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Abstract 

For an orthogonally blocked experiment, Khuri (1992) has shown that the 
ordinary least squares estimator and the generalized least squares estimator 
of the factor effects in a response surface model with random block effects 
coincide. However, the equivalence does not hold for the estimation of the 
intercept when the block sizes are heterogeneous. When the block sizes are 
homogeneous, ordinary and generalized least squares provide an identical es­
timate for the intercept. 

Keywords: orthogonal blocking, random block effects, combined intra- and 
inter-block estimator, equivalence of OLS and GLS 

1 Introduction 

In many experimental situations, response surface designs are divided into blocks in 
order to control for an extraneous source of variation. Khuri (1992) and Gilmour 
and Trinca (2000) pointed out that many experimental situations exist in which the 
blocks are randomly selected from a population of blocks, such that the block effects 
should be treated as random. The statistical model corresponding to a response 
surface experiment with n observations and b random block effects is given by 

y = /3oIn + X{3 + Z"! + e, (1) 

where y is a vector of n observations on a certain response, /30 is the intercept, 
In is an n-dimensional vector of ones, X is the n X p-dimensional design matrix, 
{3 = [ (31 /32 ... /3p l' is the p-dimensional vector of factor effects, Z is an n x b matrix 
of zeroes and ones assigning the n observations to the b blocks, "! = [ "11 "12 ... "Ib l' 
is the vector containing the b block effects and e is a random error vector. Further, 
it is assumed that both,,! and e are normally distributed, and that E("{) = Ob, 
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E(e) = On, cov(r) = cr;Ibxb , cov(e) = cr;Inxn' and cov(r,e) = Obxn' The variance­
covariance matrix of the observations cov(y) can then be written as 

(2) 

Suppose the entries of yare grouped per block, then 

(3) 

where 

(4) 

k i is the size of block i, and 

(5) 

If the variance components are known, the best linear unbiased estimator (BLUE) 
of the unknown 'T" = [ (30 ,f3' l' is given by the generalized least squares estimator 

(6) 

with W = [ In : X]. The variance of this estimator is 

(7) 

The generalized least squares estimator is also referred to as the combined intra­
and inter-block estimator. Unlike the intra-block estimator, which is obtained by 
treating the block effects as fixed, the generalized least squares estimator does not 
suppress the inter-block information. However, Khuri (1992) has shown that both 
estimators produce the same estimate for f3 when the experiment is orthogonally 
blocked, that is when 

(i = 1, ... ,b), (8) 

where Xi represents the part of X corresponding to the ith block. In addition, he 
shows that the generalized least squares estimator for f3 is then also equivalent to 
that obtained from ordinary least squares regression, that is 

(9) 

The obvious advantage thereof is that the estimates for the factor effects f3 do not 
depend on T/. We denote the ordinary least squares estimator for 'T" by 

(10) 
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and its variance is given by 

var(TOLS) = u;(W'Wt1W'AW(W'Wt1. (11) 

From this expression, it can be seen that, even in an orthogonally blocked exper­
iment, knowledge of the variance components remains indispensible for statistical 
inference. In case the variance components are unknown, they can be estimated us­
ing restricted maximum likelihood (for a detailed discussion, see Gilmour and Trinca 
2000). 

Although ordinary and generalized least squares estimation produce the same es­
timates for the factor effects in an orthogonally blocked experiment, they produce 
different estimates for the intercept /30 when the block sizes are heterogeneous. Also 
the variances of both estimators are different. When predicting the response is one 
of the experimenter's goals, for example to find those settings of the experimen­
tal factors to achieve a target value for the response, these difference should not 
be ignored. The analytical results in this paper are illustrated by means of an or­
thogonally blocked experiment conducted at the research center of a food additive 
producer. It is also shown that the ordinary and generalized least squares estimator 
for /30 are equivalent when the block sizes are homogeneous, and that, in this case, 
the variances (7) and (11) are equal. In the remainder of the paper, we will denote 
the ordinary and the generalized least squares estimators for /30 by /30,OLS and /30,GLS 
respectively. Finally, it should be stressed that all designs considered in this paper 
are orthogonally blocked and that only the case where W is full rank is considered. 

2 Heterogeneous block sizes 

When the block sizes are heterogeneous, ~o depends on the estimation method used. 
Heterogeneous block sizes frequently occur when an orthogonally blocked second 
order standard design is used. For example, Box and Hunter (1957) propose an 
orthogonally blocked central composite design for three variables with 2 factorial 
blocks of size 6 and one axial block of size 8. Another example of an orthogonally 
blocked central composite design is given in Table 1. This 54-run experiment was 
carried out in the laboratory of a multinational producing ingredients for food and 
beverage applications to investigate the effect of adding salt in a starch extraction 
process on its yield (expressed in %). Five blocks corresponding to batches of raw 
material originating from five of the countries in which the company was active 
were used in the experiment. Two of the blocks contain 18 runs, whereas the others 
contains only 6 runs. Five equally spaced salt levels were used in the experiment 
and the middle level was replicated twice as much as the other levels. As the yield 
was expected to increase at a slackening pace, a quadratic model was fitted using 
both ordinary and generalized least squares. Ordinary least squares estimation gave 

E(y) = 49.44 + 5.51x - 2.58x2 , 
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Table 1: Orthogonally blocked starch extraction experiment 
x Block 1 Block 2 Block 3 Block 4 Block 5 
-1 40.5 39.4 42.3 40.8 39.4 38.6 49.3 48.5 38.1 

-0.5 43.2 41.7 41.3 40.1 43.5 44.4 51.0 52.8 44.7 
0 50.4 43.6 46.6 45.7 42.8 48.4 55.8 62.2 50.6 
0 47.4 45.0 48.5 47.6 48.9 45.8 59.4 55.5 52.1 

0.5 49.1 53.1 51.3 46.9 47.6 50.8 56.4 60.5 51.3 
1 50.0 48.3 50.1 49.1 48.3 50.2 60.0 60.1 52.6 

whereas generalized least squares produced 

E(y) = 51.41 + 5.51x - 2.58x2• 

The latter model was obtained using the ratio of the restricted maximum likelihood 
estimates CT~ = 26.68 and a; = 4.21 as an estimate for TJ. It is clear that, apart from 
the intercept, both models are identical. The difference between both intercepts 
amounts to 1.97, which is quite large when compared to the standard deviation of 
the predicted value at the center point (2.35). In cases where the interest is in es­
timating the location of a stationary point on a response surface or in estimating the 
difference between the responses for two combinations of the factor levels, the value 
of the intercept does not matter. However, the goals of an experiment often include 
the prediction of the response for certain combinations of the factor levels. This is 
important when a target value for the response has to be achieved. Of course, any 
deviation from the target is undesirable, such that the estimation method in this 
case really matters. 

In order to assess the difference between the ordinary and generalized least squares 
estimator over a range of examples, consider the analytical expressions for ~O,OLS 
and ~O,GLS derived in Appendix A: 

",b lk oYi 

(3' - wi=1 ~ - ~1' Xl.! 
O,GLS - ",b ki n 1-', 

wi=1 1+ki'1 n 

where ~ = i30Ls = i3GLS' The difference between both estimators equals 

",b kiYi 
, , wi=1 ~ 

(30,GLS - PO,OLS = "'~ ~ - y, 
w.=1 1+ki'1 

(12) 

(13) 

(14) 

where y is the average response of the experiment, and Yi represents the average 
response in the ith block. Remarkably, this difference only depends on the block 
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Table 2: Differences between var(~o,OLS) and var(~o,GLs) for several block sizes and several 
values of'TJ. 

n k1 k2 k3 ry=1 ry=2 Tf=5 
10 4 6 0.0828 0.1208 0.1600 
10 3 7 0.3231 0.4766 0.6364 
10 3 3 4 0.0261 0.0390 0.0526 
10 2 4 4 0.0941 0.1471 0.2051 
20 9 11 0.0227 0.0317 0.0408 
20 8 12 0.0906 0.1267 0.1633 
20 6 6 8 0.0293 0.0416 0.0541 
20 6 7 7 0.0072 0.0103 0.0135 
32 10 11 11 0.0030 0.0041 0.0053 
32 8 12 12 0.0469 0.0658 0.0849 

effects 6i, the random errors Ci, and k i , but not on the design matrix X or T. This is 
proven in Appendix B. Since both the ordinary and generalized least squares estim­
ators are unbiased, the expected value of (14) is zero and the choice between both 
estimators has to be based on their variances. 

In Appendix C, it is shown that the variances of /30,OLS and /30,GLS are different, 
unlike the variances of /3oLs and i3GLS' The difference does not depend on X or T, 

and equals 

b 2 ",b kf1) 
• • "2 '" k; ry L...-i=l n2 (Hk;1)) 

var(,sO,GLS) - var(,sO,OLS) = ag(~ -2 - b k~~)' 
. n 1-'" -'-.=1 L...-i=l n(l+ki1j) 

(15) 

and is always positive (for a formal proof, see Appendix D). From the formula, it 
can be seen that the difference between the ordinary and generalized least squares 
estimator increases with the total variance in the responses. In order to illustrate 
how the difference depends on 'TJ and the block sizes k i , we have computed values 
of (15) for 10 instances with heterogeneous block sizes, holding a; + a~ = 10. The 
results are displayed in Table 2. It can be seen from the table that the extent to 
which the variance associated with the generalized least squares estimator is smaller 
than that associated with the ordinary least squares estimator increases with Tf and 
with block size heterogeneity. 

In order to obtain some sense for the practical consequences of the difference between 
both estimators, consider again the starch extraction experiment. It is known that 
the yield of the extraction process increases with the amount of salt added. However, 
the amount of salt added could not be increased infinitely for economical reasons 
and a target yield of 45% was determined. Confidence intervals for E(y) were then 
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used to determine the amount of salt needed to achieve the target value. Of course, 
the 90% confidence interval for E(y) is given by 

E(y) ± 1.645Jvar(y), 

and it depends on the estimation method used. Using the ordinary least squares 
estimate for the intercept and the corresponding variance, it turns out that x = 
-0.0115 is needed to achieve the 45% target yield in 90% of the cases. It can be 
verified that the corresponding 90% confidence interval is 

[45.00, 53.75J. 

U sing the generalized least squares estimate for he intercept and the correspond­
ing variance, a value of x = -0.3923 was obtained instead. The corresponding 
confidence interval is 

[45.00,52.71 J, 

which is substantially smaller than the interval obtained by using ordinary least 
squares. From this example, it is clear that ordinary and generalized least squares 
may provide entirely different solutions to a practical problem. The solution given 
by the generalized least squares method is much cheaper than that suggested by the 
ordinary least squares approach. In view of the smaller variance associated with the 
generalized least squares approach, the cheaper option was most inspiring. 

3 Homogeneous block sizes 

When the block sizes are homogeneous, ordinary and generalized least squares pro­
duce identical estimators of{3o and the variances of both estimators are equal. As 
an illustration, consider the data in Table 3 from a small reactor study introduced 
by Box and Draper (1987) and revisited by Khuri (1994). In the experiment, the 
effect of 3 factors (flow rate, concentration of a catalyst, and temperature) on the 
concentration of a product was investigated. The 24 runs of the experiment were 
performed sequentially in 4 blocks of size 6. A full quadratic model was fitted to 
the data. It can be verified that is equal to 

y = 51.79 + 0.74xl + 4.81x2 + 8.01x3 + 0.38xIX2 

+ 1O.35xIX3 - 2.83x2X3 - 3.83xi + 1.22x~ - 6.26x;, 

no matter whether ordinary of generalized least squares is used. A formal proof 
of the equivalence between the ordinary and generalized least squares estimators 
for the intercept is obtained by noting that the right hand side of (14) is zero when 
k = kl = k2 = ... = kb• The difference (15) between the variances of ~O,OLS and ~O,GLS 
is then also equal to zero. As a consequence, the variance-covariance matrices of the 
ordinary and generalized least squares estimator are identical when an orthogonally 
blocked experiment with homogeneous block sizes is used. 
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Table 3: Orthogonally blocked central composite design with four blocks of size six. 

Block 1 Block 2 Block 3 Block 4 
Xl X2 X3 Y Xl Xz X3 Y Xl X2 X3 Y Xl X2 X3 Y 
-1 -1 1 40.0 -1 -1 -1 39.5 -a 0 0 43.0 -a 0 0 39.2 
1 -1 -1 18.6 1 -1 1 59.7 a 0 0 43.9 a 0 0 46.3 
-1 1 -1 53.8 -1 1 1 42.2 0 -a 0 47.0 0 -a 0 44.9 
1 1 1 64.2 1 1 -1 33.6 0 a 0 62.8 0 a 0 58.1 
0 0 0 53.5 0 0 0 54.1 0 0 -a 25.6 0 0 -a 27.0 
0 0 0 52.7 0 0 0 51.0 0 0 a 49.7 0 0 a 50.7 
a=v2 

4 Conclusion 

In this paper, it is shown that ordinary and generalized least squares produce a 
different estimate for the intercept in a response surface model with random block 
effects when an orthogonally blocked experiment with heterogeneous block sizes is 
used. The difference between both estimates increases with the total variance in the 
response, the extent to which the responses are correlated and the heterogeneity of 
the block sizes. This result is surprising in view of Khuri's (1992) proof that both 
methods yield identical estimates of the factor effects. Another interesting point is 
that the variance-covariance matrices of the ordinary and generalized least squares 
estimator differ in only one element, namely the variance of the intercept. When 
the block sizes are homogeneous, both methods yield the same estimate for the in­
tercept. In this case, the ordinary and generalized least squares estimators have 
identical variance-covariance matrices. The estimation of the intercept is important 
when the goal of the experiment is to predict the response for combinations of the 
experimental factors and when a target value for the response has to be achieved. 
This was illustrated in Section 2. 

The results described in this paper emphasize the importance of using an orthogon­
ally blocked experiment with homogeneous block sizes. In doing so, the estimation 
of all regression parameters, including the intercept, is insensitive to the estimation 
method used (ordinary or generalized least squares) nor to the estimate of the var­
iance components. In addition, inference procedures will also be independent from 
the estimator used. When heterogeneous block sizes are inevitable, the generalized 
least squares estimator is recommended for the intercept because it has a smaller 
variance than the ordinary least squares estimator. For all other regression para­
meters, the estimation method does not matter. 

In the light of these results, it is interesting to point out that orthogonal blocking 
is an optimal strategy to assign the experimental runs of a given design X to the 
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blocks (Goos and Vandebroek 2001). Therefore, algorithms for computing optimal 
blocked experiments (Atkinson and Donev 1989, Goos and Vandebroek 2001) will 
generate orthogonally blocked designs whenever possible. This is also true for the 
algorithms of Trinca and Gilmour (2000, 2001). 
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Appendix A. The difference between !30,GLS and (30,oLs 
when the block sizes are heterogeneous. 

Assume that the block sizes are heterogeneous and equal to k;. The generalized 
least squares estimator (6) becomes 

[f3A 

] [11 A-II l' A-IX] -1 [11 A -Iy] O,GLS n n n n 
a = X/A-II X/A-IX X/A-Iy · 
fJGLS n 

We have from Harville's (1997) Theorem 18.2.8 that 

Ail = Ikixki - ~k IkiI~. 
1 + i'fJ • 

Hence 

;=1 

;=1 

=d, 

8 
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and by using Theorem 8.5.11 of Harville (1997) the generalized least squares estim­
ator becomes 

[
/JO'GLS] _ [d I~A -IX] -1 [I~A -ly] 
(3GLS - X'A-lIn X'A-lX X'A-ly' 

= [d-l+d-lI~A-IXQI -d-II~A-IXQ2] [I~A-Iy] 
-QI Q2 X'A-Iy , 

_ [d-lI~A -Iy + d-II~A -lX(QII~A -ly _ Q2X'A -Iy )] 
- -QII~A-Iy+Q2X'A-ly , 

where 

and 

Qz = {X'A-lX _X'A-lInd-II~A-lX}-l. 

As a result, 

?i. d-II' A-I d-lI' A-IX/3' 
!-,O,GLS = n Y - n GLS' 

Since 
b 

I , A-I '"'" I' A-I 
n y = ~ ki i Yi, 

i=l 

i=I 

where Yi is that part of y corresponding to the ith block, and 
b 

I' A-IX = '"'" I' A:-lX· n ~ ki Z z, 
i=l 

i=I 
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this estimator becomes 

b 

~O,GLS = d-I(L c,;l~iYi) - n-ll~X;3GLs· (17) 
i=1 

The OLS estimator for the intercept can be obtained by substituting A = Inxn 
in (16) and is equal to 

f3A -II' -11' Xf3A O,OLS = n nY - n n OLS· (18) 

Using the fact that ;30LS = ;3GLS' it can easily be derived from (17) and (18) that 
~O,GLS and ~O,OLS are equivalent when the block sizes are equal. 

Appendix B. The independence of iJO,GLS - i30,OLS from 
X and {3. 

Substituting (1) in (12) and (13) and subtracting both equations, we obtain 

b b 
A A ~ 1~ 

f30,GLS - /30,OLS = (L." kiCit L." cil~i(f301ki + Xif3 + /ilki + e:i) 
;=1 ;=1 

- n-l1~(f301n + Xf3 + Z, + e:), 
b b 

= (L kiCi)-1 :2)kic;f3o + cil~iXif3 + kici/i + cil~iei) 
;=1 ;=1 

- n-1(nf30 + l~Xf3 + l~Z, + 1~e:), 
b b 

= (L kicit1 L(cil~iXi!3 + kici/i + cil~ie:;) 
i=l i=l 

- n-1(1~Xf3 + l~Z, + l~e:), 
b b 

= (LkiCitl L(kiCin-1l~Xf3 + kici/i + cil~ie:i) 
i=l i=l 

- n-1(1~Xf3 + l~Z, + l~e), 
b b 

= (L kicit1 2::(kiCi/i + cil~ie:i) - n-1(1~Z, + 1~e:), 
;=1 i=1 

From this result, it is clear that the difference between ~O,GLS and ~O,OLS only depends 
on the random block effects 8i and the random errors Ci, but not on the design matrix 
X and the parameters /30 and f3. 
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Appendix C. The variances of {3GLS and (30LS. 
The variance-covariance matrix of the GLS estimator for T is given by 

var(TGLs) = a-;(W'A -IWt1, 

b 

= a-2(~W'A:-IW)-1 
e L..t 'I. 'I. t , 

i=1 

b 

= a-;(W'W - L -1 'l}k. (W:lki)(l~iWi))-I, 
i=1 + ,'I} 

b 

= a-2(W'W _ ~ _'I} _(kiW'l )(ki1, W.))-l 
e ~ 1 + k . ., n n n n , , 

i=1 ,., 

b k2 

= a-;(W'W - L 2( i\ )(W'ln)(l~Wi))-I, 
. n 1 + i'l} ,=1 

= a-;(W'W - cl(W'ln)(l~ W)t1, 

= a-;((W'wt1 + CIC21(W'wtl(W;ln)(1~ W)(W'wt1), 
= a-;((W'wt1 + CIC21UIU~), 

where u~ is the p-dimensional unit vector [ 1 , 0, ... , 0], 

and 

b k2 
~ i'l} 

Cl = {;;t n2 (1 + ki'l}) , 

C2 = 1 - Cl(1~ W i)(W'Wt1(W'ln), 

= 1 - clu~(W'ln)' 
= 1 - Cln. 

The variance-covariance matrix of the OLS estimator for T is given by 

var(TOLS) = a-;(W'Wt1W'AW(W'Wt\ 
= a-;(W'W)-1 + a-~(W'WtlW'ZZ'W(W'Wtl, 

b 

= a-;(W'wt1 + a-~(W'wtl(L(W:lkJ(l~iWi))(W'Wtl, 
i=1 
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It is clear from these expressions that var(roLS ) and var(rGLS) only differ in one 
element, namely the variance of the intercept estimator in the upper left hand corner. 
When the block sizes are all equal to k, both var(rOLS) and var(rGLS) reduceto 

2 

2(W'W)-1 + CT'Y , 
CTe b U1U1 ' 

Appendix D. Proof that var CBO,GLS) < var(,Bo,OLS). 

The variance associated with the generalized least squares estimator is smaller than 
that associated with the ordinary least squares estimator if (15) is positive. Since 
(J"; 2: 0, TJ 2: 0, and 

b k2 
1-~ iTJ >0 fi' n(1 + kiTJ) - , 

the difference (15) is positive if 

b k? b k2 b k2 
(~ ~ )(1 - '" ,TJ ) - " ' > 0 '8 n2 '8 n(1 + kiTJ) '8 n2(1 + kiTJ) - . 

Substituting k;/n by Ti and nTJ by A, we find that 

b b 2 b 2 
" 2 ,,1" ,,1" (L..- Ti )(1 - A L..- -' -) - L..- -'-
. . 1 + AT; . 1 + ATi .=1 .=1 ,=1 

b b 2 b 

= 2:1';- L ~(I+A2:Tn, 
i=1 i=1 1 + AT, i=1 

b 2( \) b 2 b 
~ Ti 1 + ATi " Ti ( \" 2) = L..- - L..- --- 1 + A L..- Ti , 
. 1 + ATi . 1 + ATi . • =1 ,=1 ,=1 

b 3 b b 2 

= A(2: 1 :\1" -(2:1'7) 2: 1 :\1')-
i=l t i=l i=l z 
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Using the fact that L~=l ri = 1, and omitting the denominators from this expression, 
we obtain 

1';(1'1(1 - rd - r~ - ... - r~)(l + ).1'2)'" (1 + ).rb) 

+ ... + r~h(l - rb) - ri - ... - rL1)(1 + ).1'2)'" (1 + ).rb) 

= 1';(1'1(1'2 + ... + rb) - r~ - ... - r~)(l + ).1'2) ... (1 + ).rb) 

+ ... + r~(rb(r1 + ... + rb-d - 1'; - ... - rL1)(1 + ).1'2)'" (1 + ).rb), 

= (1'1 - 1'2)21'11'2(1 + ).1'3) ... (1 + ).rb) 

+ ... + (rb-1 - rb)2rb_1rb(1 + ).rd· .. (1 + ).rb-2), 
b b b 

= L L (ri - rj)2rirj(II (1 + ).rd), 
,=1 j=i+1 1=1 

I#-i,j 

which is clearly positive, so that we can conclude that (15) is positive. This expres­
sion becomes 0 if the block sizes are homogeneous because all ri are then equal. 
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