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Abstract 
 

We examine the impact of internal and external R&D on labor productivity in a 6-year panel of 304 
innovating firms. We apply a dynamic linear panel data model that allows for decreasing returns to 
scale in internal and external R&D with a non-linear approximation of changes in the knowledge 
stock. We find complementarity between internal and external R&D, with a positive impact of 
external R&D only evident in case of sufficient internal R&D. The findings confirm the role of 
internal R&D in enhancing absorptive capacity and hence the effective utilization of external 
knowledge. These results suggest that empirical studies examining complementarities between 
continuously measured practices should adopt more general non-linear specifications to allow for 
correct inferences. 
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1. Introduction  

 

Since the seminal contribution of Milgrom and Roberts (1990), research in the fields of industrial 

organization and management has devoted renewed attention to the investigation of complementary 

relations between organizational practices.2 Complementarity is understood in this context to exist if the 

implementation of one practice increases the marginal return to other practices. One relevant application 

that has received substantial attention is the complementarity between in-house R&D expenditures and 

external technology sourcing. It has been argued that in-house R&D has ‘two faces’: it has a direct 

performance effect and at the same time it enhances the effectiveness of external technology sourcing by 

providing the means to understand and utilize the externally acquired information (Cohen and Levinthal, 

1989; Griffith et al., 2003; 2004).3 At the same time, studies suggest that the importance of external R&D 

has been increasing in recent years (e.g. Bönte, 2003). 

However, empirical studies of the complementarity between internal and external R&D have 

produced mixed findings. Arora and Gambardella (1990) suggest complementarity between in-house 

R&D and external R&D in the form of alliances and equity participations in R&D intensive biotech firms 

for a sample of pharmaceutical companies, but Fernandez-Bagues (2004) finds a negative correlation 

between in-house and in-sourced pharmaceutical R&D projects. Basant and Fikkert (1996) find 

substitution between R&D and licensing expenditures for Indian firms, but the findings in Deolikar and 

Evanson (1989) suggest complementarity. Cassiman and Veugelers (2002) find a positive correlation 

between the presence of internal R&D and the adoption of external technology sourcing practices. 

                                                 
2 E.g. the relationship between human resource practices and firm strategies (Ichniowski et al., 1997), and 
complementarities between the use of information technology and workplace reorganization (Bresnahan et al, 2002), 
between the adoption of different information technologies in emergency health care (Athey and Stern, 2002), 
between product and process innovation (Miravete and Pernias, 2004), between public innovation policies (Mohnen 
and Roller, 2004), and between different types of R&D cooperation (Belderbos et al, 2006). 
3 Griffith et al. (2004) analyze sectoral productivity growth in OECD countries. They find a significantly greater 
productivity growth for industries behind the productivity frontier the larger the R&D expenditures of these 
industries, suggesting that R&D facilitates catching up through international knowledge spillovers. 
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Blonigen and Taylor (2000), on the other hand, find an inverse relationship between R&D intensity and 

acquisition activity in high-tech industries, suggesting that firms opt for either a 'make' or a 'buy' strategy.4  

These contrasting findings could be attributed to several factors. While complementarity is ideally 

tested directly in an organizational performance (‘production function’) framework, absence of 

performance data forced several papers to rely on tests focusing on the ‘adoption’ of practices, i.e. 

conditional correlations based on the residuals of reduced form regressions of the practices of interest on a 

set of observable exogenous variables (Arora and Gambardella, 1990). It has been shown however, 

(Arora, 1996; Athey and Stern, 1998; Fernandez-Bagues, 2004) that these tests cannot serve, as conclusive 

evidence of the existence of complementarity as correlation may be the result of unobserved firm 

characteristics or external shocks that affect the adoption of all practices (Miravete and Pernias, 2004).5 

Second, several studies had to rely on cross sectional data, such that the estimated impact of innovation 

practices on firm performance could suffer from endogeneity bias, given the difficulty of instrumenting 

contemporaneous R&D properly (e.g. Cassiman and Veugelers, 2002; Veugelers and Cassiman, 1999). 

Third, studies could often only determine the existence of a practice, but could not identify in detail the 

intensity with which the practice was implemented by the organization, (e.g. Cassiman and Veugelers, 

2002; Fernandez-Bagues, 2004). The extent of complementarity or substitutability between internal R&D 

and external R&D has remained unexplored in the context of a firm performance framework.6

In this paper, we contribute the first panel data study exploring complementarity between internal 

R&D and external R&D in a firm performance framework. We examine the impact of internal and 

external R&D on labor productivity in a six-year panel of innovating manufacturing firms. We derive our 

econometric specification from an augmented Cobb Douglas production function including interactions 

between internal and external R&D in the augmentation of the knowledge stock. The model also takes into 
                                                 
4 In addition, Audretsch et al. (1996) find evidence of contrasting determinants of internal and external R&D and 
suggest that this may imply that the two are substitutes. In contrast, Piga and Vivarelli (2004) find that firms’ in-
house R&D investments increase the propensity to invest in external R&D.  
5 In addition, one could argue that even in case of robust correlation between practices, there is no guarantee that 
decision makers were sufficiently well informed such that they indeed chose a combination of practices that 
optimizes performance. 
6 The exception is Basant and Fikkert (1996), where the analysis is restricted to expenditures on imported licenses in 
the context of a developing country (India). 
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account potential productivity convergence by including lagged productivity levels. Our study’s 

inferences are based on a dynamic panel data model, which allows us to control for the existence of 

unobserved fixed effects that are likely to affect R&D decisions. Estimation is carried out by several 

consistent dynamic panel data methods, among which generalized method of moments, which allows for 

the presence of weakly endogenous explanatory variables. Instead of analyzing the effect of discrete 

practices or counts of practices, our analysis is of actual expenditures on internal and external R&D. In 

this way the analysis can take into account both scale and scope effects of R&D to address the issue of 

optimal combinations of these expenditures. Our data are drawn from the R&D and Community 

Innovation Surveys among innovating firms in the Netherlands, making this the first comprehensive panel 

data analysis of the impact of internal and external R&D for an industrialized country.  

The remainder of this paper is organized as follows. The next section details the model and 

discusses the econometric specification. Section 3 describes the dataset and variable construction. Section 

4 presents the empirical results and Section 5 concludes. 

 

 

2. Modeling Framework and Econometric Specification 

 

We derive a modeling framework that allows estimating labor productivity as a function of 

internal and external R&D from an augmented Cobb-Douglas production function for firm i at time t: 

 
iteKCLY itititit

σγδβα=           (1) 

 

where Y is output, L is labor input, C is the physical capital stock and K is the knowledge stock. The 

parameters β , γδ  and , are elasticities with respect to physical capital, labor and the knowledge stock. 

The parameter σ is firm-specific efficiency parameter. Dividing both sides by labor, taking logarithms 
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and differencing the resulting equation in two consecutive periods, we obtain the equation in the growth 

form: 

 

ititititit kclq σγαβ ∆+∆+∆+∆−=∆ )1(        (2) 

 

where denotes labor productivity, with lower case letters denoting variables in 

logarithms. We assume that the change in firm-specific efficiency levels is a function of past productivity 

and an error term, in order to allow for a gradual convergence in efficiency levels between firms.

)log()log( ititit LYq −=

7  

 

ititit q εθσ +=∆ −1           (3) 

 

Firms that are behind the productivity frontier are more likely to be able to record strong productivity 

growth through technology spillovers from frontier firms. We expect θ  to fall within the interval [-1,0]. If 

θ  is zero there is no gradual convergence between leading firms and lagging firms; if θ  is –1 complete 

convergence materializes in one period. To allow unobserved firm-level heterogeneity in efficiency 

growth and an impact of common macro-economic efficiency shocks, the error term itε  in equation (3) 

includes firm specific fixed effects iµ  and year-specific intercept, tλ , in addition to serially uncorrelated 

measurement errors vit:  

 

ititit v++= µλε      for     i=1,…,N; t=1,…,T         (4) 

 

We can transform the knowledge stock portion of the specification (cf. Griffith et al., 2004, p.7; 

Jones, 2002, p. 233) as follows: 
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7 Klette (1996), for instance, shows that the empirically observed persistent productivity differences between firms 
require a model specification that allows for gradual convergence. 
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The change in the knowledge capital stock is assumed to be a function of investments in both internal and 

external R&D:  

 

),( 1
int

1
ext
ititit RRfK −−=∆           (6) 

We approximate the unknown function (6) with a second-order polynomial in R&D investment.8 

If the depreciation rate of the knowledge stock is small9 we can write: 
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The equation includes linear terms, quadratic terms, and the interaction term between internal and external 

R&D. Although in previous research the quadratic terms have often been suppressed (e.g. Basant and 

Fikkert, 1996), exclusion of the quadratic terms is certainly not trivial.10 There are priori strong reasons to 

allow for (dis)economies of scale at the same time as testing for (dis)economies of scope. If the process of 

augmentation of the knowledge capital stock is characterized by declining returns to scale and if high 

R&D intensive firms engage in both internal and external R&D, the interaction term between internal and 

external R&D may be confounded as negative as it picks up the declining marginal impact of R&D. 

Precisely in the presence of declining returns to internal and external R&D one may expect firms to avoid 

this by combining R&D strategies. A full specification with quadratic terms is required to explore this. In 

the empirical analysis, we will estimate the productivity effects of internal and external R&D using (6). In 

                                                 
8 Flexible functional forms previously used in the literature can be viewed as linear-in-parameters expansions which 
approximate an arbitrary function. See Fuss et al. (1978) for known functional forms of such approximations. 
Adopting a Generalized Leontief Linear functional form (e.g. as in Basant and Fikkert, 1996) gives similar results. 
9 Higher depreciation rates lead to an upward bias of the estimate on the rate of return (Mairesse and Sassenou, 
1991). We could expand the approximation of changes in the knowledge stock by including more lags of R&D; 
findings in previous studies, e.g. Pakes and Schankerman (1984), Hall et al. (1986) and Klette and Johanson (1998), 
suggest that the most significant effect of R&D on productivity occurs with a one-year lag. 
10 The rationale for omitting quadratic terms has usually been the difficulty in estimating both the linear and 
quadratic terms simultaneously given the collinearity between them. Estimation of our model also suffers from this 
problem, but the availability of panel data reduces this impact. 
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order to show the importance of using a more general specification, we will also report the results of 

models with quadratic terms suppressed.  

Sufficiently long enough series of capital investments are not available to us in order to construct 

the capital stock variable with the perpetual inventory method. Instead we approximate the log-growth in 

the capital stock,  with the log-growth in fixed capital investment. In steady state the proportional 

change in the capital stock can be approximated by the proportional change in fixed capital investments 

(Jones, 2002).  

itc∆

Combining equations (2), (3), and (7), writing 1−−=∆ ititit qqq  and bringing the lagged 

productivity term to the right hand side, we arrive at the dynamic panel equation: 
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The model allows for firm fixed effects and the persistence of performance differences between firms, 

both emphasized to be important in the empirical productivity literature (Klette, 1996; Blundell and Bond, 

2000).  

 We carry out the estimation of equation (8) with several panel data estimation techniques that 

provide consistent estimators, of which several are available when the number of firms (N) is large and the 

number of years (T) is small. We utilize difference GMM as well as system GMM. For system GMM, the 

inference based on the asymptotic variance matrix has been found to be more efficient, compared to 

difference GMM (Arellano and Bover, 1995; Blundell and Bond, 1998). System GMM has also been 

shown to perform well in the presence of heteroskedasticity in a production function setting with a small 

time-series dimension. Although recent developments in GMM estimation make it a standard choice for 

estimation of a dynamic panel data model, it requires a non-trivial decision on the number of instruments. 

A potential drawback is however that its performance may be unsatisfactory due to weak instruments 

(Blundell and Bond, 2000). Hence alternatively, we use recently proposed fixed-effects and random-

 7



effects maximum likelihood estimators (MLE) for dynamic panel data models (Hsiao et al., 2002) based 

on the transformed likelihood function. The advantage of GMM over MLE estimators is that the former 

allows for weakly endogenous explanatory variables, while the latter assumes that the explanatory 

variables are weakly exogenous.  

 

3. Data 

 

The empirical analysis makes use annual R&D surveys in the Netherlands in combination with the 

Netherlands census of manufacturers, both provided by Statistics Netherlands. The R&D surveys contain 

information on type and amount of R&D expenditures, and the census data contain information on value 

added, labor, and fixed capital investments. These merged establishment level databases provided us with 

a balanced panel of 304 manufacturing firms covering the years 1996-2001. The firms are distributed over 

industries as follows (number of observations in parentheses): Food (34), Textile (9), Paper (15), Printing 

(5), Petroleum and chemicals (41), Rubber and plastic (19), Metallurgy (5), Metal products (37), Machines 

& equipment (62), Electronics (28), Cars and Transport (22), and Miscellaneous industry (27).  

The dependent variable, labor productivity, is net value added per employee at constant prices. 

Internal R&D is defined as a firm’s expenditure on intramural R&D while external R&D is the 

expenditure on contracted R&D. Investment growth is the percentage growth in gross fixed capital 

investments between t-1 and t, and employment growth is the percentage growth in employment.  

Table 1 provides descriptive statistics on the variables used in estimation and Table 2 reports 

propensities (five year means) to engage in external and internal R&D in five different R&D intensity 

classes. An inverse relationship emerges between R&D intensity and purely in-house R&D. Almost half 

of the firms in the lowest R&D intensity class report only internal R&D, but in the upper R&D intensity 

classes (6% and more) this number drops to about a third of the firms. On the other hand, the difference in 

the share of external in total R&D between the lowest and top intensity classes is not very large.  
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4. Empirical results 

 

The results of the dynamic panel estimation of equation (8) are reported in Table 3. The four 

consistent estimators agree on the signs and magnitudes of most of the coefficients, while the system 

GMM estimator generates a higher F-value than difference GMM.11 The Hansen test of over-identifying 

restrictions does not reject the validity of the instruments for the GMM models, with the exception of the 

linear system GMM model in column (2).12 Arellano-Bond AR tests also indicate that there are no 

problems relating to serial correlation of the error terms. The Hausman test, however rejects the random 

effects MLE in favor of fixed effects.  

Columns (1)-(4) of Table 3 present the estimates from a specification restricting 043 ==ηη , 

hence excluding quadratic terms. Internal R&D is significant in all models, while external R&D is 

(marginally) significant in the system GMM model only. The estimated rate of return on the internal R&D 

( 1ϕη ) is in the range of 0.14 - 0.30 depending on the estimator. This rate of return is in line with other 

studies that use a similar production function framework (Mairesse and Sassenou, 1991, Fors, 1998, 

Basant and Fikkert, 1996). The rate of return on external R&D ( 2ϕη ) in the system GMM model is 

higher, at 0.82. The interaction term between internal and external R&D is insignificant in all models. 

These results do not support the absorptive capacity hypothesis but equally do not suggest (cf. Basant and 

Fikkert, 1996; Blonigen and Taylor, 2000; Fernandez-Bagues, 2004) that there are diseconomies of scope 

in investing in internal and external R&D simultaneously.  

                                                 
11 GMM results are from the two-step variant of the estimator, which is more efficient than the one-step. The two-
step estimates of the standard errors tend to be downward biased (Arellano and Bond 1991; Blundell and Bond 
1998). The standard errors are corrected via a finite-sample correction to the two-step covariance matrix derived by 
Windmeijer (2005). Use of lagged right hand side values as instruments in the difference GMM estimation restricts 
the panel to 4 years and reduces the number of observations by 304. 
12 The rejection is at a significance level of 0.08. Omitting industry dummies from the instrument set does not change 
this result. 
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The most efficient (system GMM and MLE fixed effects) estimates for the lagged dependent 

variable, reflecting movements in and out of equilibrium, indicates a convergence parameter θ  of -0.18 to 

-0.27, implying that about a fifth to a fourth of the productivity lead is neutralized by the next period.13 

The growth of employment and investment variables are positive and significant, the coefficient on labor 

growth is about -0.3 - -0.4, implying a positive effect of growth on productivity of about 0.6 - 0.7, in line 

with other studies using similar production function framework (e.g. Fors, 1998).  

Columns (5) - (8) in Table 3 report the estimates of equation (8) with quadratic terms included, 

allowing for diseconomies of scale in internal and external R&D. The different estimation methods 

produce fairly close estimates. Overall the results clearly suggest that there are diseconomies of scale in 

both internal and external R&D with the squares term of both internal and R&D negative and significant. 

Furthermore, while the estimated coefficients for the linear term of internal R&D are large and 

significantly positive, the coefficients of the linear term of external R&D are insignificant in all models. 

On the other hand, allowing for diseconomies of scale leads to substantially higher and significantly 

positive estimates for the coefficient of the interaction term between internal and external R&D. The 

exception in these results is the MLE fixed effects model, which produces smaller and insignificant 

coefficients for the square term of external R&D and the interaction term between internal and external 

R&D. Overall, the results provide evidence for the existence of economies of scope in combining both 

types of R&D. This supports the notion of the importance of absorptive capacity (e.g. Griffith et al. 2004) 

and suggests that a prerequisite for benefiting from external R&D is that the firm undertakes in-house 

R&D.  

To illustrate the impact of internal and external R&D on labor productivity, Figure 1 plots value 

added per employee as a function of internal and external R&D intensity based on the estimated 

coefficients in the system GMM equation. The figure plots labor productivity for a broad range of internal 

R&D (0-0,4) and external R&D (0-0,2), but it should be noted that the larger majority of firms (80 

                                                 
13 Other research (e.g. Blundell and Bond, 2000; Klette, 1996) using GMM techniques find similar values for the 
lagged productivity term in production function equations. 
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percent) has R&D intensities in the 0,1-0,1 range. The figure illustrates that an allocation that sets one 

type of R&D to zero and maximizes the other is not optimal. At low levels of internal R&D intensity 

(internal R&D expenditures over value added), an increase in external R&D intensity (external R&D over 

value added) has a relatively small impact on productivity. Productivity levels increase initially steeper 

along the ‘internal’ R&D axis, followed by a yet steeper increase if R&D is allocated in the ‘external’ 

direction. Hence, conditional on a sufficient level of internal R&D firm can achieve higher productivity 

gains by switching from a purely internal R&D strategy to a combination with external R&D. If external 

R&D is increased further, diseconomies of scale start to reduce its marginal impact on productivity. 

Higher values of internal R&D intensity allow firms to benefit most from increases in external R&D. 

 

Figure 1. Labor productivity as a function of internal and external R&D intensity (estimates of 
model 6 in Table 3) 
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6. Conclusions 

 

This paper has produced micro-level econometric evidence that there are productivity gains for 

firms combining internal and external R&D strategies. Using a dynamic panel data model derived from an 

augmented production function framework, our analysis of labor productivity in a sample of 304 

innovating firms in the Netherlands during 1996-2001 revealed complementarity between internal and 

external R&D in combination with decreasing returns to scale for both internal and external R&D. A 

positive impact of external R&D was only found conditional on a sufficient level of internal R&D 

expenditures. These findings support the notion of a dual role played by internal R&D emphasized in 

recent research (e.g. Griffith et al. 2004). The first role of in-house research and development activity is in 

stimulating innovation and productivity. The second role, no less important, is its role to enhance 

absorptive capacity of the firm needed to derive benefits from the externally acquired R&D. The findings 

were robust across a number of dynamic panel data estimation techniques. In contrast, a linear variant of 

the dynamic model that does not allow for decreasing returns to scale in R&D did not produce clear 

evidence of economies of scope in combining internal and external R&D. These results suggest that 

empirical studies examining complementarities between continuously measured practices should adopt 

more general non-linear specifications to allow for correct inferences.14  

The model presented in this paper assumed constant parameter values across manufacturing 

industries. A more refined analysis that allows rates of return on R&D to differ across individual 

industries could not be performed due to the limited number of observations per industry in our sample. 

This issue could be tackled in the near future as longer times series of data drawn from R&D and 

Innovation surveys become available. Another interesting avenue for future research is the impact on 

performance of the technological diversity and coherence (e.g. Nesta and Saviotti, 2005) of in-house and 

outsourced R&D activities. Despite the need for further extensions, we believe the analysis presented in 

 
14 In addition, our findings suggest caution in interpreting a negative interaction term in a linear model as decisive 
evidence against complementarity (e.g. Basant and Fikkert, 1996). 
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the paper serves as a tractable contribution to our understanding of the impact of internal and external 

R&D on firm-level productivity. 
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Table 1 Descriptive statistics 

Variable Mean S.D. Description 

Productivity 3.92 0.48 Net value added divided by employees in constant prices, 
in logarithm 

∆Labor 0.02 0.19 Log growth in the number of employees 

∆Investment  0.01 3.88 Log growth in Fixed Capital Investment in constant prices 

R&DINTint 0.09 0.11 Expenditure on in-house R&D divided by net value added 

R&DINText 0.02 0.01 Expenditure on contracted R&D divided by net value 
added 

 

 

Table 2 Internal and External R&D by R&D intensity 

R&D intensity  Number of 
observations 

Percentage 
internal R&D  
only 

Average share of 
external in total 
R&D (in %) 

<= 3% 525 47.2 12.5 

3% - 6% 352 49.3 9.5 

6% - 9% 199 38.2 10.7 

9% - 12% 120 40.8 10.3 

>= 12%  324 25.9 15.3 



Table 3: Dynamic Panel Data Estimates of Equation (8) 
 GMM  GMM  

(difference) (system) 
MLE  
FE 

MLE  
RE 

GMM  
(difference) 

GMM  
(system) 

MLE  
FE 

MLE  
RE 

         (1) (2) (3) (4) (5) (6) (7) (8)
Productivity-1 0.581*** 

(0.117) 
0.823*** 
(0.059) 

0.719*** 
(0.060) 

0.522*** 
(0.042) 

0.628*** 
(0.128) 

0.762*** 
(0.062) 

0.813*** 
(0.055) 

0.494*** 
(0.038) 

∆Labor -0.361*** -0.424*** 
(0.057) (0.060) 

-0.381*** 
(0.042) 

-0.334*** 
(0.037) 

-0.408*** 
(0.068) 

-0.401*** 
(0.058) 

-0.432*** 
(0.043) 

-0.338*** 
(0.036) 

∆investment 0.009* 0.010** 
(0.005) (0.005) 

0.009* 
(0.005) 

0.008* 
(0.004) 

0.008* 
(0.004) 

0.011* 
(0.006) 

0.008* 
(0.004) 

0.007* 
(0.004) 

R&DINTint  0.304** 
(0.112) 

0.299** 
(0.129) 

0.307*** 
(0.053) 

0.137*** 
(0.042) 

1.318*** 
(0.466) 

0.432** 
(0.194) 

1.229*** 
(0.194) 

0.230** 
(0.125) 

R&DINTint squared     -0.182*** -0.050* 
(0.069) (0.027) 

-0.166*** 
(0.031) 

-0.041** 
(0.020) 

R&DINText  0.602 
(0.690) 

0.819* 
(0.483) 

0.297 
(0.368) 

0.188 
(0.271) 

0.994 
(0.749) 

0.126 
(0.615) 

0.461 
(0.397) 

0.201 
(0.298) 

R&DINText squared     -3.486* -3.466*** 
(1.893) (1.295) 

-1.736 
(1.160) 

-2.530*** 
(0.977) 

R&DINTint * R&DINText 0.142 
(0.251) 

0.061 
(0.164) 

0.004 
(0.155) 

0.064 
(0.121) 

2.004* 
(1.207) 

2.581*** 
(0.801) 

0.862 
(0.753) 

1.668*** 
(0.634) 

Wald(df) /LL         162.57 547.75 -82.33 -332.96 345.68 353.84 -57.01 -314.35
Hansen test (df), p-value  
 

16.11(20) 
(0.71) 

50.50(34) 
(0.08) 

    14.90(21) 35.34(27) 
(0.83) (0.13) 

AR(1) test (p-value)       -4.96(0.00) -6.98(0.00) -4.63(0.00) -6.95(0.00)
AR(2) test (p-value)       -0.32(0.75) 0.20(0.84) -0.09(0.93) 0.21(0.83)
N. Obs.         1216 1520 1216 1520 1216 1520 1216 1520
Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. System GMM and MLE random effects models include industry 
dummies. All models include year dummies. Instruments for the difference GMM equations are industry dummies and lagged values of the 
right hand side variables; the extra lag restricts the panel to 4 years and reduces the number of observations by 304. Instruments for 
the level equations are industry dummies and differenced values of the right hand side variables. Robust standard errors are in 
parentheses. For GMM estimates, the finite-sample correction to the two-step covariance matrix derived by Windmeijer (2005) is used. 
The Hausman test of random vs. fixed effects MLE is 33.4 (p<0.001) and 69.4 (p<0.001) for the linear and quadratic models, 
respectively. Estimation of GMM is carried out with the xtabond2 Stata 9.0 module by D. Roodman, Center for Global Development, 
Washington. Estimation of MLE is carried out with SAS/IML.  




