and the circle

Consider first an instance of the PLPP with arbitrary profits p;, and arbitrary
periodicities ¢; where all customers are positioned on the line. We assume that
z1 < x2 < ... < Zy,, and we denote the distance between x; and z; as d;; for
i,7 € N. We first show that for this special topology, we can restrict ourselves
to solutions where the server simply oscillates between two customers. In other
words, there is a solution that is a 2-cycle (see Definition 1).

Theorem 2 If there exists a feasible solution for a set of customers S C N,
then there is a 2-cycle serving customer-set S, with |S| > 2.

Proof. Consider any pair of locations z; < x;, 4,5 € S. Since i,j € S, there
exist two moments in time ¢; < ¢; such that (i) the server is at x; at time ¢;, (ii)
the server is at x; at time t;, and (iii) neither x; nor x; is visited at any time ¢
with ¢; <t < t;. Since i € S it must be true that ¢; > t; — t; + dj; > d;; + djs.
The first inequality is true because being able to serve both customers ¢ and j
implies that the periodicity of customer ¢ cannot be smaller than the time the
server needs to travel from z; to x; and back (recall that we assume that the
server travels at unit speed). Thus, the time needed to travel from z; to z; is at
least equal to the distance d;;, which gives us the second inequality. Similarly,
we can argue that q; > dj; + d;;. Thus, for all customers ¢ and j in S it holds

that
qi > dij +dj; (1)

and
qj > dj; + dsj. (2)
We now exhibit a 2-cycle that is able to serve the customers in S. Indeed,
consider a server that travels from the left-most customer in S to the right-most
customer in S, and back, and repeating this pattern. Each customer i € S is

served as long as

¢ > maxjes(dij + dji) (3)

This, however, is implied by (1) and (2), and hence a 2-cycle serves the customers
inS. O

Using this claim it is not hard to argue that we can answer the question: can we
visit all given customers? in O(n) time. We refer to this problem as decision-
PLPP.

Corollary 1 Decision-PLPP on the line can be answered in O(n).

Proof. Given positions x1,...,x, we verify whether (3) holds. Given the line
topology, the maximum in (3) can only be attained for j = 1 or j = n. It follows
that we need to verify O(n) inequalities.[J

Theorem 3 PLPP on the line with arbitrary p; and arbitrary q; can be solved
in O(n?).

Proof. We only need to search for a best 2-cycle (Theorem 2). Clearly, consid-
ering each possible combination of leftmost and rightmost customer, and then
checking for all intermediate customers whether they can be served, yields an
immediate O(n?) algorithm. We now proceed to describe an O(n?) algorithm.

Lemma 1 Consider a server traveling on the interval [x;,x; + L|; this server
serves a customer j if and only if

(i) v < ;

(i) x; <x;+ L
(i11) 2L 4 2x; — 2z < q;
() 2x; —2z; < gj.

Proof. Conditions (i) and (ii) state that point z; must be contained in the
interval [z;,x; + L]. Conditions (iii) and (iv) follow from the following observa-
tion. The time needed for the server to travel from x; to the most right point
of the interval and back to z; (i.e. twice the distance between z; and x; + L),
and the time needed to travel to the most left point of the interval and back
(i.e. twice the distance between z; and x;), respectively, may not be larger than
the periodicity ¢;. O

According to Lemma 1, a customer j is thus served by a server traveling in
[, z; + L] if and only if z; < z; and ; > z; — %qi and if L lies in the “activity
interval”

1
Aji=z; —zyzy + 5%~ x;).

The set of served customers S(L) is then the following:
1
S(L):={j:x; <xj,x; > x5 — §Qj, and L € A;}.

Our algorithm consists of a preprocessing step and a main algorithm computing
the best value for L, i.e. L for which Zjes(L) p; is maximized, and this is done
for every i.

(Preprocessing) For every customer i, let I(i) = z; and r(i) = z; + 1¢;.
Sort all values of (i) and r(¢) in a global non-decreasing list 7.

(Main algorithm) For each customer i the interval [z;, z; + L] maximizing
the resulting profit of the served customers can be computed as follows.

(i) For all customers in T', select the customers j not violating conditions
x; < xj and x; > x; — £q; and define I'(j) = I(j) — z; and 7/(j) =
r(7) — z;; U'(j) and 7/(j) are then the leftmost and rightmost point,
respectively, of the activity interval A; of customer j. Remark that
the list containing all values I’(j) and r/(j) is sorted, we call this set
T

(ii) The first entry in 77 will be I'(i) = 0, for the choice of L = 0 the
corresponding profit P equals p;. Set Poe = ps-

(iii) Work through 7”7 and determine the profits for the corresponding
values of L.

(a) If the next element in 7" is a lower bound I'(j) of an activity
interval A;, set P := P + p;.

(b) If the next element in 7” is an upper bound 7’(j) of an activity
interval Aj, set P:= P —p;

(¢) If P> Ppax, set Pras := P.

Select the highest P,,,, over all customers i.

The preprocessing step takes O(nlogn), the main algorithm has O(n) iterations
and each iteration takes O(n), yielding a total complexity of O(n?). O

Notice that Theorem 3 is also valid for a server whose speed differs between
traveling to the right and traveling to the left.

Consider now an instance of PLP where all customers are positioned on a
circle: we can simply extend Theorem 3 to this case:

Corollary 2 PLPP on the circle with arbitrary p;, and arbitrary q; can be
solved in O(n?).

Proof. A solution to PLPP on the circle is either a 2-cycle or the full circle
(which is actually a 1-cycle). The best 2-cycle can be found using the same
algorithm as described for the line. When fixing a leftmost customer, the right-
most customer is found going clockwise through the circle. Thus, the optimal
solution to an instance of PLPP on the circle can be found in O(n?).0]

4.2 PLPP on a star

Let us consider a star graph (called a star). The customers are positioned in the
end nodes and, in addition to a profit p; and a periodicity ¢;, there is a distance
d; given which denotes the distance between the position of customer ¢ and the
center of the star, i € N.

It is easy to see that the PLPP where all p, =1 and ¢; = @ for all ¢ € N is
solvable in polynomial time. Indeed, by selecting customers with the smallest
d; until the tour length exceeds @, an optimal solution is found. In fact, a
more general result is shown in Section 4.3. In Section 5 we show that adding
a second server already makes the problem NP-hard.

When profits p; are arbitrary, and ¢; = @, PLPP on a star can be shown to
be equivalent to the knapsack problem.

Theorem 4 PLPP on a star with arbitrary profits p;, and with all g; = Q, is
NP-hard.

Proof. We reduce from knapsack, which is a weakly NP-hard problem Garey
and Johnson [1979]. Consider an instance of the knapsack problem with n items
where each item i has a certain value w; and a requirement a;. The knapsack
has size B and the question is whether we can fit a subset of the items with a
total value of W in this knapsack.

Now construct an instance of PLPP on a star as follows. There are n cus-
tomers. Each customer ¢ € N has an associated weight p; := w;, a periodicity
Q@ := B, and a distance to the center of the star d; := %ai. Does there exist a
subset of the customers with total profit equal to W such that each customer is
visited at least once within each time period Q7

In case the instance of knapsack is a yes-instance, we can copy that solu-
tion to the instance of PLPP: selected items correspond to selected customers.
Starting in the center, it is clear that by visiting the selected customers in any
order, and repeating that pattern gives a feasible solution. When the instance
of PLPP admits a yes, there is a set of customers that we can apparently serve.
A served customer 4 implies a travel time of 2d; = a;. Feasibility of the PLPP-
instance ensures that the corresponding set of items fits in the knapsack. [J

When we consider PLPP on a star with p; = 1, and arbitrary periodicities
qi, the problem becomes NP-hard.

Theorem 5 PLPP on a star with all p; = 1, and arbitrary periodicities q;, is
NP-hard.

Proof. We show that 3-Partition can be reduced to PLPP on a star with p; = 1,
and arbitrary periodicities ¢;. This proof is based on the proof of Korst et al.
[1997] for NP-hardness of Scheduling Periodic Tasks with Slack (PSSP).

An instance of 3-Partition consists of a set A with 3m items and a positive
integer B representing the size of the m bins. Each item a; € A has an associated
size z; for which it holds that % <z < % and ZaieA zi = mB. Can A be
packed into m bins, each containing three items?

We construct an instance of our special case of PLPP on a star such that
the items can be packed in m bins if the customers in the corresponding PLPP,
each with their respective periodicity, can be served by a single server. We are
given a set of n := 3m + 1 customers, each with periodicity ¢; := m(B + 2) and
distance d; := %zi to the center of the star, fori = 1,...,3m. Further, customer
3m + 1 has g3m+41 := B+ 2 and ds,,+1 := 1. The question is whether there is a
solution serving all 3m + 1 customers.

If 3-Partition has a solution, it is clear how to copy that solution to the
PLPP instance, and get a solution serving all 3m + 1 customers. If the PLPP
instance has a solution in which all 3m + 1 customers are served, then, between
two consecutive visits to customer 3m + 1, there are exactly B time units left
that can be used to visit other customers. Each of the 3m customers left must
be visited at least once in time period m(B+2). In that time period there are m
available time slots of B time units. Thus, the 3m customers can be assigned to
the m different time slots if and only if the corresponding items can be packed
in m bins.[J

10

The following holds when periods are arbitrary and distances unitary:

Theorem 6 PLPP on a star with unitary distances, unitary profits, and arbi-
trary periodicities is solvable in polynomial time.

Proof. Consider an optimal solution visiting a maximal subset S of customers.
Set T is the set of unvisited customers, N = S 4+ T. It holds that for any two
customers ¢ € 1" and j € S with ¢; > ¢;, ¢ can be moved to subset T" and j to
subset S. A new optimal solution is obtained. Thus, an optimal solution can
easily be found by selecting customers in decreasing order of ¢ until a feasible
solution is no longer obtained. [

4.3 PLPP on a tree

We argue here that PLPP on a tree with p; = 1 and ¢; = @ is nothing but
an orienteering problem (OP). Coene et al. [2008] describe how to modify an
algorithm from Johnson and Niemi [1983] in order to solve the orienteering
problem restricted to a tree. An instance of OP on a tree consists of a set of
vertices N where each vertex ¢ € N has an associated profit p; and each edge
between two vertices ¢ and j in the tree has a cost ¢;;. A maximum on the cost
C is given. The goal is to find a route visiting a subset of the vertices with
cost no more than C and collecting a maximal amount of profit. An instance
of PLPP with p; = 1 and ¢; = @ is then an orienteering problem with p; = 1
(Vi € N), ¢;j = d;;, and with C := . The algorithm in Coene et al. [2008]
solves OP on a tree in O(nPiy), with P, the sum of all given profits; since
p; = 1, Vi € N, total running time for PLPP is only O(n?).

Corollary 3 PLPP on a tree with p; = 1 and q; = Q is solvable in O(n?).

4.4 PLPP on an arbitrary topology
Theorem 7 PLPP with p; =1, and q¢; = @, is NP-hard.

Proof. We prove NP-completeness of this variant of PLPP by a reduction from
Hamiltonian cycle. An instance of the Hamiltonian cycle problem is specified
as follows: given a graph G = (V, E), does there exist a Hamiltonian cycle in
G?

Now consider the following instance of PLPP. A node in V' corresponds to a
customer, and we set n := |V|. For each pair of customers i, j that is connected
via an edge in F we set d;; := 1, else we set d;; := 2. The periodicity is ¢; := |V|
for each ¢ € N. Now, does there exist a solution to PLPP with value n?

If a Hamiltonian cycle exists in G, there exists a tour in the PLPP instance
with length n visiting all the locations. This solution is periodic. Vice versa, if
a solution serving all customers in the PLPP instance exists, G must contain a
Hamiltonian cycle. [

5 The periodic latency problem (PLP)

In this section we study the PLP and we prove the results summarized by Figure
2. In the PLP our goal is to minimize the number of servers needed to visit all

11

customers. We assume that every customer must be assigned to and served by
a single server; this is a crucial assumption as can be seen from the example in
Figure 3. Observe that when each customer must be served by one server, three
servers are needed to serve the customers in the example. If, however, that
assumption is dropped, the three customers from the example can be served
using only 2 servers, each server alternatingly serving the middle customer.

X1 X9 T3

I
O

g =2 g2 =1 q3

Figure 3: PLP

Determining for an arbitrary topology, whether a single server suffices to
serve all customers, is NP-hard; this follows directly from Theorem 7. In this
section we show that a dynamic programming approach solves the case of the
line in polynomial time, whereas PLP on a star remains NP-hard.

5.1 PLP on the line

We develop a dynamic programming algorithm for the PLP on the line. Given
are n customers with their positions 1 < 22 < ... < x, on the line; and a set
of n identical servers. The goal is to minimize the number of servers necessary
to visit all customers periodically, i.e. without violating any g;.

There exists an optimal schedule to an instance of PLP on the line of the
following shape:

e Every server s commutes between the left and the right endpoint of its
interval I.

e The intervals I, and I; of any two different servers s and t are either
disjoint, or one of them does contain the other one.

e The left endpoint of interval I, is only assigned to server s.

We now describe an informal argument establishing the second property
described above. Suppose that every optimal solution contains two intervals I
and I; that are disjoint nor contained. Then, a client 7 at position x; exists,
contained in both intervals, which is served by one of the servers, say server
t, and cannot be served by server s. Define z;; and z,, as the leftmost and
rightmost point, respectively, of I; and analogue z;; and z;, for I;. We can
assume then without loss of generality that x,; < ;) < 2; < x5, < 21, As
x; is served by server ¢ and cannot be served by s, it must hold that d, , -, >
dg, ;- As aresult all customers positioned on the interval [z;, z] and served
by server s can also be served by server ¢, yielding two disjoint intervals I, and
It.

We say that in some schedule a server covers customer i if the time elapsed
between two consecutive visits of this server to the customers is at most ¢;. The
following lemma clearly holds:

12

Lemma 2 Let a < b < ¢ < d be four request points. Assume that server s
commutes on the outer interval [a,d], and that server t commutes on the inner
interval [b,c]. Then every point in interval [b,c] that is covered by the outer
server s will also be covered by the inner server t.

Indeed, the frequency with which any point x; within [b,] is visited by the
server commuting in [b, ¢] is higher than for the server commuting in [a, d].

A dynamic programming algorithm
The dynamic program is built around the following definition.

Definition 4 Let i and j be integers with 1 < 1,5 < n. Leti and j' be integers
such that either (i) 1 <4’ < j' <mn and 1 < xy < x5 < x, where x; and z;
are contained in the interval [x;,x;/], or such that (ii) i = j' = 0.

Then Fli;7;i';§'] denotes the smallest number of servers that can serve all
customers k = 1,141, ..., 5 with the exception of the customers that are already
covered by an external server that commutes on the interval [z;,x;/]. (In the
case i’ = j' =0, there is no such external server.)

Notice that in this definition we explicitly allow the situation j < i, which
yields an empty interval and an empty set of requests. We will now compute all
the values Fi; j;i'; j'] step by step and in increasing order of j — ¢ (the number
of customers in the underlying interval).

All cases with j < ¢ have empty intervals, and hence need F[i;j;i’;5'] =0
servers. In the remaining cases we have j > i. If the leftmost point is already
served by the external server, we may simply set F[i; j;4'; §'] := F[i+1;7;4;7].
Otherwise the leftmost point ¢ must be served by some new server s. We branch
into several cases that depend on the behavior of s.

Assume that the server s commutes on the interval Iy = [x;, 2] with i <1 <
7. Then we need at least

a(l) == Fli+1;14]]

additional servers working and serving in interval I,. Because of Lemma 2, the
influence of the external server commuting on the outer interval [z;,x;/] has
now become irrelevant; everything this server has covered will also be covered
by the new server s. Furthermore, we need at least

B(l) = Fll+1;5;4;4']

servers working in the remaining uncovered interval [z;y1,2;]. Therefore the
smallest possible number of servers in this situation is

Fli;35i'55'] = min {1+ a(l) + 6(1) | i <1 < 5}

In the end, the answer to the global problem can be found in F[1;n;0;0]. We
have to compute O(n*) values F[i;j;4'; j'], and the computation of each value
takes linear time. Hence the overall running time is O(n®).

Theorem 8 PLP on the line can be solved in O(n®).

13

5.2 PLP on a circle

The algorithm for the problem on the line can be extended to the circle, adding
a factor n to the running time of the line algorithm.

Corollary 4 PLP on the circle can be solved in O(n®).

Proof. PLP on a circle can be broken down to n instances of the problem on
the line. Solving all these line instances and selecting the best from these n so-
lutions, yields an optimal solution to the PLP on the circle. Thus, the optimal
solution to an instance of PLP on the circle can be found in O(nf). O

5.3 PLP on a tree

We prove that the PLP on a star with ¢; = @ is NP-hard; NP-hardness of
the PLP on a tree with arbitrary ¢; follows immediately from this result. In
Section 4.2 it was shown that the periodic latency problem on a star graph with
all customers having the same profit and requiring equal frequency is easy to
solve; adding a second server though makes the problem much harder to solve.

Theorem 9 PLP on star is NP-hard, even if ¢; = Q, for alli € N.

Proof. We reduce from partition. An instance of the partition problem has a
set X = {@1,...,xz,} with > | s(x;) = 2k, where s(z;) denotes the size of z;.
Can the set X be partitioned into two sets X and Xz such that)y s(z) =
> zex, 5(x) = k and each element occurs exactly once?

An instance of PLP on a star is constructed as follows. There is a star with n
spokes, and a customer located at each spoke with distance %ch from the center
of the spoke, for i = 1,...,n. Each customer (spoke) has a periodicity @ := k,
meaning that the maximal time that can pass between two consecutive visits to
a customer equals k. There are two servers, traveling at unit speed, positioned
in the center of the graph. Now, does there exist a route for each of the servers
such that all customers can be served periodically?

If a solution to partition exists, the set of customers in X; can be assigned
to one server and the customers in X5 to the other server and each server can
visit these customers in @) time units. If a solution to PLP on the star exists,
each customer is visited once within every) time units. Since total travel time
to visit all customers equals 2@Q), it must be the case that every server travels
exactly @ time units. Customers visited by server 1 can be assigned to one set
and customers visited by server 2 to the second set, and a solution for partition
is obtained. O
As a result, PLP on a tree is NP-hard.

6 The case of multiple servers: MPLPP

The complexity results from the previous section can be extended to a periodic
latency problem with profits and multiple servers, denoted by MPLPP. As be-
fore, we are given a set of n customers with their positions x1,xs, ..., Z,; and
each customer ¢ has an associated profit p; and periodicity ¢;. Further, S iden-
tical servers are given, with S < n. (The case S =1 is dealt with in Section 4).

14

The goal is then to find a repeatable route for each server collecting a maximal
amount of profit without violating the ¢;’s. We show that, when all costumers
are positioned on the line/circle the dynamic programming algorithm from the
previous section can be transformed to solve the MPLPP in polynomial time.
On a tree or a arbitrary graph the problem is NP-hard. One can easily check
that Lemma 2 still holds for MPLPP on the line. Then a state in the dynamic
programming algorithm is defined as follows.

Definition 5 Let i and j be integers with 1 < 1,5 < n. Leti and j' be integers
such that either (i) 1 < <j <n and 21 < zy < zj <z, where z; and x;
are contained in the interval [x;,x;], or such that (i) i' = j' = 0.

Then Pli; j;i'; §'; s] denotes the mazimum profit that can be collected serving
customers in the interval [x;, ;] using s < S servers, excluding the customers
that are already covered by an external server that commutes on the interval
[xir,zj1]. (In the case i = j' =0, there is no such external server.)

Now, we compute all the values of P[i;j;i’;7’;s]. All cases with j < i have
empty intervals, and hence yield a profit P[é; j;4; j'; s]=0. When j > i we can
distinct several cases. If the leftmost point i is covered by an external server or
is not served at all, it holds that P[é; j;4'; 5’5 s]J=P[i+1; j;4'; j'; s]. Otherwise 7 is
served by a server from s, say s, traveling on the interval [z;, ;] with i <1 < j.
Total profit for this state then consists of three parts: (i) p(I) = >_;cg(s,) Pis the
profit of the set of customers S(s1) covered by sy; (ii) «(l,s") = Pli+1,1,14,1, 5],
the profit of the servers traveling within the interval covered by s;; and (iii)
B(l,s—s")=P[l+1,4,,j,s — s — 1], the profit that can be collected in the
remaining interval by the remaining servers. The optimal value is then:

Pli; j; 15 5’5 5] = max{p(l) + a(l,s') + B, s")|i <1< j,0 < &' < s}

The state P[i; j;0; 0; 5] yielding maximal profit gives the optimal solution. There
are O(n*9) states to be computed and each state requires O(n29) time. Overall
running time is then O(n%5?).

Theorem 10 MPLPP on the line can be solved in O(n®S?).

As in the previous section, the algorithm for MPLPP on the line can be extended
adding a factor n to the running time.

Corollary 5 MPLPP on the circle can be solved in O(n”S?).

N P-hardness of MPLPP on a tree follows from the fact that MPLPP on a star
is N P-hard.

Theorem 11 MPLPP on a star is N P-hard, even if all ¢; = Q.

Proof. It is easy to see that the proof of Theorem 9 is directly applicable to
this problem. [J
It follows that the problem is N P-hard on arbitrary graphs.

7 Conclusion

We were able to settle complexity of a number of variants of the PLPP and
the PLP. Our results still hold when customers are weighted, as a customer will

always be served when a server passes by. However, some interesting questions
remain. It would, for instance, be interesting to study the influence of repair
times on complexity. This seems to make the problems much harder. Indeed,
when repair times are added for the customers, Lemma 2, which is crucial for
the dynamic programming algorithm, no longer holds. Further, it is also not
clear what happens when servers have restricted capacity. And what if servers
are not identical, meaning that they travel at different speeds or with different
operating costs?

Epilogue

In the Treaty of Verdun of 843 the three grandsons of Charlemagne divided the
empire into three kingdoms. Hence thirty years after Charlemagnes death, one
needed already three servers to guarantee the loyalty of all the counts. . .

References

S. Anily, C. A. Glass, and R. Hassin. The scheduling of maintenance service.
Discrete Applied Mathematics, 82:27-42, 1998.

A. Bar-Noy, V. Dreizin, and B. Patt-Shamir. Efficient algorithms for periodic
scheduling. Computer Networks, 45:155-173, 2004.

A. M. Campbell and J. R. Hardin. Vehicle minimization for periodic deliveries.
European Journal of Operational Research, 165:668-684, 2005.

S. Coene and F. C. R. Spieksma. Profit-based latency problems on the line.
Operations Research Letters, 36:333—-337, 2008.

S. Coene, C. Filippi, F. C. R. Spieksma, and E. Stevanato. The traveling
salesman problem on trees: balancing profits and costs. Submitted, 2008.

Y. Crama, V. Kats, J. van de Klundert, and E. Levner. Cyclic scheduling in
robotic flowshops. Annals of Operations Research, 96:97-124, 2000.

W. E. de Paepe, J. K. Lenstra, J. Sgall, R. A. Sitters, and L. Stougie. Computer-
aided compexity classification of dial-a-ride problems. INFORMS Journal on
Computing, 16:120-132, 2004.

R. Dekker, F. A. van der Duyn Schouten, and R. E. Wildeman. A review of
multi-component maintenance models with economic dependence. Mathemat-
ical Methods of Operations Research, 45:411435, 1997.

V. Dimov, A. Kumar, R. Hebbar, W. Fares, and P. Sharma. Mini-rounds im-
prove pphysician-patient communication and satisfaction (abstract). Journal
of Hospital Medicine, SHM Annual Meeting, 2:48, 2007.

G. N. Frederickson and B. Wittman. Approximation algorithms for the travel-
ing repairman and speeding deliveryman problems with unit-time windows.
APPROX and RANDOM 2007, Lecture Notes in Computer Science (LNCS),
4627:119-133, 2007.

16

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, San Francisco, 1979.

D. S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new dynamic
programming technique for trees. Mathematics of Operations Research, 8:
1-14, 1983.

Y. Karuno, H. Nagamochi, and T. Ibaraki. Vehicle scheduling on a tree with
release and handling times. Annals of Operations Research, 69:193-207, 1997.

J. Korst, E. Aarts, and J. K. Lenstra. Scheduling periodic tasks with slack.
INFORMS Journal on Computing, 9:351-362, 1997.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing
Machinery, 20:46-61, 1973.

M. Mourgaya and F. Vanderbeck. Probleme de tournées de véhicules mul-
tipériodiques: Classification et heuristique pour la planification tactique.
RAIRO Operations Research, 40:169-194, 2006.

Giuseppe Paletta. The period traveling salesman problem: a new heuristic al-
gorithm. Computers and Operations Research, 29(10):1343-1352, 2002. ISSN
0305-0548. doi: http://dx.doi.org/10.1016,/S0305-0548(01)00035-1.

S. Patil and V. K. Garg. Adaptive general perfectly periodic scheduling. Infor-
mation Processing Letters, 98:107-114, 2006.

Q. Studer. Results that last: hardwiring behaviors that will take your company
to the top. John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.

W. F. J. Verhaegh, E. H. L. Aarts, P. C. N. van Gorp, and P. E. R. Lippens. A
two-stage solution approach to multidimensional periodic scheduling. IEEE
Transactions on computer-aided design of integrated circuits and systems, 20:
1185-1199, 2001.

17

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	periodic latency revised4

