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ABSTRACT

An indirect estimator of the stochastic volatility (SV) model with AR(1) log-
volatility is proposed. The estimator is derived as an application of the method
of indirect inference (Gouriéroux, Monfort and Renault (1993)), using an auxi-
liary SV model that mimics the SV model of interest (which has latent volatility)
but is constructed so as to make volatility observable. The resulting estimator
works by fitting an AR(1) to the log-squared observations and then applying a
simple transformation to the parameter estimates. A closed-form expression
for the asymptotic covariance matrix of the estimator is also derived. The esti-
mator is applied to the Brussels All Shares Price Index from January 1, 1980, to
January 16, 2003.
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The phenomenon of volatility clustering is one of the most strik-

ing features of financial markets. While short-term returns on

financial investment are typically uncorrelated over time and are

found to be unpredictable, i.e. have a constant conditional mean

given the past observations, there is overwhelming empirical evi-

dence that the return variances are positively autocorrelated and

predictable, i.e. the returns have a conditional variance that de-

pends on past observations. Given the fundamental role that

return variances and covariances play in portfolio management

and asset pricing, it is important to understand their dynamic

behaviour. At present, two classes of models have the inherent

property of producing time-varying volatility, along with other

phenomena often found in financial time series. The most pop-

ular of these is the class of (G)ARCH (Engle (1982); Bollerslev

(1986)) and E-GARCH models (Nelson (1991)), which have the

attractive feature of being easy to estimate. In these models, the

return variance is driven by past shocks (essentially, the residu-

als) in the mean equation. By contrast, in SV models, which were

introduced by Clark (1973) and extended by Tauchen and Pitts

(1983), the return variance is modeled as a separate stochastic

process, thus making the return variance a dynamic latent vari-

able. As a result, SV models are much harder to estimate and

have been used much less in applications. Following an impor-

tant paper by Hull and White (1987), in which SV models appear

as discrete time approximations to the continuous time volatility

di usions used in option pricing theory, there has been a renewed

interest in SV models.

Considerable e ort has been devoted to developing feasible

techniques for estimating SV models. Taylor (1986) and Melino

and Turnbull (1990) proposed GMM estimation based on the

moments and autocovariances of the absolute returns. Jacquier,

Polson and Rossi (1994), Andersen and Sørensen (1996, 1997)

and Andersen, Chung and Sørensen (1999) used Monte Carlo

methods to study the properties of these estimators. Other avail-

able estimation techniques for SV models include quasi-maximum

likelihood (Nelson (1988); Harvey, Ruiz and Shephard (1994);
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Ruiz (1994)), simulated maximum likelihood (Danielsson and

Richard (1993); Danielsson (1994)), simulation-based GMM (Duf-

fie and Singleton (1993)), indirect inference (Gouriéroux, Monfort

and Renault (1993); Monfardini (1998)), Markov chain Monte

Carlo methods (Jacquier, Polson and Rossi (1994); Kim, Shep-

hard and Chib (1998); Chib, Nardari and Shephard (2002)), ef-

ficient method of moments (Gallant, Hsieh and Tauchen (1997);

Andersen, Chung and Sørensen (1999)), ML Monte Carlo (Sand-

mann and Koopman (1998)) and (approximate) maximum likeli-

hood (Fridman and Harris (1998)). With the exception of GMM

and quasi-maximum likelihood, all of the existing methods re-

quire extensive numerical simulation and/or integration. Fur-

thermore, obtaining accurate standard errors is far from simple,

even with GMM (where the usual standard errors are found to

be imprecise) or quasi-maximum likelihood (which involves the

Kalman filter as an intermediary step in constructing the quasi-

likelihood).

In this paper, a very simple estimator of the basic SV model

is presented. In contrast with all existing estimators, closed-

form expressions for the estimator and its asymptotic variance

are obtained. The estimator is obtained by applying the method

of indirect inference (Gouriéroux, Monfort and Renault (1993))

to an auxiliary SV model in which volatility is no longer latent,

and then inverting the parameter estimates of the auxiliary model

back to the parameters of the original SV model. The particular

choice of auxiliary model allows all steps required in the indirect

inference procedure to be carried out analytically.

The basic SV model is presented in Section II, along with

its main characteristics. Section III briefly outlines the indirect

inference approach and then applies it to the model at hand. In

Section IV, the estimation method is illustrated with an applica-

tion to the Brussels All Shares Price Index. Section V concludes.

The more technical derivations are given in the Appendix.
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In the basic SV model, the time series 1 is generated by

=
2

= 1 (1)

+1 = + ( ) +

p
2(1 2) (2)

1 (
2
) (3)

where and are standard normal variates, assumed to be mu-

tually independent, independent of 1 and independent across

time, where 1 is a latent (i.e. unobserved) time series,

and where and
2
are parameters.

1
In financial applica-

tions, is typically the return in period on a financial invest-

ment. The essential characteristic of the model is that the vari-

ance (i.e. the volatility) of is governed by a separate stochastic

process, which is given by (2)—(3). To see this more clearly, ob-

serve that the independence of and 1 2 implies the

independence of and . Therefore, the conditional mean and

variance of , given , are

[ | ] =
2
[ ] = 0 (4)

and

Var [ | ] =

£
2|

¤
=

£
2
¤
= (5)

for all . Note also that | (0 ). Thus, the conditional

mean of is identically zero, and log (Var [ | ]) = , i.e.

is the log-volatility of . The so-called mean equation (1) sets

equal to a standard normal variate times the standard de-

viation
2
. Equation (2) specifies the log-volatility to be an

AR(1) with autoregressive parameter , unconditional mean

and unconditional variance
2
. Equation (3) starts the autore-

gression of by a draw from its stationary distribution. It is

assumed that | | 1, thus ensuring that (hence also ) is

1
It is more common to parameterise the model in terms of , = (1 )

and =

p
2(1 2). I prefer the parameterisation in terms of , and

2

for algebraic reasons and because of a parameter invariance result presented

below.
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stationary. The unconditional mean and variance of are
2

[ ] = 0

and

Var [ ] =

h i
=

+
1

2

2

The latter equation follows from the well known property that

(
2
) implies

£ ¤
=

£ ¤
=

+
1

2

2 2

for any .

This property of the lognormal distribution will be used through-

out the paper. The random variables and are sometimes

called mean shocks and volatility shocks, respectively. The pres-

ence of a separate stochastic component governing volatility

(whence the name SV) constitutes the major di erence of SV

models relative to GARCH models. The latter class of models

replace (2) by a specification in which +1 depends on (and,

possibly, on lags of and ) rather than on . On the other

hand, GARCH and SV models do share a number of important

properties that are often found in financial time series data. First,

there is no serial correlation in , since

Cov [ ] = [ ] =

h
( + ) 2

i
[ ] [ ] = 0

for any positive integer . Secondly, there is serial correlation in
2
. To see this, note that Cov( ) =

2
, yielding +

(2 2
2
(1 + )). So,

Cov

£
2 2

¤
=

£
2 2

¤ £
2
¤ £

2
¤

=

h
+

i £
2
¤ £

2
¤

2 +
2

=
2 +

2
(1+ ) 2 +

2

For positive , Cov
£
2 2

¤
0 for any . Positive serial cor-

relation in
2
, coupled with the absence of serial correlation in

, is called volatility clustering, a phenomenon often observed

2
A constant can be added to the right hand side of (1) if [ ] = 0 is

judged to be unrealistic. Equivalently, the time series can first be de-

meaned.
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in financial time series, where large returns of either sign tend to

cluster together, as do small returns of either sign. Thirdly,

£
4
¤

(Var [ ])
2
=

£
2
¤ £

4
¤

2 + 2
=

2 +2
2

· 3
2 + 2

= 3
2

3

which shows that has excess kurtosis.

From the point of view of inference, the fundamental problem

with the SV model is the latent character of , which makes it

di cult to compute the values of the likelihood function and

hence to estimate the parameters by maximum likelihood (ML).

To see this, write the joint density of 1 and 1 as

( 1 1 ) = ( 1 ) ( 1 | 1 )

= ( 1)

ÃY
=2

( | 1)

!ÃY
=1

( | )

!

Now,

( 1) =

¡
2

2
¢ 1 2 ( 1 )

2
(2

2
)

( | 1) =

£
2

2
(1

2
)

¤ 1 2 [ ( 1 )]
2
[2

2
(1

2
)]

( | ) =

³
2

´
1 2

2
(2 )

So,

( 1 1 )

= (2 ) (1
2
)
( 1) 2

1

2

P
=1

× ( 1 )
2
(2

2
)
P

=2
[ ( 1 )]

2
[2

2
(1

2
)]

×
P

=1

2
(2 )

The likelihood function is the joint density of the observables

1 as a function of the parameters, i.e.

(
2| 1 )

= ( 1 )

=

Z Z
( 1 1 ) 1
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Thus, the likelihood function involves a -dimensional integral.

This integral is not known to be expressible in terms of known

mathematical functions. At present, numerical evaluation of the

exact likelihood function in not feasible, because with the present

speed of computers numerical integration is only possible over

low-dimensional spaces, whereas in applications is often large.

In the next section, evaluation of the exact likelihood is avoided

by recurrence to an auxiliary model which is easy to estimate, and

whose parameter estimates can be transformed to yield estimates

of , and
2
.

When the parameter vector of a parametric model is di cult

to estimate by ML, indirect inference (Gouriéroux, Monfort and

Renault (1993)) may be a feasible alternative to ML. The method

involves the following steps:

• Estimate the parameter of an auxiliary model . Let

ˆ be the estimate.

• Calculate the probability limit of ˆ under , as a function

of . This gives plim ˆ = = ( ). For identification, it

is assumed that = 0 ( ) has full column rank.

• For a given non-stochastic positive definite weighting ma-
trix , solve

min

³
( ) ˆ

´
0

³
( ) ˆ

´

The solution, ,̂ is the indirect estimator of .

• Calculate the asymptotic covariance matrix ˆ as

= (
0

)
1 0

(
0

)
1

(6)

where is the asymptotic covariance matrix of ˆ .
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Remarks:

• The function (·), sometimes called the pseudo-true value
function or binding function, links the parameter to .

It is assumed that (·) exists, i.e. that it has a well-defined
probability limit for all . For identification, (·) must be
injective, so it is required that dim( ) dim( ).

• The optimal weighting matrix, which gives the smallest ,

is =
1
, in which case = (

0 1
)
1
.

• When dim( ) = dim( ), ˆ does not depend on and

is equal to
1
(ˆ ), the inverse of the pseudo-true value

function at ˆ . In this case, =
1

(
1
)
0
.

• The weighting matrix and the pseudo-true value func-

tion (·) may be replaced by consistent estimates without
a ecting the asymptotic properties of .̂

Indirect inference will now be applied to estimate the parame-

ter vector = (
2
)
0
of model , wich is defined by (1)—(3).

As auxiliary model , consider the SV model

=
2

(7)

+1 = + ( ) +

p
2(1 2) (8)

1 (
2
) (9)

where and are mutually independent, independent of 1 and

independent across time, is standard normal, is a symmet-

ric Bernoulli variate with Pr[ = 1] = Pr[ = 1] = 1 2, and

= (
2
)
0
is the parameter vector. The only di erence

between this and the original SV model is that the normal vari-

ate in (1) is replaced with a Bernoulli variate . The key

feature of the auxiliary model is that volatility now is observ-

able, since (7) implies that = log
2
. Thus, ML estimation of

is straightforward. As an alternative to ML estimation, the

autoregression

log
2
= + (log

2

1
)+

p
2(1 2) 1 = 2

(10)
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can be fitted by (non-linear) least squares. Let ˆ = (ˆ ˆ ˆ
2
)
0

be the resulting estimator.
3
The ML and the non-linear least

squares estimators are asymptotically equivalent in this case.
4
As

grows large, ˆ , ˆ and ˆ
2
converge to their population coun-

terparts (or probability limits). For an autoregression like (10),

the population counterparts are straightforward. The estimator

ˆ is the sample first-order autocorrelation of log
2
and hence

converges to the population first-order autocorrelation. That is,

plim ˆ = =
1

0

(11)

where = Cov(log
2
log

2
). It is important to note that, in

deriving (11), it was not assumed that (10) is correctly specified.

Indeed, from the viewpoint of , (10) is misspecified, but still

we know that ˆ , being a function of sample moments, converges

to the same function of the corresponding population moments.

Furthermore, note that the same notation, i.e. , has been used

for a parameter in a misspecified model and for the probability

limit of its estimator. The latter is called the pseudo-true value,

to emphasise the fact that the model is - or may be - misspeci-

fied. By similar reasoning, ˆ is asymptotically equivalent to the

sample mean of log
2
and hence converges to

plim ˆ = = (12)

where = (log
2
), the unconditional population mean of

log
2
. To find the probability limit of ˆ

2
in terms of population

moments, note that the residual variance of (10) is ˆ
2
(1 ˆ2),

since 1 has unit variance by assumption. This residual vari-

ance is the sample variance of log
2
ˆ ˆ (log

2

1
ˆ ) and so

3
Note that the non-linear least squares estimates ˆ , ˆ and ˆ

2
can also

be obtained as ˆ , ˆ (1 ˆ )
1
and ˆ

2
(1 ˆ2)

1
, where ˆ and ˆ are the

(linear) least squares estimates in log
2
= ˆ + ˆ log

2

1 + residual, and

ˆ
2
is the average of the squared residuals.
4
The only di erence between the two methods is the treatment of the first

observation ( = 1). The non-linear least-squares estimator “looses” the first

observation (although this can be avoided), while ML exploits the fact that

1 (
2
). This di erence is negligible as becomes large.
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converges to Var(log
2

(log
2

1
)) = Var(log

2
)(1

2
) = 0(1

2
). Therefore,

plim ˆ
2
=

2
= 0 (13)

The parameters , and
2
are now to be expressed in terms

of , and
2
, the parameters of . In view of (1), implies

that log
2
= + log

2
and hence

= + 1 0 =
2
+ 2 1 =

2
(14)

where, as shown in the Appendix,

1 = (log
2
) = 1 270

and

2 = Var(log
2
) = 4 935

Hence, the components of the pseudo-true value function ( )

are

=

2

2 + 2

= + 1
2
=

2
+ 2 (15)

Solving for , and
2
(i.e. inverting (·)) gives

=

2

2
2

= 1
2
=

2
2 (16)

Substituting ˆ , ˆ and ˆ
2
for , and

2
on the right-hand

sides of (16) yields ˆ =
1
(ˆ ). This gives the indirect estima-

tors ˆ, ˆ and ˆ
2
, which consistently estimate , and

2
. No

weighting matrix is needed here, because dim( ) = 3 = dim( ).

It is worth noting that, while evaluation of the likelihood func-

tion of at di erent values of is not feasible, the pseudo-true

value function, which links to , can be calculated analytically

and is remarkably simple. Furthermore, the estimator ,̂ which

is derived here as an indirect estimator, can also be viewed as an

application of Gallant and Tauchen’s (1996) method for gener-

ating moment conditions from the score function of an auxiliary

model . These moment conditions turn out to be simple to
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handle analytically under the structural model , while the like-

lihood function of is not tractable. To see this, consider the

contribution of observation 2 to the score function of :

(1
2
)
1 2

(1
2
)
2
( 1)( 1)

2
(1 + )

1
( 1)

1

2

2
+

1

2

4
(1

2
)
1
( 1)

2

where = log
2

. Taking expectations under , equating

to zero and solving for , and
2
gives (16). A third, and

obvious, interpretation of ˆ is as a method of moments estimator.

Considering that (14) establishes a direct link between and the

population moments = ( 0 1)
0
, one can directly solve (14)

to yield

=
1

0 2

= 1
2
= 0 2 (17)

These expressions are equivalent to (16). Substituting sample

moments ˆ = ( ˆ ˆ0 ˆ1)
0
for population moments on the right-

hand sides of (17) yields a method of moments estimator of

that is asymptotically equivalent to .̂

The asymptotic covariance matrix of ˆ is obtained by ap-

plying (18) after calculating the asymptotic covariance matrix

of ˆ . The latter matrix is found by calculating the asymp-

totic covariance matrix of ˆ and applying the delta method

to the transformation .
5 6

Let ( ) be the ( )-th

5
An asymptotic covariance matrix, say , is defined as

lim Var[ (ˆ )].
6
The intermediary step of deriving is not needed in this particular

case, since one can apply the delta method directly to the transformation

, which is given by (17). For the sake of illustrating the logic of

indirect inference, however, will be derived.
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element of . It is shown in the Appendix that

(1 1) =
1 +

1

2
+ 2

(2 2) = 2
1 +

2

1 2

4
+ 4 2

2
+ 4

2

2

(3 3) =

µ
1 +

2
+ 4

2

1 2

¶
4
+ 2 2(1 +

2
)
2
+

2

2

(2 1) = 3

(3 1) = 0

(3 2) = 2

µ
1 +

1 +
2

1 2

¶
4
+ 4 2

2

where

3 = (log
2

1)
3
= 16 83

and

4 = (log
2

1)
4
= 170 5

In view of (11)—(14), the transformation has the Jacobian

matrix

=
0
=

0 1
2

0

1

0

1 0 0

0 1 0

=

0
2
(
2
+ 2)

2
(
2
+ 2)

1

1 0 0

0 1 0

and so is obtained as
0
. Finally, from (15),

=
0
( ) =

2

2+ 2

0 2(
2
+ 2)

2

0 1 0

0 0 1
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and the lower triangular elements of =
1 0

(
1
)
0
are

(1
2
)(

2
+ 2)

2
+

2
4

4 · ·

2 3
1+

1

2
+ 2 ·

2
2

2

¡
4

2

2

¢
3 2

1+
2

1 2

4
+4

2
2+ 4

2

2

(18)

It is of interest to note that does not depend on , and that the

asymptotic variances of ˆ and ˆ
2
are unbounded as 1. The

asymptotic variance of ˆ, however, remains bounded as 1.

IV. APPLICATION TO THE BRUSSELS ALL SHARES 
PRICE INDEX

Let be the return on the Belgian All Shares Price Index be-

tween successive trading days 1 and , with 1 ranging

from December 31, 1979, to January 15, 2003. The data were

taken from Datastream with zero returns removed, as these cor-

respond to non-trading weekdays or, almost certainly, to errors.

This yielded a total of = 5627 non-zero returns, and an av-

erage yearly (ex-dividend) return equal to
1

23 04

P
= 0 0737.

Let ¯ =
1
P

=1
. Descriptive statistics on the daily returns

, the squared de-meaned returns ( )̄
2
and the log-squared

de-meaned returns log( )̄
2
are given in Table 1.

Table 1: Descriptive statistics

( )̄
2

log( )̄
2

mean 3 02× 10 4
7 66× 10 6

11 45

std. deviation 8 75× 10 3
2 89× 10 4

2 498

skewness 0 342 19 80 1 109

kurtosis 12 20 667 2 2 522
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Fitting (10) with =
1
P

=1
gives

log
2
= 11 45 + 0 1959(log

2

1
+ 11 45)

+

p
6 239(1 (0 1959)2)ˆ 1

for = 2 , where, by construction,
1

1

P
=2
ˆ
2

1
= 1. The

indirect estimates of , and
2
and their standard errors now

follow from (16) and (18)
7
:

ˆ = 0 1959
6 239

6 239 4 935
= 0 937 st err (ˆ) = 0 127

ˆ = 11 45 + 1 270 = 10 18 st err (ˆ) = 0 090

ˆ
2
= 6 239 4 935 = 1 304 st err (ˆ

2
) = 0 194

The estimate of , which is close to but smaller than 1, is in line

with estimates that have been reported in the literature. The

relatively large standard errors of the estimates result from the

fact that appears to be close to 1, and from the fact that the

indirect estimator exploits only the information contained in the

mean, variance and first-order autocorrelation of log
2
.

Although SV models are notoriously di cult to estimate, the use

of a judiciously chosen auxiliary model and the application of the

method of indirect inference yields an estimator and an associ-

ated asymptotic covariance matrix that have simple closed-form

expressions. Unfortunately, this comes at a price: the result-

ing estimator is very ine cient. A preliminary comparison with

Monte Carlo results by Jacquier, Polson and Rossi (1994) shows

that the standard errors of the estimators presented here may be

up to 100 times as large as those of the Markov Chain Monte

7
Standard errors are computed as the square-root of 1 times the

appropriate element of , with estimates replacing parameters.
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Carlo estimator (though under unfavourable conditions). There-

fore, the exploitation of the additional information contained in

higher-order autocorrelations of log
2
, or in moments and auto-

correlations of | |, will reduce the variance of the estimator con-
siderably. It is possible to obtain closed-form expressions both for

the optimal weighting matrix of the GMM estimator in this con-

text and for its asymptotic covariance matrix. I hope to report

on this in the near future.

It would be natural to test, for example, whether the AR(1)

specification for the log-volatility is not too restrictive, or whether

the normality assumption of in equation (1) is realistic. While

likelihood-based testing methods are presently not feasible, GMM-

based methods are relatively straightforward. It is not di cult

to derive moment conditions for an AR(2) specification for log-

volatility, hence the standard GMM estimates and standard er-

rors yield a test of the AR(1) specification. Furthermore, as-

suming that the log-volatility is correctly specified, that and

are independent processes and that is i.i.d., the moment

conditions derived from the expectation and autocorrelations of
2
are solely based on the second moment of (which equals

one, without loss of generality). Adding moments conditions de-

rived from the expectation and autocorrelations of other powers

of | |, the GMM test for overidentifying restrictions is a test of

the normality of .

APPENDIX

Calculation of c1, …, c4

For any positive integer , upon substituting =
2
2,

Z ³
log

2

2

´
1

2

2
2

= 2

Z

0

³
log

2

2

´
1

2

2
2

=
1

Z

0

(log )
1 2

=

( )
¡
1

2

¢
¡
1

2

¢
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where
( )
( ) is the -th derivative of ( ) =

R
0

1
, the

gamma function, and
¡
1

2

¢
= . See Abramowitz and Ste-

gun (1970) for properties and values of the gamma and related

functions. Now,

1 =

Z
(log

2
)

³
1

2

´
2
2

=

Z ³
log

2

2

´³
1

2

´
2
2

+ log 2

=

¡
1

2

¢
+ log 2

where ( ) = log ( ), the digamma function. For = 2 3 4,

=

Z
(log

2
1)

³
1

2

´
2
2

=

Z ³
log

2

2

¡
1

2

¢´ ³
1

2

´
2
2

=

¡
1

2

¢

where

( ) =

X
=0

µ ¶
( )
( )

( )
( ( ))

Some tedious but straightforward algebra shows that

2 ( ) =
0
( )

3 ( ) =
00
( )

3 ( ) =
000
( ) + 3

¡
0
( )

¢
2

with primes denoting derivatives. Now,
¡
1

2

¢
= 2 log 2

where = 0 5772 is Euler’s constant,
0
¡
1

2

¢
=

2

2
,

00
¡
1

2

¢
=

14 (3), where (3) = 1 202 is the value of the Riemann zeta

function at 3, and
000
¡
1

2

¢
=

4
. It follows that

1 = log 2 = 1 270

2 =
1

2

2
= 4 935

3 = 14 (3) = 16 83
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and

4 =
7

4

4
= 170 5

Calculation of Vj

The elements of ˆ are the sample mean, variance and first-order

autocovariance of log
2
. Thus, the asymptotic covariance matrix

is

= lim Var[ (ˆ )] =

X
=

Cov( )

where

=
2

1

and

= log
2

1

Write as + , where = and = log
2

1. Now, and have zero mean and are independent, and

we have that Cov( ) =
| | 2

, Cov( ) = 0, and

Cov( ) = (
| |+| |

+
| |+| |

)
4
for any integers

, and . Using these properties, the elements of are found

as
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