
A note on a motion control problem for a placement machine
b

Sofie Coenen, Nguyen van Hop, Joris van de Klundert and Frits Spieksma

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0623

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A note on a motion control problem for a placement machine

Sofie Coene∗, Nguyen van Hop†, Joris van de Klundert,‡ and Frits C.R. Spieksma∗

December 4, 2006

Abstract

Assembling printed circuit boards efficiently using automated placement machines is a challenging
task. Here, we focus on a motion control problem for a specific type of placement machines. More
specifically, the problem is to establish movement patterns for the robot arm, the feeder rack, and
- when appropriate - the worktable, of a sequential, pick-and-place machine. In this note we show
that a (popular) greedy strategy may not always yield an optimum solution. However, under the
Tchebychev metric, as well as under the Manhattan metric, we can model the problem as a linear
program, thereby establishing the existence of a polynomial time algorithm for this motion control
problem. Finally, we give experimental evidence that computing optimal solutions to this motion
control problem can yield significantly better solutions than those found by a greedy method.

1 Introduction

Assembling printed circuit boards efficiently using automated placement machines is a challenging task.
The ever increasing need for competitiveness means that improving the throughput of production lines
is an important topic in this industry. It follows that investigating optimization problems for whole
production lines as well as for individual machines remains a relevant task.

There are many types of different placement machines; for a more extensive discussion of different types
of machines we refer to Grunow et al. [8], and Egbelu et al. [7], where a classification is proposed depending
upon which parts of the machine can move. One possible categorization is to divide placement machines
into two categories: sequential machines (machines in which each component is handled sequentially)
and concurrent machines (machines in which components can be handled concurrently). For instance,
machines featuring a rotating turret or carousel fall under the latter type. We restrict our attention
here to sequential placement machines. This type of placement machines can be described as follows. It
consists of 3 basic parts:

• a worktable. The worktable carries the printed circuit board and is able, in its most general form,
to move in the x-direction and in the y-direction.

• a feeder rack. The feeder rack is a bar that contains feeders in which the components are stored.
Notice that a feeder stores components of a single type. The feeder rack can move in the x-direction
only.

• a robot arm. This is a device that transports the components from the feeder rack to the appropriate
location above the board; it is able to move in the x-direction and in the y-direction.

∗Katholieke Universiteit Leuven, Department of Operations Research, Naamsestraat 69, B-3000 Leuven, Belgium.
†Asian Institute of Technology, School of Advanced Technologies, Industrial Systems Engineering Program, P.O. Box 4,

Klong Kluang, Pathumthani 12120, Thailand.
‡Maastricht University, Department of Mathematics, P.O. Box 616, NL-6200 MD Maastricht, The Netherlands.

1

Such a placement machine is described in, for instance, Ayob and Kendall [3] (where the worktable can
only move in the x-direction) and in Altinkemer et al. [1] (where the worktable is stationary).

Now, in order to operate any placement machine, several decisions must be made. There are various
hierarchies of decision making, see Crama et al. [6] for a discussion of this subject. However, given a
single machine and a single board, three basic problems need at least be addressed:

• the component sequencing problem: determine a sequence of the given locations on the board where
the components will be placed,

• the feeder assignment problem: determine where the feeders are located in the feeder rack, and

• the component retrieval problem: determine for each component to be placed, from which feeder it
will be retrieved.

Each of these problems has been studied extensively in the literature: early references to each of these
three problems include Ball and Magazine [4], Leipälä and Nevalainen [11], Crama et al. [5]; we refer to
Crama et al. [6] and the references contained therein for more information concerning these problems.

In this note we focus on a motion control problem for a sequential placement machine as described
earlier. Thus, we will assume that each of the problems mentioned above has been solved. In addition,
we assume (unless explicitly stated otherwise) that the robot arm can carry at most one component at
any given moment in time. At first sight one may then wonder what is left to decide. However, before
the machine starts actually inserting components, we need to establish the movement patterns of the 3
parts that are capable of moving: the robot arm, the feeder rack, and the worktable of the machine. This
should be done in such a way that the machine finishes its last operation as soon as possible. We call
this problem the motion control problem.

Of course, for some sequential machines this problem is nonexistent. Indeed, if both the feeder rack
and the worktable cannot move, movement of the robot arm is completely dictated by the solution to
the three problems described above. Also, if the machine’s technology is such that it features a fixed
pick position and a fixed place position (i.e., each component is picked (placed) at the same prescribed
position) the movement of the robot arm easily follows, as well as the movement of the worktable and
the feeder rack. However, the motion control problem becomes interesting when there are no fixed pick
and place positions, and at least two of the three parts are capable of moving. Indeed, in Su et al. [14], a
so-called dynamic pick and place model is introduced in which the possibility of dynamic pick and place
positions is investigated.

Summarizing, the motion control problem for a single sequential pick-and-place machine that we
address in this note can be described as follows. Given the locations on a board and a corresponding
placement sequence, and given the location of each component in the feeder rack, the problem is to
determine pick positions and place positions so that the last placement operation is executed as soon as
possible. Thus, we aim to minimize the total assembly time for a single board.

Related literature
As mentioned, the problem of finding good operational solutions for a single placement machine has
been actively investigated in literature. The motion control problem is first described in Su et al. [14]
who take into account the possibility of not restricting the pick positions and the place positions to
given locations. They propose a greedy strategy to solve the resulting motion control problem and give
computational evidence for the gain of this dynamic pick and place model compared to the setting with
fixed pick and place positions. Further studies, that also involve the computation of a feeder assignment
and a component placement sequence, are presented in Su and Fu [12], Su et al. [13], Wang et al. [18],
and Van Hop and Tabucanon [17]. Van Hop and Tabucanon [16] and Ayob and Kendall [3] each further
develop a method for the motion control problem based on dynamic pick and place positions.

Motion planning has also received significant attention from the field of robotics, see e.g. Latombe [10]
for an overview. Here the emphasis is often on finding a motion plan (or a path) for a robot in some
environment. Also, there is some literature that deals with classical routing problems such as the TSP,

2

where the clients to be visited are known to move, and the salesman needs to take this into account,
see for instance Helvig et al. [9], and the references contained therein. Asahiri et al. [2], inspired by an
application in robot navigation, deal with a similar problem, a variant of the Vehicle Routing Problem
where moving elements need to be grasped one by one before they move out of the reachable region of
the robot arm. The goal is to pick as many elements as possible. As far as we are aware however, the
complexity of the specific motion control problem discussed here has not been answered before.

Our contribution

(i) We provide an example in which it is beneficial for a (moving) feeder rack to wait, thereby post-
poning the next picking moment. This example shows that GREEDY methods (see Section 2) do
not always yield an optimal solution to the motion control problem (even in the case of a stationary
worktable). The example is valid for each distance metric (dxp +dyp)1/p with p > 0 (where dx (dy)
is the distance traveled in the x (y) direction), more specifically, the example is valid for p = 1 (the
Manhattan norm), for p = 2 (the Euclidean norm), and for p = ∞ (the Tchebychev norm). Notice
that the latter norm is quite common for placement machines.

(ii) We show that the motion control problem is solvable in polynomial time for the Manhattan norm
and for the Tchebychev norm by formulating the problem as a linear program. We also exhibit a
special case of the motion control problem where a GREEDY method delivers an optimal solution.

(iii) We demonstrate that for randomly generated instances there is a significant difference between
optimal solutions and solutions found by GREEDY methods. This difference partly depends on
the ratio of the speed of the robot arm and the feeder rack. For the instances we considered the
quality of a solution found by a GREEDY method may be up to 20% worse than the value of the
optimum.

Remark
In our attempt to model the moving parts of a placement machine, we make assumptions that are not
precisely fulfilled in practice. For instance, we assume a constant speed for each moving part; hence,
we do not account for effects resulting from acceleration, and de-acceleration. For a description of the
technical issues related to operating a placement machine we refer to van Gastel et al. [15].

2 A problem description, a method, and an instance

In this section we further describe the problem, and we sketch a class of solution methods for the motion
control problem that we call GREEDY methods. Recall that we assume that the component sequencing
problem, the feeder assignment problem, and the component retrieval problem have been solved. In other
words, the input to the motion control problem consists of (i) a sequence of n locations on the board,
(ii) the position of the corresponding components in the feeder rack, and (iii) the starting configuration
as well as the speeds of the robot arm, feeder rack, and worktable.

To facilitate the problem description we assume in this section that times needed for picking a com-
ponent and times needed for placing a component can be ignored (notice that it is not difficult to include
nonnegative picking and placing times in our methods and models, see sections 3 and 4). We assume
that all movements occur in two-dimensional space, and hence, a position is completely specified by its
x-coordinate and its y-coordinate. Also, we assume that the feeder rack coincides with the x-axis, i.e., all
y-coordinates of picking positions equal zero. Finally, in order to facilitate the description of a GREEDY
method, we first assume here that there are no physical obstructions for the movement patterns of robot
arm, feeder rack, and worktable; we will come back to this issue later.

We use following notation:

• (xpi, ypi): i-th placement position, i.e., the position where component i is placed by the robot arm
onto the board, i = 1, ..., n,

3

• (xsi, 0): i-th pick position, i.e., the position where component i is picked by the robot arm from
the feeder rack, i = 1, ..., n, and

• tplace
i (tpick

i): moment in time when component i is placed (picked), i = 1, ..., n.

A feasible solution to the motion control problem amounts to finding values for these variables that
correspond to achievable movement patterns. Further we use the following notation:

• (xbi(t), ybi(t)): the position of the location on the board where component i needs to be placed at
time t,

• (xfi(t), yfi(t)): the position of the location where component i is stored in the feeder rack at time
t, and

• Va (Vf , Vb): speed of the robot arm (feeder rack, board).

We call a method for the motion control problem a GREEDY method when, given the moments in time
when the previous events occurred, the next event occurs as soon as possible. There are 2n + 1 ordered
events in the motion control problem: picking component i, placing component i (i = 1, ..., n), and
returning to the starting position for the robot arm.

To describe a GREEDY method, let us for the moment assume that, for some i, 1 ≤ i < n, we
know the i-th placement position (xpi, ypi), the corresponding time tplace

i , and that we also know the
(i + 1)-st pick position (xsi+1, 0), and its corresponding time tpick

i+1 . Observe that we then also know
(xbi+1(t

place
i), ybi+1(t

place
i)) and (xfi+2(t

pick
i+1), yfi+2(t

pick
i+1)), i.e., the position of the location where the

(i + 1)-st component needs to be placed at time t = tplace
i , and the location in the feeder rack of

component (i + 2) at time t = tpick
i+1 .

Given the i-th placement position, and its corresponding time, and given the (i+1)-th picking position,
and its corresponding time, we now show how a GREEDY method computes the (i + 1)-th placement
position, the (i+2)-nd picking position, as well as their corresponding times. Applying this computation,
starting with a given initial state, for i = 1, 2, . . . , n − 1 iteratively, gives us a solution to the motion
control problem. This is done as follows. At t = tplace

i , we let the worktable move such that the location of
the (i+1)-st placement location travels towards the (i+1)-st picking position. There are two possibilities.
Either the board location arrives at the (i + 1)-st picking position (xsi+1, 0) on or before t = tpick

i+1 , i.e.,
the board location arrives there before the robot arm. In that case, the board stops and waits for the
robot arm to arrive. It follows then that (tplace

i+1 , (xpi+1, ypi+1)) = (tpick
i+1 , (xsi+1, 0)). Or, the board and

its (i + 1)-st placement location is unable to reach the (i + 1)-st picking position before t = tpick
i+1 , and

given the pick occurring at t = tpick
i+1 , a placement position and time are computed by having the robot

arm and board travel directly towards each other. This determines (tplace
i+1 , (xpi+1, ypi+1)). To express

this in mathematical terms, let f be a function which takes as input two states, each state corresponding
to an object, where a state is specified by (time, location, speed). The function f then outputs the time
and the location where the two objects meet, provided they travel directly towards each other. Thus:

(tplace
i+1 , (xpi+1, ypi+1)) = f((tpick

i+1 , (xsi+1, 0), Va), ((tplace
i , (xbi+1(t

place
i), ybi+1(t

place
i)), Vb)). (1)

Next, given (tplace
i+1 , (xpi+1, ypi+1)), we compute a minimal tpick

i+2 as follows. At t = tpick
i+1 , the feeder

rack location of component (i + 2) starts to move towards the position on the x-axis where the robot
arm can reach component (i + 2) as quickly as possible after having placed the (i + 1)-st component.
We express this using a function g that takes as input two states, each state corresponding to an object,
where a state is again specified by (time, location, speed). The function g then outputs the minimal time
and the corresponding location where the two objects meet, given that the second object moves only in
the x-direction. Thus:

(tpick
i+2 , (xsi+2, 0)) = g((tplace

i+1 , (xpi+1, ypi+1), Va), ((tpick
i+1 , (xfi+2(t

pick
i+1), yfi+2(t

pick
i+1)), Vf)). (2)

4

Equations (1) and (2) show how the (i+1)-st placement position, and the (i+2)-nd picking position,
as well as their corresponding times can be computed when knowing the i-th placement position, the
(i + 1)-st picking position and the corresponding times. By viewing the starting configuration as the
0-th placement position, and by computing (xs1, 0) and a minimal tpick

1 given the starting configuration,
we have specified a GREEDY method. We refer to the example, and the corresponding Figure for an
illustration of a GREEDY method.

Notice that we have not specified the precise form of the functions f and g; they depend on the
particular distance metric used. We use f to find the meeting place, and meeting time for two objects
that each can move in both the x and y-direction, and we use g when one of the two objects can only
move horizontally. Thus, in case the board is restricted to move only in the x-direction (see Ayob and
Kendall [3]), this is easily accommodated by replacing f by g in (1). Notice further that we assumed
in the description above that there are no physical constraints for any of the moving parts. These con-
straints, however, will be present in practice. Indeed, since the board should not collide with the rack,
the board will not be able to reach a picking location. In the case these physical constraints play a role,
we let a moving part (e.g., the work table) travel to the location that is closest to the location (under the
appropriate norm) that was aimed for in case of the absence of these constraints. Observe also that, in
case of the Tchebychev norm, there may be multiple locations each of which achieves a minimal time. We
come back to this issue in Section 4. Finally, notice that GREEDY has the property that at any moment
in time the robot arm moves (apart from the time spent in picking and placing the components).

Let us now proceed by sketching an example that shows that a GREEDY method may not always
give an optimal solution.

Example
Let us consider the following instance where we first assume a Tchebychev metric. The speed of the
robot arm (denoted by Va) equals 4 (measured in distance-units per time-unit), the speed of the feeder
rack (denoted by Vf) equals 1, and the speed of the board (denoted by Vb) equals 0 (i.e., the board is
stationary in this example). Let us assume that picking times and placing times can be ignored. Suppose
further that at time t = 0 the robot arm is positioned at (0, 0) and that it has to place two identical
components that are stored in the feeder rack, currently positioned at (20, 0). Each of these components
has to be placed at (20, 1). The example instance is depicted in Figure 1. The starting configuration of
the instance is as follows: tplace

0 = tpick
0 = 0, (xs0, ys0) = (xp0, yp0) = (0, 0), Va = 4, Vf = 1 and Vb = 0.

Applying GREEDY to this instance yields the following:

t = 4 : The robot arm meets the first component at (16, 0), and picks it up. Using terminology introduced
above, this is computed as follows:
(tpick

1 , (xs1, 0)) = g[(tplace
0 , (xp0, yp0), Va), (tpick

0 , (xf1(t
pick
0), yf1(t

pick
0)), Vf)]

= g[(0, (0, 0), 4), (0, (20, 0), 1)] = (20/(4 + 1), (((20/(4 + 1))× 4 + 0), 0)) = (4, (16, 0)).

t = 5 : The robot arm reaches the first placing location, and places the first component at (20, 1):
(tplace

1 , (xp1, yp1)) = f [(tpick
1 , (xs1, 0), Va), (tplace

0 , (xb1(t
place
0), yb1(t

place
0)), Vb)]

= f [(4, (16, 0), 4), (0, (20, 1), 0)] = (4 + (20− 16)/4, (20, 1)) = (5, (20, 1)).

t = 5.6 : The robot arm meets the second component at (17.6, 0), and picks it up:
(tpick

2 , (xs2, 0)) = g[(tplace
1 , (xp1, yp1), Va), (tpick

1 , (xf2(t
pick
1), yf2(t

pick
1)), Vf)]

= g[(5, (20, 1), 4), (4, (16, 0), 1)] = (5.6, (17.6, 0)).

t = 6.2 : The robot arm places the second component at (20, 1):
(tplace

2 , (xp2, yp2)) = f [(tpick
2 , (xs2, 0), Va), (tplace

1 , (xb2(t
place
1), yb2(t

place
1)), Vb)]

= f [(5.6, (17.6, 0), 4), (5, (20, 1), 0)] = (5.6 + (20− 17.6)/4, (20, 1)) = (6.2, (20, 1)).

t = 11.2 : The robot arm arrives at (0, 0).

5

Figure 1: Graphical Representation of the Example

Summarizing, robot arm and feeder meet for the first time at t = 4 at position (16, 0) where the
picking of the first component occurs. The robot arm then travels to the first placing position (20, 1) and
places the first component at t = 5. The picking of the second component takes place at time t = 5.6
at position (17.6, 0) and the placing at t = 6.2 at position (20, 1). Finally, the arm needs another 5 time
units to return to (0, 0) such that total assembly is finished at t = 11.2.

Notice what would happen if we, starting with the initial configuration at t = 0, let the feeder rack
move only 1 distance unit and wait with the feeder rack in (19, 0) for the robot arm to arrive: then at
t = 4.75, the robot arm would pick its first component at (19, 0), place this component at time t = 5,
return to (19, 0) to pick the second component and place it at t = 5.5 and finally return to arrive at (0, 0)
at time t = 10.5, which is faster than GREEDY’s solution. Indeed, in this setting it is beneficial to wait
with the feeder rack instead of moving it (one also can exhibit examples in which it is beneficial to wait
with the robot arm instead of the feeder rack). The idea behind this example is that postponing the
picking moment can actually decrease the time from place point to next place point. This can happen
when the robot arm moves faster than the feeder rack. In this case it may be advantageous to travel
with the robot arm only, instead of traveling with the both of them. More generally, when the speeds
of two moving parts differ, GREEDY may not always find an optimal solution. Thus, intuitively, it can
be better to use the ”fast” moving piece and wait with the ”slow” moving piece of equipment instead of
moving them both. Under Manhattan metric this example yields similar results. Using GREEDY, the
robot arm picks at t = 4 the first component at (16, 0), places it at t = 5.25, returns to (18, 0) at t = 6
to pick the second component and place it at t = 6.75 to finally arrive in (0, 0) at t = 12. If we would
allow the feeder rack to wait at (20, 0), the first pick moment would only occur at t = 5 and the first
component would be placed at t = 5.25 but the second component would be picked at t = 5.5, yielding
a total assembly time t = 11. Notice that the example is valid under an Euclidean metric as well, and,
in fact, for any other metric (dxp + dyp)1/p with p > 0.

Obviously, we do not claim that this is a realistic, or a worst-case example; the sole purpose of this
example is to illustrate that GREEDY may not yield an optimum solution.

3 LP formulation

In this section we show that the motion control problem is solvable in polynomial time by formulating
the problem as a linear program under the Tchebychev metric as well as the Manhattan metric. We
assume (without loss of generality) that the rack has y-coordinate 0, and that all other y-coordinates are
nonnegative; we also assume positive speeds for each of the moving elements. Further, we start from a

6

situation (at t = 0) where the robot arm is located at (0, 0), and we impose that the robot arm has to
return to (0, 0) after all components have been placed. We now state all variables and parameters we
need to describe the model. We use the following variables, for i = 1, . . . , n:

• xsi: x-coordinate of the pick position of component i,

• xpi: x-coordinate of the place position of component i,

• ypi: y-coordinate of the place position of component i,

• T 1
i : time between picking component i and placing it,

• T 2
i : time between placing component i and picking component i + 1.

(Notice that we let T 2
n correspond to the time the robot arm needs between placing component n and

returning to (0, 0).) Finally, let

• T0: time needed before picking component 1.

We use the following parameters:

• Va: speed of the robot arm,

• Vb: speed of the worktable,

• Vf : speed of the feeder rack.

Further, for each component i to be placed (i = 1, . . . , n) we have:

• pki: time needed to pick component i,

• pci: time needed to place component i.

Also, for any pair of locations i and i + 1 to be visited consecutively (i = 1, . . . , n− 1), let

• dxi: be the difference in x-coordinate,

• dyi: be the difference in y-coordinate,

• di: be the difference (in x-coordinate) between the feeder from which component i is retrieved and
the feeder from which component i + 1 is retrieved.

Finally, let

• d0: the distance (at t = 0) between (0, 0) and the feeder holding the first component,

• (x1, y1): the x, y-coordinates of the location of the first component (at t = 0), and

• xsn+1 = 0.

(MCP) Minimize T0 +
n∑

i=1

(T 1
i + T 2

i) (3)

subject to T 1
i ≥ ypi

Va
for i = 1, . . . , n; (4)

T 1
i ≥ |xsi−xpi|

Va
for i = 1, . . . , n; (5)

T 2
i ≥ ypi

Va
for i = 1, . . . , n; (6)

T 2
i ≥ |xsi+1−xpi|

Va
for i = 1, . . . , n; (7)

pci + T 1
i + T 2

i ≥ |xsi+di−xsi+1|
Vf

for i = 1, . . . , n− 1; (8)

7

pki+1 + T 2
i + T 1

i+1 ≥ |xpi+dxi−xpi+1|
Vb

for i = 1, . . . , n− 1; (9)

pki+1 + T 2
i + T 1

i+1 ≥ |ypi+dyi−ypi+1|
Vb

for i = 1, . . . , n− 1; (10)

T0 ≥ |d0−xs1|
Vf

(11)

T0 ≥ |xs1|
Va

(12)

pk1 + T0 + T 1
1 ≥ |x1−xp1|

Vb
(13)

pk1 + T0 + T 1
1 ≥ |y1−yp1|

Vb
(14)

all variables ≥ 0. (15)

Notice that since the sum of all picking times and all placing times is a constant, the objective is formulated
with (3). Constraints (4) imply that the time needed between picking component i and placing it (the
left hand side) is at least equal to the time needed to travel with the robot arm in the y-direction to the
y-coordinate of the next place position. In a similar fashion, constraints (5), (6) and (7) can be explained.
Constraints (8) state that the amount of time needed between two consecutive picking operations (the left
hand side) must be at least the time needed for the feeder rack to arrive at the position where the next
component will be picked (notice that xsi + di reflects the position where component i + 1 is at the time
when component i is picked). Constraints (9) and (10) ensure that the board has enough time between
two consecutive placement operations to arrive at the next placement operation. Finally, constraints
(11)-(14) deal with the time needed for the first placement.

We make the following remarks:

• Strictly speaking, the model above is not a linear program due to the occurrence of absolute values.
However, standard reformulation techniques can resolve this issue.

• Notice that this formulation can easily be modified for a Manhattan metric. Constraints (4) and (5)
can be replaced by a single constraint: T 1

i ≥ |xsi−xpi|+ypi

Va
, and a similar operation can be applied

to constraints (6) and (7), constraints (9) and (10), (13) and (14).

• This model can easily be modified for the case of a stationary worktable. Indeed, by dropping
constraints (9) and constraints (10) and by turning the xpi and ypi from variables into parameters,
we obtain a model for the case of a stationary worktable. Also, the model is easily adapted to deal
with the case of a worktable being only able to move in the x-direction (see e.g. [3]).

• Notice that in the description of this model we assume a single feeder rack. However, one easily
generalizes this model to a setting where there are two feeder racks alongside the machine (or, even
more general, when each component has its own specific travel characteristics, see [2]).

• In case there are limits for the robot arm, feeder rack, and board on the locations they can reach,
one can add linear constraints ensuring these limits.

Finally, there are two important directions in which model (MCP) can be generalized. First, when
a point is characterized by d coordinates (instead of two), the model can be easily adapted to deal with
this situation. Second, in a setting where the robot arm has a capacity c ≥ 1, the formulation remains
valid. Indeed, it is not unnatural to assume that the robot arm can hold more than a single component
(see e.g. [1]), and as long as the sequence is specified with which these components need to be picked,
and need to be placed, the model remains valid.

4 Implementation, design, and computational results

4.1 Implementation and design

We first describe how we implemented a GREEDY method, and next, we discuss the design of the
experiments.

8

Figure 2: GREEDY for the Tchebychev Metric

As described in Section 2, a GREEDY method for the motion control problem consists in iteratively
minimizing time between picking and placing a component and between placing a component and picking
the next component. Indeed, suppose that the robot arm and the feeder rack meet each other somewhere
on the x-axis to pick a component. From that point on the robot arm moves towards the placing position
of that component (assuming a stationary worktable). The feeder starts moving at the same time with
the next component to be picked in the direction of the next picking position. After placing, the robot
arm returns to the x-axis and robot arm and feeder will meet as soon as possible. When we are using
the Tchebychev metric, this meeting point is not always uniquely determined, as is shown in Figure 2.
The robot arm can reach every point in the interval [(xpi − ypi, 0), (xpi + ypi, 0)] in the same minimal
timespan.

Suppose now that at t = tpick
i , the feeder location of component i + 1 is to the right of (xpi + ypi, 0),

as indicated in Figure 2. Suppose further that the feeder rack can reach up to (z, 0) before the robot arm
returns to the x-axis. It follows that every position in the interval [(z, 0), (xpi +ypi, 0)] is a meeting point
for robot arm and feeder rack achieving minimal time. In our implementation of a GREEDY method
under a Tchebychev metric we choose as a meeting point the point which causes a minimal distance for
the feeder rack to travel. Thus, we use as a secondary criterion the distance traveled by the feeder rack.
In the example depicted in Figure 2 this would amount to (xpi + ypi, 0) as a meeting point.

Obviously, using knowledge of the next placement points may result in a better solution. Indeed,
referring again to Figure 2, given placement position (xpi+1, ypi+1), (z, 0) may be a better meeting
point than (xpi + ypi, 0) when it comes to minimizing total time needed. However, we decided in our
implementation of a GREEDY method not to use any information from upcoming placement positions,
and instead use as a secondary criterion the feeder distance traveled.

A GREEDY algorithm for the motion control problem is much more straightforward in the case of
a Manhattan metric. Robot arm and feeder meet in a unique point, i.e., starting from a pick position
the robot arm moves towards the placement position, returns to the x-axis and moves in the direction of
the feeder; in the meantime the feeder moves with the next component in the direction of the robot arm
until they meet.

The setting of our experiment is as follows: consider a board of length 1000 and width 500 with
n randomly generated placing positions on this board. We generated m different component types
positioned on a feeder rack of length 3000. The robot arm can move in the x- and y-direction, the
feeder can move in the x-direction only, and the board is stationary. To completely specify an instance
of the motion control problem, we took a random sequence of locations as the solution to the component
sequencing problem, and we took a random assignment of feeders to positions in the rack as a feeder
rack assignment. In addition, we assumed that there is precisely one feeder for each type of components,
and hence, the component retrieval problem vanishes. As pointed out by a referee, the fact that these

9

solutions are not found by some heuristic, may adversely affect the results of a GREEDY method, when
compared to an optimum solution to the motion control problem.

Different experiments were executed by changing (i) the number of components to be placed (n =
40, 80, 160), (ii) the number of component types (m = 10, 20), (iii) the relative speeds of feeder and robot
arm (Va/Vf = 0.001, 0.01, 0.25, 0.5, 1, 2, 4, 100, 1000), and (iv) the capacity c of the head of the robot arm
(c = 1, 4); see Table 1 for an overview. In our choice for some of these parameter values, we used van
Gastel et al. [15].

number of components 40/80/160
number of component types 10/20
length of the board 1000 (in distance units)
width of the board 500 (in distance units)
length of the feeder 3000 (in distance units)
speed feeder rack/speed robot arm 0,001/0,01/0,1/0,25/0,5/1/2/4/100/1000
time needed to pick a component 0.8 (in time units)
time needed to place a component 0.8 (in time units)
capacity of head 1/4

Table 1: Experimental design

We implemented a GREEDY strategy in C++ language and we solved the LP’s using ILOG CPLEX
8.1.0, OPL Studio 3.6.1. The tests were performed on a personal computer with a 2.8 GHz Intel(R)Pentium(R)
IV with 504 MB of RAM. Since all computation times are within two seconds, we have not reported them.

4.2 Results

The results for the Tchebychev metric are summarized in Tables 2 and 3. Each number is the average
over the results of 10 different randomly generated instances.

100× (assembly time GREEDY-assembly time LP)/assembly time LP
n m Vf/Va

0.001 0.01 0.1 0.25 0.5 1 2 4 100 1000
40 10 0.270 2.143 5.179 5.599 5.843 7.971 16.218 20.398 23.119 23.131
80 10 0.505 2.662 5.957 6.512 6.675 8.108 14.674 19.965 22.469 22.475
160 10 0.446 2.451 6.197 6.769 6.735 8.194 16.895 21.690 23.822 23.825
40 20 0.266 2.147 7.066 7.436 7.114 8.544 16.941 20.552 22.029 22.027
80 20 0.284 1.968 6.374 6.984 6.825 8.149 16.602 20.457 22.268 22.276
160 20 0.327 2.265 6.394 7.046 7.240 8.544 16.018 19.636 21.513 21.518

Table 2: LP versus GREEDY under a Tchebychev metric, head carries 1 component

Table 2 gives the percentage deviation of the GREEDY heuristic from an optimal LP-solution for a
machine with a robot arm carrying at most one component. It is clear that for a slow moving feeder rack
(slow compared to the robot arm), the deviation of GREEDY’s solutions from those found by the LP is
very small. This is to be expected: in an extreme case of a stationary feeder rack, a solution found by
a GREEDY method and an optimal solution coincide. However, GREEDY’s performance deteriorates
when the ratio Vf/Va increases. Indeed, the slower the robot arm is (compared to the feeder rack) the
larger the interval becomes where all meeting points have a minimal time between placing component i
and picking component i + 1. Also, the effect of the density (n/m) on GREEDY’s performance seems
relatively small.

10

In Table 3 the percentage deviation of GREEDY’s solutions from LP-solutions is given when the head
of the robot arm can carry at most four components, meaning that it can pick up four components before
it travels to the board for placing. These results follow the same trend as the results in Table 2, namely a
small deviation for a fast moving arm (compared to the feeder) which becomes larger as Vf/Va increases.
But, the percentage deviations in Table 3 are smaller than in the previous table. This can be explained
by the fact that both a GREEDY solutions and an LP-solution follow the same movement pattern during
the time that the arm needs to pick up four components; only when the arm travels to the board to place
the four components and then returns to the x-axis to pick the next component, differences may occur.
And since the number of times the robot arm has to return to the feeder rack is now much smaller, the
deviation of GREEDY’s solutions compared to LP-solutions will be smaller.

Similar experiments have been carried out for the Manhattan metric, and the results are summarized

100× (assembly time GREEDY-assembly time LP)/assembly time LP
n m Vf/Va

0.001 0.01 0.1 0.25 0.5 1 2 4 100 1000
40 10 0.112 0.852 1.308 1.470 1.791 2.469 5.624 7.668 8.737 8.415
80 10 0.156 0.776 1.479 1.844 2.069 2.600 5.862 7.566 7.370 6.987
160 10 0.150 0.862 1.705 1.861 1.990 2.616 6.352 7.988 8.061 7.693
40 20 0.069 0.543 1.197 1.476 1.754 2.100 5.621 7.501 7.931 7.511
80 20 0.122 0.786 1.580 2.021 2.281 2.563 6.549 8.182 7.636 7.185
160 20 0.120 0.653 1.630 1.773 1.983 2.375 6.132 7.470 7.644 7.263

Table 3: LP versus GREEDY under a Tchebychev metric, head carries 4 components

100× (assembly time GREEDY-assembly time LP)/assembly time LP
n m Vf/Va

0.001 0.01 0.1 0.25 0.5 1 2 4 100 1000
40 10 0.261 2.269 3.970 3.669 1.319 0.000 3.426 2.084 0.003 0.000
80 10 0.492 2.617 4.542 3.900 1.776 0.000 3.396 1.791 0.002 0.000
160 10 0.461 2.485 4.987 4.183 2.098 0.000 3.515 1.580 0.002 0.000
40 20 0.289 1.993 5.302 4.322 2.507 0.000 2.982 0.809 0.009 0.001
80 20 0.311 2.076 5.363 4.206 2.273 0.000 3.205 0.923 0.002 0.000
160 20 0.394 2.309 5.278 4.085 2.183 0.000 3.062 1.060 0.001 0.000

Table 4: LP versus GREEDY under a Manhattan metric, head carries 1 component

100× (assembly time GREEDY-assembly time LP)/assembly time LP
n m Vf/Va

0.001 0.01 0.1 0.25 0.5 1 2 4 100 1000
40 10 0.119 0.896 1.110 0.300 0.089 0.000 6.517 9.690 1.412 1.474
80 10 0.145 0.817 1.236 0.763 0.209 0.000 6.992 10.099 1.412 0.144
160 10 0.160 0.878 1.308 0.775 0.201 0.000 7.212 10.218 1.403 0.145
40 20 0.271 0.609 1.723 0.472 2.066 0.000 6.979 10.282 2.608 0.128
80 20 0.125 0.695 1.267 0.871 0.142 0.000 7.577 10.830 2.463 0.131
160 20 0.117 0.641 1.338 0.870 0.101 0.000 7.315 10.323 1.145 0.132

Table 5: LP versus GREEDY under a Manhattan metric, head carries 4 components

11

in Tables 4 and 5. We first consider the case where the robot arm carries at most one component (Table 4).
Here, the picture is somewhat different when compared to the Tchebychev metric: although it is still
true that for very small ratio’s of Vf/Va, GREEDY’s results are close to the optimal solutions, they
slightly deteriorate up to Vf/Va = 1

10 , and GREEDY’s results improve again up to Vf/Va = 1. Indeed,
when Vf = Va the values of the two solutions are identical; we refer to the appendix for an explanation.
Notice also that for further increasing values of the ratio Vf/Va GREEDY’s results first deteriorate, and
then improve again until the movement of the rack completely determines the value of the solution, and
GREEDY finds optimal solutions again. It is easy to verify, however, that this need not to be true in
general. Finally, the effect of the density (n/m) on GREEDY’s performance seems again relatively small.

When the head can carry up to four components, the results found by GREEDY improve (compared
to the setting where the head carries a single component) as long as Vf/Va ≤ 1 (see Table 5). When
Vf > Va, GREEDY’s results display a similar behaviour as portrayed in Table 4, except that GREEDY’s
results are worse than in the setting with a single component. This is explained by the observation that
the robot arm is forced - when picking up four components - to spend time traveling along the x-axis. This
may be done in a suboptimal way leading to the results in Table 5. This contrasts with the case of the
head carrying at most one component: in that case, the rack is waiting for the robot arm when it needs
to pick up a component, and hence the robot arm spends its time exclusively placing the components.

Notice that there is a difference here compared to the Tchebychev metric, where results of GREEDY
improve overall when going from a capacity of the arm of 1 to a capacity of 4. The effect as described
above for GREEDY also holds for a Tchebychev metric but is overruled by another effect. Remember
that in the implementation of GREEDY under a Tchebychev metric we used as a secondary criterion the
distance traveled by the feeder rack. As a consequence a fast feeder (compared to the arm) might spend
a lot of time waiting in a suboptimal position every time the robot arm is placing components on the
board. As this happens more often when the arm can carry only one component, GREEDY will perform
worse than in the case that the robot arm has a capacity of 4.

5 Conclusion

We investigated the problem of how to determine movement patterns for the moving parts of an auto-
mated placement machine. We showed that a straightforward greedy strategy to establish these patterns
may not give an optimal solution. However, at least under a Tchebychev metric and under a Manhattan
metric the problem is solvable in polynomial time by formulating it as a linear program. Both for a
Tchebychev metric and a Manhattan metric, we showed that a reduction in assembly times is possible
by using the LP-model.

Acknowledgements: We thank a referee for the comments that led to an improved presentation of this
note.

References

[1] Altinkemer, K., B. Kazaz, M. Köksalan, and H. Moskowitz (2000), Optimization of printed cir-
cuit board manufacturing: Integrated modeling and algorithms, European Journal of Operational
Research 124, 409-421.

[2] Asahiro Y., Miyano E., and Shimoirisa S. (2005), Pickup and delivery for moving objects on broken
lines, Lecture Notes in Computer Science 3701, 36-50.

[3] Ayob, M. and G. Kendall (2005), A triple objective function with a Chebychev dynamic pick-and-
place point specification approach to optimise the surface mount placement machine, European
Journal of Operational Research 164, 609-626.

12

[4] Ball, M.O. and M.J. Magazine (1988), Sequencing of insertions in printed circuit board assembly,
Operations Research 36, 192-201.

[5] Crama, Y., O.E. Flippo, J.J. van de Klundert, and F.C.R. Spieksma (1996), The component retrieval
problem in printed circuit board assembly, International Journal of Flexible Manufacturing Systems
8, 287-312.

[6] Crama, Y., J.J. van de Klundert, and F.C.R. Spieksma (2002), Production planning problems in
printed circuit board assembly, Discrete Applied Mathematics 123, 339-361.

[7] Egbelu, P.J., C. Wu, and R. Pilgaonkar (1996), Robotic assembly of printed circuit boards with
component feeder location consideration, Production Planning and Control 7, 162-175.

[8] Grunow, M., H.-O. Günther, M. Schleusener, and I.O. Yilmaz (2004), Operations planning for
collect-and-place machines in PCB assembly, Computers and Industrial Engineering 47, 409-429.

[9] Helvig, C.S., G. Robins, and A. Zelikovsky (2003), The moving-target traveling salesman problem,
Journal of Algorithms 49, 153-174.

[10] Latombe, J.C. (1991), Robot Motion Planning, Kluwer, Boston.

[11] Leipälä, T. and O. Nevalainen (1989), Optimization of the movements of a component placement
machine, European Journal of Operational Research 38, 167-177.

[12] Su, C. and H. Fu (1998), A simulated annealing heuristic for robotics assembly using the dynamic
pick-and-place model, Production Planning and Control 9, 795-802.

[13] Su, C., L. Ho, and H. Fu (1998), A novel tabu search approach to find the best placement sequence
and magazine assignment in dynamic robotics assembly, Integrated Manufacturing Systems 9, 366-
376.

[14] Su, Y., C. Wang, P. Egbelu, and D.J. Cannon (1995), A dynamic point specification approach to
sequencing robot moves for PCB assembly, International Journal on Computer Integrated Manufac-
turing 8, 448-456.

[15] Van Gastel S., M. Nikeschina, and R. Petit (2004), Fundamentals of SMD assembly, Assembléon.

[16] Van Hop, N., M.T. Tabucanon (2001), Extended dynamic point specification approach to sequencing
robot moves for PCB assembly, International Journal of Production Research, 735-744.

[17] Van Hop, N., M.T. Tabucanon (2001), Multiple criteria approach for solving feeder assignment and
assembly sequence problem in PCB assembly, Production Planning and Control 12, 735-744.

[18] Wang, C, L. Ho, and D.J. Cannon (1998), Heuristics for assembly sequencing and relatice magazine
assignment for robotic assembly, Computers and Industrial Engineering 34, 422-431.

6 Appendix

Claim 1 When Va = Vf , Vb = 0, and when using a Manhattan metric, GREEDY gives an optimal
solution to the motion control problem.

Argument: We first argue that - in case Va = Vf , Vb = 0 and under a Manhattan metric - there exists
an optimal solution to the motion control problem that satisfies the following two properties:

13

Property 1: between two consecutive placements, the robot arm travels, directly after placing compo-
nent i, from (xpi, ypi) to (xpi, 0), travels (if the feeder is not waiting at this point) towards the
appropriate location on the feeder rack until it meets this location (at (xsi+1, 0), where it picks up
component i + 1), and finally the robot arm travels via (xpi+1, 0) to (xpi+1, ypi+1) where it places
component i + 1 (1 ≤ i ≤ n), and

Property 2: the feeder rack, after the picking of component i, moves in a way that the location of
component i + 1 travels to (xpi, 0), and the feeder rack only stops when this location reaches this
position, or when it meets the robot arm (1 ≤ i ≤ n).

To see that property 1 is valid, consider an optimal solution in which the robot arm deviates from
the sketched procedure. More specifically, consider an optimal solution in which the robot arm after
having placed component i, and after having traveled to (xpi, 0), does not travel towards the appropriate
location on the feeder rack. Then an alternative optimal solution can be constructed with identical
picking moments and placing moments that involves waiting time for the robot arm. We further modify
this alternative optimal solution by ‘collecting’ the waiting time, and ‘shift’ it to the first picking moment
that follows, say at t = tpick

i . Thus, in this optimal solution the robot arm waits until the feeder rack
arrives, and the pick occurs at t = tpick

i . It is clear that, instead of the robot arm having to wait until
the feeder rack arrives, we can also let the robot arm travel towards the feeder rack, meet the feeder rack
halfway, and, after having picked this component, return, together with the feeder rack to be back at
t = tpick

i at the original picking location. Thus, this alternative solution has at t = tpick
i the robot arm

and the feeder rack at exactly the same location as in the original optimal solution, and, the remaining
part of the solution is identical to the original optimal solution. Thus, any optimal solution not satisfying
Property 1, can be modified into one that does.

Property 2 is valid for a similar reason. Suppose, after the picking of component i, the location of
component i + 1 in the feeder rack waits at a position different from (xpi, 0) until the robot arm arrives.
Again, as above, an alternative optimal solution would be to travel with the feeder rack meeting the
robot arm, and return to the original position at the same time.

Properties 1 and 2 together precisely yield GREEDY. ¤

14

