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We examine how to schedule projects in order to maximize their expected net present value when the
project activities have a probability of failure and when an activity’s failure leads to overall project
termination. We formulate the problem, show that it is NP-hard, develop a branch-and-bound
algorithm that allows to obtain optimal solutions and provide extensive computational results.

1 Introduction

An important feature of Research-and-Development (R&D) projects is that, apart from the com-
mercial and market risks common to all projects, their constituent activities also carry the risk of
technical failure. Therefore, besides projects overrunning their budgets or deadlines and the com-
mercial returns not meeting their targets, R&D projects also carry the risk of failing altogether,
resulting in time and resources spent without any tangible return. In this paper, we tackle the
problem of scheduling the activities of an R&D project that is subject to technological uncertainty,
i.e. in which the individual activities carry a risk of failure, and where an activity’s failure results
in the project’s overall failure. The goal is to schedule the activities in such a way as to maximize
the expected net present value of the project, taking into account the activity costs, the cash flows
generated by a successful project, the activity durations and the probability of failure of each of
the activities.

The model developed in this paper is useful for any R&D setting where activities carry a risk of
failure, and is of particular interest to drug-development projects in the pharmaceutical industry, in
which stringent scientific procedures have to be followed to ensure patient safety in distinct stages
before a medicine can be approved for production. The project may need to be terminated in any
of these stages, either because the product is revealed not to have the desired properties or because
of harmful side effects. The failure of one of the stages results in overall project termination. As
stated by [6], “If a drug candidate fails during the development phase it is withdrawn entirely from
further testing. Unlike in the automobile industry, drugs are not modular products where a faulty
stick shift can be replaced without throwing the entire car design away. In pharmaceutical R&D,
drug design cannot be changed.”

2 Problem formulation

We wish to maximize the expected net present value (NPV) of a project by constructing a project
schedule specifying when to execute each activity. The final project payoff is only achieved when all
activities are successful, and the project is terminated as soon as an activity fails. We focus on the
case where all activity cash flows during the development phase are negative, which is typical for
R&D projects. Activity success or failure is revealed at the end of each activity. Consequently, each
activity will only be started if all the activities scheduled to finish earlier have a positive outcome.
Therefore, in the objective function, the activity cash flows are weighted by the probability of
joint success of all its scheduled predecessors. We make abstraction of resource constraints and
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N = {0, 1, . . . , n}, the set of project activities; Ni = N\{i} (i ∈ N) and N0n = N\{0, n}
ci cash flow of activity i ∈ Nn, non-positive integer; incurred at the start of the activity
C integer end-of-project payoff, ≥ 0; received at the start of activity n

di duration of activity i ∈ Nn, non-negative integer (positive for i ∈ N0n)
pi probability of technical success (PTS) of activity i ∈ Nn

r continuous discount rate
A (strict) partial order on N , i.e. an irreflexive and transitive relation, representing techno-

logical precedence constraints
si starting time of activity i ∈ N , ≥ 0; starting-time vector s is a schedule
δ project deadline

Table 1: Definitions.

duration uncertainty, and consider the success probabilities of the different tasks as independent.
The parameters that are used throughout the paper are defined in Table 1.

Without loss of generality, we assume activity 0 to be a dummy representing project initiation,
with c0 = d0 = 0 and p0 = 1, and (0, i) ∈ A for all i ∈ N0. Activity n represents project completion
and is a successor of all other activities. Activities N0n are referred to as intermediate activities;
we assume that di > 0 for i ∈ N0n. A deadline δ on the schedule length is imposed: we require
that sn ≤ δ. This deadline is needed because optimization will try to push activity start times to
infinity if the optimal expected NPV of a particular problem instance is negative. A second reason
for using a deadline is that it allows to examine the impact of schedule length on the quality of the
schedule.

In order to formulate the problem we wish to solve, we define the additional variables

qi(s) =
∏

k∈N :
sk+dk≤si

pk

associated with activities i ∈ N0. Remark that qn(s) is a constant, independent of the schedule;
we write qn ≡ qn(s). qi represents the probability that activity i is executed, and thus needs to be
paid for. We now formally state the R&D-Project Scheduling Problem or RDPSP:

max g(s) = qnCe−rsn +
n−1∑

i=1

qi(s)cie
−rsi (1)

subject to

si + di ≤ sj ∀(i, j) ∈ A

sn ≤ δ

si ≥ 0 ∀i ∈ N

In the objective function g(), each activity cash flow ci is weighted with two factors, namely with
qi(s), the probability of joint success of all predecessors in time, and with a discount factor e−rsi ,
dependent on the starting time si of activity i.

3 Properties

Theorem 1. If r = 0 and δ ≥
∑

i∈Nn
di then an optimal feasible schedule exists without activities

scheduled in parallel.
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The proofs of the theorems appear in [4]. Intuitively, the theorem says that when money has
no time value, it is a dominant choice to perform all tasks sequentially. Theorem 1 allows us to
establish ties with the literature on sequential testing. We define problem LCT (‘least-cost testing ’)
as problem RDPSP whose solution space is restricted to schedules that impose a complete order
on N ; remark that LCT is not a sub-problem of RDPSP since we restrict the set of solutions and
not the input parameters.

Without dummy start and end (and so without final project payoff), a number of special cases
of LCT with r = 0 can be solved in polynomial time. If A = ∅ then each schedule that sequences
the activities in non-increasing order of ci/(1 − pi) is optimal. One of the earliest references for
this result seems to be [8]; another source is [2]. A polynomial-time algorithm for LCT also exists
when G(N,A) consists of a number of parallel chains (see [3]). Based on [9] it can be shown that
the problem is also solvable in polynomial time when G(N,A) is series-parallel.

The foregoing results carry over to RDPSP when δ ≥
∑

i∈Nn
di and r = 0. However, the

incorporation of precedence constraints taking the form of an arbitrary acyclic digraph G(N,A)
results in an NP-hard problem:

Theorem 2. RDPSP is NP-hard in the ordinary sense, even if r = 0, C = 0, ∀i ∈ N0n : di = 1,
and δ ≥

∑
i∈Nn

di.

Corollary 1. LCT is ordinarily NP-hard under the same conditions.

This corollary settles what is said to be an open problem in [9] and [11].

4 A branch-and-bound algorithm

For an arbitrary relation E on N , define S(E) = {s ∈ R
n+1
≥

: si + di ≤ sj,∀(i, j) ∈ E}, which is a
convex polyhedron (R

≥
denotes the set of positive real numbers). S(E) is non-empty if and only

if the corresponding precedence graph G(N,E) is acyclic. The set of feasible schedules for RDPSP
is {s ∈ S(A) : sn ≤ δ}. Clearly, if A ⊆ E then S(E) ⊆ S(A). If A ⊆ E and G(N,E) is acyclic,
we say that E is a feasible extension of A. For a given schedule s, we define the schedule-induced
strict order R(s) = {(i, j) ∈ N × N |i 6= j ∧ si + di ≤ sj}, which corresponds to the precedence
constraints implied by s (see e.g. [1, 10]).

RDPSP is solved in two phases. In the first phase we produce a feasible extension E of A,
which yields values

yi(E) =
∏

(k,i)∈E

pk

for activities i ∈ N0n. We then substitute values yi(E) for qi(s) in the objective function (1) for each
i ∈ N0n, and optimize g(s) subject to the constraints that s ∈ S(E) and sn ≤ δ. If we implicitly or
explicitly enumerate all feasible extensions E of A, we are guaranteed to find an optimal schedule
for RDPSP, since for each feasible schedule s ∈ S(A) it holds that s ∈ S(R(s)), and R(s) extends
A; a corresponding relation E is called an optimal feasible extension. This enumeration process
is embedded into a branching procedure, which, in combination with upper bounds on the best
objective-function value reachable from a given node in the resulting search tree, leads to a branch-
and-bound (B&B) procedure that allows us to find optimal solutions.

The second phase (optimization after substitution of the values yi), to be examined for each fea-
sible extension E, amounts to project scheduling with NPV objective without resource constraints
(see [7]). In this case, the scheduling problem is easily solved because all intermediate cash flows
are non-positive: each activity can be scheduled to end at the earliest of the starting times of its

586

MISTA 2007



successors in E. Depending on whether the corresponding expected NPV is positive or negative,
we set s0 = 0 or sn = δ, respectively.

In our presentation we will report on computational results for the B&B-algorithm on a number
of sets of test instances generated by RanGen [5].
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