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Risk Assessments in a 
Markov Switching Framework 

I. INTRODUCTION 

How do foreign exchange rates evolve over time? Over the last deca- 
des an enormous literature has focused on this question. By now, there 
is a consensus that they follow, at least when high frequencies are con- 
cerned, a martingale model. According to this view, returns are un- 
predictable in mean, but higher moments may have some structured 
behaviour. Some of these structures have been filled in during the 
eighties. Returns are believed to display volatility clustering. More spe- 
cifically, high and low returns tend to be clustered in time. 

Despite the early reports on volatility clustering, see (Mandelbrot 
(1963)), models that incorporate this fact were oidy introduced in the 
mid eighties. With the introduction of ARCH and GARCH models 
by Engle (1982) and Bollerslev (1986), a new literature in empirical 
finance came to live. Currently, almost over fifty different variations 
exist on the first GARCH and ARCH specifications. While these mo- 
dels have been very successful, there remain some less desirable pro- 
perties of the model to resolve. More specifically, according to the mo- 
del, variances are sufficient statistics to model the variability of the 
return, i.e. news, distribution over time. Consider the simple GARCH 
model of Bollerslev for example. According to this model, returns are 
drawn from a normal distribution with time varying variances. An im- 
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plication of this model is then that exceedance probabilities are de- 
termined by this variance and the normality assumption. In other 
words, one does not consider an independent and time varying mo- 
del for moments higher than the variance. Within the framework of 
GARCH such a modelling exercise becomes extremely difficult. It en- 
tails a workable model for the time varying structure for the higher 
moments as well. No such model exists today. 

Recently, a second generation of models has been used to analyse 
the volatility clusters. These models can (but do not yet), in contra- 
distinction with the GARCH class, combine the volatility clustering 
and (variance) independent variation in the higher moments. This 
class of models is known as the class of Markov switching models, see 
for example Hamilton (1989). The underlying philosophy of this ap- 
proach is that returns are drawn from different (normal) densities 
through time. Which density is activated in each period depends on 
an unobserved variable, called the state. This state follows a first or- 
der Markov process. Volatility clustering is obtained via a very inert 
Markov process and distinct variance levels for each of the distribu- 
tions. These models can combine, unlike GARCH models, this vola- 
tility clustering with tractable expressions for the conditional return 
densities. The latter feature is currently used to obtain for example 
option prices in the context of Markov switching models, (see for 
example Kaelher and Marnet (1993)). 

While this new approach has a lot of potential, there remain some 
unnecessary restrictive zssuinptions in its setup. The assumption of 
the normality of the underlying densities is, especially when high fre- 
quency returns are concerned, not tenable. This assumption implies 
two contradictions with the established facts for high frequency re- 
turn series; One, there are only two variance levels (instead of a con- 
tinuum as for example in the GARCH models) and two, all moments 
exist by assumption. The latter result is clearly in contradiction with 
the literature on the extremal behaviour of returns (see Koedijk et a1 
(1990) or Jansen and de Vries (1991)). Moreover, it is evident that in 
this case too, the higher moments are totally determined by the res- 
pective variance levels through the assumption that each regime 1s de- 
finedby a normal density. In contrast with the GARCH literature, how- 
ever, one could model the higher order time variation without major 
complications in the framework of Markov switching models. 

The purpose of this paper is to adjust the standard Markov switching 
model to resolve the issues raised above. More specifically, the main 



objective of this paper is to come up with a model that combines vola- 
tility clustering with at least some variance independent variation in 
the higher moments. Given the switching structure of the model, this 
can be accomplished in a rather straightforward manner. Such a mo- 
del is obtained by substitution of noncentral Student-t distributions 
for the normal distributions. This substitution allows a variance inde- 
pendent modelling (at least partially) of the higher moments via the 
determination of the respective degrees of freedom for the densities 
associated with each regime. Distributions can therefore differ in more 
than their scales across regimes. Here the models adds new insight 
that are not obtained in the standard literature. In section I1 of the 
paper we show how this slight extension also allows for a continuum 
of variance states, in contradistinction with the standard Markov 
switching model. Moreover, we discuss the implications of these sub- 
stitutions for risk assessments purposes. Clearly, other applications 
such as option pricing are also feasible. However, they fall outside the 
scope of this paper. In section 111 estimates and tests for both mo- 
dels, the standard and the T-Markov switching model, are reported. 
To anticipate, we find that the extended model outperforms the stan- 
dard one. Finally, conclusions summarise the most significant fin- 
dings. 

11. THE T-MARKOV SWITCHING MODEL 

Consider the following model, There is an unobserved state variable 
S,. This variable can take two values 1 or 2, referred to as 'regimes' or 
'states', and follows a first order, discrete state space discrete time, 
Markov process. This variable, S,, can be interpreted as the 'type' of 
news releases in the foreign exchange market1. News is thus either of 
'type 1' or 'type 2'. The exact properties of each 'news type' are defi- 
ned by the parameters of the density, associated with each regime, 
from which the return is drawn. By assumption both densities are con- 
strained to the class of normals, denoted by N(p(s,),  rs2(s0 t ) ) .  These 
densities, and their parameters, define the way in which the markets 
tlansfolm newb into jiogj price changes, i.e. the return. For example, 
news can be important or not. If and when important news arrives the 
reaction of the financial markets is likely to change accordingly; large 
price changes are to .be expected. Unimportant news will be neglec- 
ted by the markets, changing prices only marginally. Within the Markov 
switching framework, the above characterisation could be filled in as 



follows: there are two news states, labelled one and two. The first state 
refers to releases of important news, the other to unimportant news. 
The market reaction is modelled through the respective densities as- 
sociated with each of the states. The density for state one will have a 
large variance, indicating the considerable price movements in that 
state other density will be relatively small compared to the former. 
Other types of news classifications are possible too. For example good 
versus bad news classes which would be modelled through the respec- 
tive means. 

The density within each state is normal with means dependent on 
the state and a variance level that depends both on the state, S,, as on 
time, t. . More specifically, we assume that the precision, the recipro- 
cal of the variance, is an i.i.d. draw from a gamma distribution, 
G(O-2; i (~ , ) ,~(~, ) ) ,  with state dependent parameters. The variance can, 
within each state, take any value on R+ since the support of the gam- 
ma distribution is R+. The parameters, that depend on the state, de- 
fine the moments of the precision. They define thus the average va- 
riance in the state as well as the variance of the variance. A more de- 
tailed account of this part of the model can be found below. Less at- 
tention is paid to the respective means of the normal densities. They 
are a direct function of the state. Given the quasi martingale beha- 
viour, it is evident that this part of the model will be less important. 

The conditional density for the returnX conditional on the unob- 
served state variable S ,  denoted by F(X, I S,) is a compounded mixture 
of a normal measurement equation and a gamma transition equa- 
tion, i.e. 

It is well known in the statistical literature that this compounded 
distribution reduces to the noncentral Studentat distribution with lo- 

~ ( s t )  cation p@,), scale *(S,) =- and degrees of freedom v(s,) =2~(s , ) .  
Vs,) 

The moments of the returnX, conditional on S,, are then given byp(s,) 

and *-'(s,)[*] respectively for mean and variance. All the parts 
v(s,)-2 

discussed above give the model presented in (2): 
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P =l I with P the Markov transition matrix for S, 
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The model thus copes with both objections raised in the introdue- 
tion. First the variance is allowed to take any value on R+ and second- 
ly the degrees of freedom of the respective Student-t distributions can 
restrict the number of finite moments to any positive integer value. 
These are the most important differences with the standard Markov 
switching model: the specification of the underlying densities. For the 
extreme case where the degrees of freedoin approach infinity both mo- 
dels yield identical results. 

To further the understanding of the model it is instructive to ana- 
lyse the system in (2) in greater detail. As mentioned above we iden- 
tify two regimes by their differences in the type of the news released. 
Anticipating the empirical outcome, these types are distinguished by 
the statistics of the inverted gamma distribution, 3L(s,) and K($,). In 
other words, news types are defined by the different characteristics 
of their sizes (important versus unimportant news), 3L(s,) and K(s,), not 
their means (good versus bad news, as is the case for the studies for 
lower frequencies see Engel(1994) and Engel and Hamilton (1990)). 
The parameters l. and K are sufficient statistics to specify the charac- 
teristics of the size of the news component. More specifically, they de- 
fine all the moments for the precision variable G-' 2. The mean and 

K K 
variance are - and 7, respectively. From these formulas it is easily a 3L 
seen that the precision, and thus the variance of the return, can have 
very different properties depending on the values of both statistics. 
For example, if the mean precision isA, such that K=A~L, we can have 



a whole range of variances associated with this mean. Since the va- 
A 

riance of the precision variable is then given by - all variances on R+ 
h 

can in principle be obtained. The setup considered here thus adds a 
dimension to the standard model in terms of the characteristics of the 
news types. These types are distinguished on their average precision 
and its variance. The former determines the average news content and 
the latter determines the degree of heterogeneity in the news content 
within one regime. 

A concise measure for the amount of heterogeneity in each regime 
is given by the 'signal to noise ratio', i.e. the ratio of the mean over 
the standard deviation of the precision. This ratio is given by d ~ .  The 
higher K, the higher this signal to noise ratio and the less important 
the idiosyncratic movements (heterogeneity) in the precision pro- 
cess. This characterisation of the process of the precision variable is 
transformed into the parameters of the noncentral Student-t distri- 
bution through the evaluation of the integral in (1). As was noted 

K 
above, the scale of the Student-t distribution equals 13=- and mea- 

?L 

sures the average mean precision. The degrees of freedom are v = 2 ~  
and are as such one to one with the above discussed heterogeneitymea- 
sure. 

The unobserved component s determines the distribution from 
which the return is drawn. This variable follows a first order Markov 
process in discrete time and discrete state space. The dimension of 
the state space defines the number of 'types' of news distinguished. 
In line with the current literature we restrict this dimension to at most 
two. The actual characterisation of the different types is an empirical 
matter and is obtained by estimating the coefficients of the two Stu- 
dent-t distributions. The probabilistic law that governs this state va- 
riable is summarised in the transition matrix P. Each entry in this ma- 
trix defines a transition probability as follows P,j=Pr[s,+ l = i  Is,=Jl. 
For example, in equation (2),p is the probability that one stays in re- 
gime 1 given that we are in regime 1. The diagonal elements thus 
measure the inertia ef each of the regimes. The interpretation of this 
Markov process is in terms of the way that news evolves over time. It 
gives some insight in how news types are released through time. For 
example news of the same type can be clustered, independent or anti- 



clustered in time if the diagonal elements of P are larger than, equal 
1 

to or lower than -, respectively. 2 
The practical relevance of this extension to the standard Markov 

switching model is an empirical matter and is linked to the level of 
the degrees of freedom. If the degrees of freedom turn out very high 
say thirty or higher, the model does not add anything significant to 
the standard mixtures of normals. However, when the degrees of 
freedom are low, there can be large differences in inferences. In or- 
der to illustrate this point we analyse the lower exceedance probabi- 
lities according to each of these models. These probabilities can be 
regarded as the probability assessed by the investor of an investment3 
return lower than a certain benchmark a. This probability can be writ- 
ten in function of s, (for K =  1,2) as 

Pr[X,+, <als, = K ] =  Pr[s,+, = lJs t  =K] 7 F(Xls,+, = l ) d X +  
4 

Pr[s,+, = 2/s, = K] 7 F(XIs,+, = 2)d X - (3) 

Figure 1 plots these probabilities for both the (standard) mixture 
of norrnals model and the extended one (with Student-t distributions). 
First, we concentrate on a simplified symmetric version of the model 
withp=q=0.9, v,=v, and p l  =pZ=O where the subscripts denote the 
value for the state variable S,. The probabilities plotted in this figure 
represent the difference between the risk assessed using a mixture of 
normals model and the extended one. Both sets of parameters were 
chosen such that the variances within each regime are identical across 
models. This allows the interpretation of the probabilities in figure 
one as the error one makes when one would use the standard model 
if the DGP would be a mixture of Student& distributions. The values 
are defined as the cumulative distribution function of the mixture of 
t's minus the cumulative distribution of the mixture of normals. It is 
very clear that the evaluation of risk differs drastically depending on 
the model used. Typically in this setting, the use of the mixture of 
normals leads to an underestimation of extreme events and an overesti- 
mation in the centre of the distribution. 

These errors moreover tend to be larger the more the mixture of 
normals disagrees with the real underlying process, which is assumed 
to be the mixture of Student-t's. 



FIGURE 1 

Risk ei~ahintiol~ uizder dzffereizt ?node1 speczficntroiz 
(relatzve to starzdnrd model) 

Dashed: DF=IO. full line DF=3 

This can be seen by noting that the differences decline when one 
goes from the Student-t with three degrees of freedom to the one with 
ten. Eventually, the difference between the models converges to zero 
as the degrees of freedom approach infinity. 

Other features of the mixtures of Student-t distributions are note- 
worthy. For example, in contradistinction with the mixture of nor- 
m a l ~  or the GARCH models, this model allows for time variation in 
the higher moments which is not related to the variation in the scale. 
This is one of the most important assets of these models. This feature 
is illustrated in Figure 2. 



FIGURE 2 

Risk evaluatiorz for T-Markov model with different degrees of freedom 

Dashed: DF=IO (Regime 2), full line DF=3 (Regime 1) 

In this figure, we plotted the cumulative distribution function for a 
T-Markov switching model where the only difference between the re- 
gimes is due to the degrees of freedom (regime one has three degrees 
of freedom, regime two has ten). More specifically, the variances do 
not differ across regimes. Since the variance does not change through 
time, an investor looking at the behaviour of the variance to assess 
the risk of his portfolio would find that risks do not change. This would 
also be the conclusion of applying standard Markov switching models 
or GARCH models. Yet, risks can differ significantly as is illustrated 
in Figure 2. If we are currently in regime one, risks of extreme events 
in the next period tend to be higher than if we were in regime two. 
This is so because if we are in regime one we have a.9 probability of 
drawing from the Student-t distribution with three degrees of freedom 
and only a.1 probability of drawing from the less leptokurtic distri- 
bution. In regime two the opposite occurs; a.9 probability of drawing 
from the less leptokurtic distribution and oniy.1 from drawing from 
the one with three degrees of freedom. These asymmetries are clear- 
ly reflected in the shape of the cumulative distribution function. Risk 
positions do differ even though variances are equalised across regi- 
mes. The T-Markov model can accommodate these higher order dif- 
ferences because it does not assume, unlike the mixture of normals 



model or GARCH, that the returns are drawn from distributions that 
only change in function of their scale. Instead, through the indepen- 
dent modelling of the degrees of freedom, return distributions can dif- 
fer in other dimensions, defining the higher moments, as well. In the 
next section we proceed by estimating the this extended model. 

111. EMPIRICAL RESULTS 

111 this section we cstirnate both the standard mixture of normals mo- 
del and the extended model. We obtain the characterisations of the 
news types and of the way in which these news releases evolve over 
time. Next, both models are tested against each other which gives us 
a final description of the conditional densities for the return process. 

Both models are estimated for three major free floating foreign ex- 
change rates, i.e. the British Pound (BP), the French Franc (FF) and 
the Deutsche Mark (DM) all quoted against the US Dollar. The data 
series are weekly returns compiled by Datastream for the period 1973- 
1990. The return is defined as the first difference of the log prices. 
Different algorithms are available to estimate the model. We use the 
maximum likelihood method with numerical first and second order 
derivatives, see Hamilton (1989) and Kaminsky (1993)~. 

The estimation results are presented in Table 1. Both models are 
equivalent as far as the means are concerned. These means are, more- 
over, statistically insignificant from zero as one would expect on the 
basis of the quasi martingale behaviour of high frequency returns. 
News types are, therefore, not distinguished by their mean values but 
on the basis of the higher moments. In these moments the models dif- 
fer. This is easy to see by concintrating on the estimated degrees of 
freedom in the extended model. For the extended T-Markov switching 
model, we find extremely low values for the degrees of freedom for 
both states. The standard model in contrast assumes infinite degrees 
of freedom. 



Estiinntes for staizdnrd and T-Morkov swltchiizg model 

P, h 01-I 0;' v, v2 P LR 
DM stand. -.48 -.72 46.7 324.7 m m ,896 ,939 12.59 

(55) 
T -.97 

(37) 
BP stand. .63 

(.37) 
T .48 

(.21) 
FF stand. -.033 

(.50) 
T -.55 

(.36) 

Notes: Stand. refers to the estimates for the standard Markov switching model while T denotes 
the extended T Markov switching model. DM, FF and BP stand for Deutsche Mark, French 
Franc and British Pound, respectively. Returns are multiplied times 1000. Numbers within 
brackets are the standard errors. The entry LR is the likelihood ratio test of the null 
hypothesis of degrees of freedom equal to 240 in both states. The test is asymptotically chi- 
squared with two degrees of freedom. 

Going from the mere description of differences in the estimates to 
rigorous statistical testing is not straightforward in this framework. 
The main reason for this is that the two models are not nested. True, 
the extended model has the mixtures of normals as a special case, i.e. 
for v,=m. However, statistical tests such as the Likelihood ratio tests 
require a compact parameter space, excluding infinity as a valid al- 
ternative. Statistically speaking, the two models are not nested. If one 
pursues such tests one will have deformations of the asymptotic dis- 
tribution of the test statistic. Fortunately these deformations are such 
that the test statistics become overconservative, i.e. they do not reject 
the null hypothesis often enough. For a lucid discussion on this issue 
see Bollerslev (1987). Therefore, if one proceeds by testing the null 
of normality using standard procedures and one reject the null hypo- 
rhesis, then, a forriori, one wouid reject the nuIi hypothesis if the ap- 
propriate, but difficult, amendments were made on the asymptotic test 
distribution. We follow a slightly different approximation based on an 
equivalent argument. In this paper we test two extended Markov 
switching models against each other, the unrestricted one and one with 
a high but finite degrees of freedom (say 240 for each distribution). 



In this framework the standard tests are valid. Given we reject the null 
hypothesis of 240 degrees of freedom we conclude that the normal 
model must be rejected as well. The argument being that the exten- 
ded model with 240 degrees of freedom and the mixture of normals 
models are for all practical purposes equivalent5. The null hypothesis 
to contrast both models is thus given by H, : v,=240, i =  1,2. The like- 
lihood ratio test is chi-squared with two degrees of freedom under the 
null hypothesis. Results for this test can be found under the entry LR 
in Table 1. As can be seen we reject the mixture of normals for each 
of the series at the weekly frequency. This establishes the superiority 
of the extended T-Markov switching model over the standard mixtu- 
res of normals model. 

The retained T-Markov switching model agrees with three stylised 
facts of high frequency returns. First, the behaviour is martingale like, 
we could not reject means equal to zero. Secondly, the high inertia in 
the Markov process, i.e. high diagonal elements in the transition ma- 
trix, suggests a clustering of the news types through time. Since the 
types are characterised by (very,) very different variances we obtain 
volatility clustering through the news 'type'clustering. Finally, the 
number of finite conditional and unconditional moments is very low. 
This agrees with the literature on the extremal behaviour of exchange 
rate returns. More specifically, for most exchange rates we found only 
the first two moments to be finite. This, in conjunction with the high 
inert states, agrees with the GARCH versus IGARCH discussion in 
the more traditional literature. 

The most prominent difference between the standard and the ex- 
tended modelis theway one models the behaviour of thevariancewith- 
in the same regime. According to the standard model this is a con- 
stant. In contrast, the extended T-Markov switching model allows for 
idiosyncratic noise in the variance. This amendment is essential given 
the relatively low value of the signal to noise ratio for the precision 
(i.e. the reciprocal of the variance) in each state. These values sug- 
gest considerable (and i.i.d.) deviations from the mean precision in 
each regime. These mean precisions differ drastically across regimes. 
Moreover, we I'ounci that tkt: Izveis ul  hztcrogeneity as measured by 
the signal to noise ratio differ (LR statistics for the British Pound and 
the French Franc reject the null hypothesis of equality of degrees of 
freedom at 10%). 

We can thus characterise the return (news) process as follows. News 
type releases evolve over time in a clustered way. Important news tends 



to be followed by important news until a shift occurs to less dramatic 
news period which remains then for quite a while until a juicy news 
period arrives again ... The variance of each regime is however not a 
full characterisation. Volatility levels, read news contents, differ dras- 
tically within each state. Typically for each exchange rate we found that 
the regime with the highest variance (news contents) also displays the 
highest degrees of freedom and thus the lowest heterogeneity. There- 
fore, it can happen in periods where important news is released that 
less important information arrives but on average the news content 
will be high. But the reverse, a one week important news release amidst 
a period of irrelevant news is more likely to occur as the heteroge- 
neity measure in the low variance period is much higher. This con- 
trast with the traditional approach were it was assumed that the news 
content, as measured by the variance, did not change within each re- 
gime. 

Finally, the model has pointed to an important extra dimension for 
risk evaluation. For most currencies we found that regimes differ both 
in their scales and their degrees of freedom. The direct link between 
higher variance and higher risk is therefore no longer valid as was il- 
lustrated in Figures l and 2. An evaluation of the higher moments is 
needed as well. 

IV. CONCLUSION 

In this paper we extended the standard mixture model of Hamilton 
(1989) to incorporate both a continuum of variance states as well as a 
restricted number of finite moments. Both facts are not possible in 
the standard approach and this gives rise to some conflicts with esta- 
blished facts as far as high frequency returns are concerned. The way 
these facts are incorporated is by changing the standard normal den- 
sities to noncentral Student-t distributions. Via some well known re- 
sults on compounded mixtures it is shown that this amendment is suf- 
ficient to accommodate both stylised facts. 

Next we estimated both the extended and the standard model and 
tested both models againsi each other. "V'\it: Tuund, rlvi surprisingly, thdt 
the extended model yielded extra information on the process driving 
weekly returns of major currencies. An interpretation of the diffe- 
rent parameters of the mixture o f t  distribution in terms of news types 
was used. In this framework we conclude that the news types are cha- 
racterised by their scale and degrees of freedom. These variables sug- 



gest that news is distinguished more on its impact (i.e. the relevant 
content of the news as measured by its variance) than on the direc- 
tion of the news (i.e. good or bad news). Moreover, the low degrees 
of freedom suggest that, also within one regime heterogeneity in va- 
r iance~ (news contents) are important. Moreover, we found statisti- 
cally significant differences in degrees of freedom. These differences 
add an extra dimension to the evaluation of the risks of certain invest- 
ment schedules. Variances no longer suffice, since densities differ 
across regime in other dimensions as well. 

A part from a more detailed characterisation of the types of news, 
the paper contributes to the current debate on the appropriate speci- 
fication of conditional distributions of returns. This specification- 
debate is currently reopened due to the increasing popularity of as- 
sets with high nonlinear payoff profiles. In order to assess some of the 
moments of investments in these assets one relies more and more on 
the Markov switching models. These models have the advantage that 
the distributions remain tractable. Of course the quality of the mo- 
ment predictions rests on the quality of the description of the distri- 
bution. In this paper it is shown that the standard model, currently 
used in these types of exercises, is certainly not the optimal descrip- 
tion. A better one is the mixture of Student-t distributions. 

An illustration of the model was provided in terms of the evalua- 
tion of risks associated with a simple one period investment. Other 
examples, such as option pricing might be considered as well. for op- 
tion pricing, results are likely to be even more pronounced as the in- 
herent nonlinear payoff structure makes differences in higher mo- 
ments even more important. However, this is left for future research. 
other potential applications of this model are numerous. To name only 
a few, one might evaluate, using this extended model, to evaluate the 
asymmetric behaviour of shocks over the business cycle or one might 
analyse stock market crashes in terms of the degrees of freedom of 
the underlying distributions. 

NOTES 

1. We use the terms news and returns interchangingly throughout the remainder of the pa- 
per. Such an equivalence will only be appropriate if the return process is a martingale. 
Although there may be some structure in the first moments, as is recently argued in the 
literature, this martingale assumption is not such a bad approximation. More specifi- 
cally in the framework of the Markov switching modcls we call not reject this assump- 
tion 



2. Note that we have to do the interpretation in terms of the precision variable, the inverse 
ol  ihc variance. This is due lu ille Jel~acn iuequalily. 11 we were to do tile irire~pretatiu~i 
in terms of the variance we would neglect the nonlinearity in the reciprocal transfor- 
mation. 

3. The investment schedule is very primitive. We analyse a one period investment in the 
underlying asset. 

4. Other algorithms are also available: the EM algorithm developed by Hamilton (1991) 
or a method of Moment approach. The latter one is however not yet fully reliable as 
shown in the literature. The former seems to be the more robust one. However, the first 
and second order derivatives are not easy to obtain due to the nonlinear filtering pro- 
blem and the use of noncentral Student-t distributions. We rely on the first algorithm 
presented in the literature. We rested the reliability of this snethod againsi ~ l l e  snore ro- 
bust EM approach and found that the former performs well. We were able to reproduce 
established results (which were based on the EM method) with the method used here. 

5. If one does not feel comfortable with this testing procedure, one can interpret the test 
results as obtained from the other method discussed. It turns out that the loglikelihood 
of the extended model with 240 degrees of freedom each is almost exactly the likelihood 
of the mixtures of normals models. Therefore, test results will be identical for both ap- 
proaches for these rates. In order to verify the overconservative character of the former 
approach a small monte car10 experiment was conducted. It was found that this feature 
was present for the relevant parameter values (i.e. values close to the estimated ones). 
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