
DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

ONDERZOEKSRAPPORT NR 9602

A Branch and Bound Algorithm to Optimize the

Representation of Tabular Decision Processes

by

Jan V ANTHIENEN

Elke DRIES

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONDERZOEKSRAPPORT NR 9602

A Branch and Bound Algorithm to Optimize the

Representation of Tabular Decision Processes

011996/2376/2

by

Jan VANTHIENEN

Elke DRIES

1. Introduction

Decision tables (DTs) were originally used as a technique in computer programming.
Due to its representational capabilities, its application area has extended later on (up
till now) to several other domains with logical complexity, such as: information
systems analysis and design, laws and regulations, structuring of management
decisions, medical diagnosis, etc. [12] [13] [15] [18] [25]. The most actual application
field of DTs is undoubtedly found in the area of knowledge based and expert
systems. Because of their ability to detect incompleteness and inconsistency in an
easy way, DTs are applied to verify and validate knowledge based systems and to
minimize maintenance anomalies [4] [7] [10]. Also some initial efforts are made to
use DTs in the knowledge acquisition phase [7] [8] [14] [19]. Furthermore DTs and
decision trees are important structures in inductive machine learning [11] [26].

Results with the PROLOGA system [22], a design tool for computer-supported
construction, manipulation, validation and optimization of DTs, show the ability to
acquire and verify knowledge in the form of a hierarchy of DTs. Depending on the
application, the hierarchy of validated DTs can be automatically transformed into a
desired target representation, such as text, optimal rules, tables or trees. This target
representation can then serve as a basis to automatically implement the decision logic.
Different implementation strategies can be chosen, such as program code, optimal
test sequences and implemented rules. In this way, the full trajectory of the life cycle
of the intelligent system is covered as complete as possible. Moreover, the automatic
transition between the different formalisms, makes it possible to change between
different views of the knowledge and to combine the advantages of different
representation formalisms [18] [19].

DTs occur in different formats [6] [21]. In a single hit table, each possible
combination of condition states is found in exactly one decision column, while in a
multiple hit table the columns are not exclusive. Single hit tables occur in expanded
or contracted form. In the expanded table, all combinations of condition states are
explicitly enumerated, while in the contracted table adjacent columns or groups of
columns that only differ in the state value of one condition and that result in the
same action configuration are joined, thus minimizing the number of columns. Only
expanded single hit DTs have the full capability to check a given specification for
completeness, consistency and correctness. Therefore, the expanded single hit table
is a suitable representation mechanism to acquire and verify knowledge. Once the
expanded DTs are built and validated, they can be contracted in order to optimize
the representation. Two types of contracted DTs are possible, depending on the fact
whether the order of the conditions remains fixed during the contraction process or
whether it is changed in order to obtain the simplest contracted DT. The overview
and readability of optimal contracted DTs make them very useful as target
representation. They can serve as a basis for implementation, document
implemented intelligent systems or support manual decision making. In this paper
an algorithm is presented to contract expanded DTs in an optimal way. The
algorithm is described in the context of its automation in the PROLOGA tool.

-2-

2. Concepts and purpose of the algorithm

A DTI describes a procedural decision situation, characterized by one or more
conditions, whose different combinations of states are uniquely related to a
combination of action values.

Each condition Ci (i = Lcnum) consists of a condition subject CSi, a condition
domain CDi' i.e. the set of all possible values of condition subject CSi' and a set of
condition states CTi = {Sik}, k = 1 .. statnum [i], with each condition state a logic
expression concerning the elements of CD j • The elements of CDi involved in a
condition state Sik determine a subset of CDi, such that the set of all these subsets
constitutes a partition of CDi.
Each action Aj (j = Lanum) consists of an action subject ASj and a set of action values
AVj = {true (x), false (-), nil (.)}.

A DT is a function from CT1 x CT2 X ... X CTcnum to AV1 x AV2 X ... X AVanum such that
each possible combination of condition states is mapped into one (completeness) and
only one (exclusivity) action configuration.

If each column of the DT contains only one state for each condition (no contractions
or irrelevant conditions), the table is called an expanded DT. Figure 1 shows an
expanded DT, representing the following decision situation, which is based on
examination regulations from practice (see [22] for an overview of the construction
of DTs with PROLOGA based on specification rules):

Examination Regulations

The Board of Examiners autonomously determines for every student the overall result of the
examinations, taking into account the provisions of articles 1 to 4. The Board thus decides
whether a student

- has passed;
- has not passed, with the possibility to carry over examination results;
- has not passed.

Article 1
A student who has obtained at least 10 points out of 20 for all courses has passed the
examination session.

Article 2
A student who has obtained more than 1 insufficient mark, as well as a student who did not
obtain at least half of the points for all of the courses taken as a whole, has not passed the
examination session. Students that have not passed, have the possibility to carry over
examination results for educational units for which they obtained at least 10 points out of20,
provided that marks have been attributed for all of the courses and provided that they have
obtained at least half of the points overall or have passed at least half of the courses.

I In the remainder of the text, the term DT only covers the single hit DT.

-3-

Article 3
For a student that has obtained at least half of the points overall and one insufficient mark, a
vote is taken in order to determine whether he/she has passed the examination session or
whether he/she has not passed with the possibility to carry over examination results.

Article 4
A student is proclaimed as not passing if he/she has registered for an examination session
and does not participate in the examinations or terminates participation. A student who did
not attend all examinations is not allowed to carry over any examination results.

The following conditions (items about which information is needed in order to make
a decision) and relevant condition states can be extracted from the text:

1. number of insufficiencies: 0, I, more;
2. overall points obtained by the student: <half, >=half;
3. number of courses the student has passed: <half, >=half;
4. participation in all examinations: yes, no.

The following actions (possible results of the decision making process) can be
extracted from the text:

1. the student has passed;
2. the student has not passed, but has the possibility to carryover examination

results;
3. the student has not passed;
4. a vote has to be taken in order to determine whether the student has passed or

has not passed with the possibility to carryover examination results.

These conditions and actions are found in shortened form in the left part of the DT.
All possible combinations of condition states are found in the upper right part of the
DT. Notice that the explicit enumeration of all possible decision cases guarantees
completeness and consistency and supports verification and validation of the
decision logic. Impossible combinations of condition states are assigned to a
supplementary action 'impossible'.

1. insufficiencies 0 1 more

2. overall points <half L >=half <half >=half <half >=half
----- -------- ----,------ -- ----,--- -

3. courses passed <half >=half 1 <half I >=half <half >=half <half >=half <half >=half <half >=half

4. attended all exams yiN yl N iY NIY N Y N yl N Y N Y N YiN yi N Y N Y N

1. passed 1 !
i

IX I -I - I ! 1 -

2. n passed carryover i ...:..~-:.--l~ . i· I xl I
xl x x

. -.-~.-:..- ~-' I ~ r-:-- . I .
r-j- I . I - -- - -:1-'; I -----

3. not passed i . i I· x X X X X X - l - . !. I

4. vote i I ! . I. I x 1 . I ! I

5. impossible K j x i
!x

!
X I x . I I . ·1 XI K K I . X x

1 12 31 4 15 61 7 8 9 110 11112 13 14 15 16 17 118 19120 21 22 23 24

Figure 1: Expanded DT

-4-

Once an expanded DT is validated, it can be simplified. The decision columns of a
contracted DT can contain a complete or partial contraction of condition states for
one or more conditions. A contracted DT can be constructed from an expanded DT
in the following way (see [20] for details on the contraction algorithms in PROLOGA):

adjacent columns or groups of columns that only differ in the state value of one
condition and that have equal action configurations can be contracted into
respectively one combined column or one combined group of columns. If all
condition states of the concerning condition can be combined (complete contraction) ,
it becomes irrelevant, which is denoted by means of a don't care entry. It is however
also possible that only a limited number of adjacent states can be combined (partial
contraction), in which case these states are connected with the OR-operator. Only
adjacent columns or groups of columns are considered in order not to violate the tree
structure principle, which provides an easy way to consult the DT. The limitation to
adjacent states stems from the fact that in most cases conditions take on numerical
values. The concerning condition states then reveal an order of ranking and
contracting non successive states would harm readability. Decision columns
corresponding with impossible combinations of condition states are contracted with
neighboring decision columns.
A contracted DT is a DT in which the number of decision columns is minimized for a
given condition order by means of this procedure. Figure 2 shows the contracted DT
corresponding to the expanded DT in figure 1.

1. insufficiencies 0 I 1 more
---t-_·- ,.--.. _--1--.----.-.

2. overall points - I <half >=half <half >=half

3. courses passed
....

- I - - <half >=half -
4. attended all exams Y Nly N Yi N - y N yl N

1. passed x -I . I . · I
2_ n paned carrl' 0 _ I x I x xl -
3_ not passed - x I- x --I--x x - x · I x

4_ i · I vote - - I . xl - - -

1 21 3 4 51 6
j 7 8i 9 101 11 ! ,

Figure 2: Contracted DT

The minimal number of decision columns to which a DT can be contracted heavily
depends on the test order of the conditions. Moreover, this test order can be subject
to precedence constraints. A precedence constraint indicates that a certain condition
should always be tested before another condition. These constraints can be
represented e.g. by means of a precedence matrix [Pij], i.e. a cnum X cnum square
matrix of zeroes and ones in which Pij = 1 if condition C i has to precede condition Cj

and Pij = 0 otherwise. Optimal contraction of a DT involves, besides the contraction
process itself, the determination of an optimal condition order, i.e. an acceptable
condition order which results in the minimum number of contracted columns. For a
table with N conditions, this implies a choice between N! alternative condition

-5-

orders (some of which might be infeasible because of the precedence constraints).
An optimal contracted DT is a contracted DT with a condition order which results in
the minimum number of contracted columns. Notice that optimality is defined in

terms of minimization of the number of decision columns and not as minimization of
the table width (space occupied by the DT). In this way the logical complexity of the
decision process is reduced as much as possible (see figure 3). Besides this reduction
in logical complexity, optimal contraction also has a positive effect on the time
needed to make a decision by means of the table. Therefore optimal contraction of
DTs can contribute to an enhanced efficiency and effectiveness in many complex
procedural decision situations. The algorithm presented in this paper transforms an
expanded DT into an optimal contracted DT.

1. attended all exams Y N

2. overall points <half >=half -
3. insufficiencies - 0 1 more -
4. courses passed <half >=half - - - -
1.

paued ~ . x ·
2. n passed carryover x . x ·

3. not passed - - x

4. vote - . x ·
1 2 3 4 5 6

Figure 3: Optimal contracted DT

3. Previous research

The application area of DTs has been limited for a long period (1950-1970) to the
world of computer programming. In this era, much research effort was devoted to
the (optimal) conversion of DTs into program code.

In the seventies, the application field started to enlarge towards various other
domains with logical complexity. More attention was paid to the construction
process of the DT, which contributed to the need for computer support for the
development of DTs and various automatic transformations and manipulations,
among which expansion and consolidation of decision columns.

Algorithms to simplify DTs were presented by Pollack [9], Shwayder [16] and
Strunz [17]. However, all of these procedures are either not guaranteeing a minimal
solution or not applicable to single hit DTs. In [16] e.g., the DT is transformed into a
multiple hit table (Le. a table with non-exclusive decision columns), which is -from
our representational point of view- an inferior variant of the DT [21]. Moreover, in
multiple hit tables, the condition order has no influence on the minimum number of
columns to which the table can be contracted, while this is precisely a critical issue
when working with single hit DTs.

- 6-

In 1981, Maes proposed an algorithm to find the condition order in a DT which
results in the minimum number of contracted decision columns [5]. However, the
approach did not deal with groups of decision columns that can be contracted. An
improved version was developed by Engelen and Vanthienen [3] [20].

The algorithm in this paper is an extension of this improved version. Various extra
features have been added in order to make it applicable in practice (such as the
possibility to impose precedence constraints, the possibility to identify impossible
condition combinations). Moreover, the algorithm is implemented in the PROLOGA

tool, as described in [1].

4. The algorithm

In this section a branch and bound algorithm is presented that determines an
optimal condition order of a DT, resulting in the minimum number of contracted
decision columns.

4.1. Preliminaries

The theorem on which the algorithm is based, is explained and illustrated with
regard to the DT of figure 42• For the sake of conciseness, no specific conditions and
actions are given. Conditions and action configurations are represented by a
number, while condition states are represented by a letter.

Cl a b c
C2 a b a b a
C3 a b a b a b a b a b a
C4 a b a b a b a b a b a b a b a b a b a b a b
AC 1 1 2 2 3 3 4 4 3 5 6 3 3 4 3 1 3 5 6 3 3 4

Figure 4: Example DT

Definition
The action configuration vector of state s of condition Ck, ACV [k, s], is the vector
consisting of the action configurations corresponding with state s of condition Ck

from left to right in the expanded DT. The order of ACV [k, s], IACV [k, s]I, is defined
as the number of different action configurations in ACV [k, s]. •

Example
With regard to the DT in figure 4, the following holds:

ACV [1, 1] = [11 223344]
ACV [1, 2] = [3 5 6 3 3 4 3 1]

IACV [1, 1]1 = 4
IACV [1, 2]1 = 5

2 At this point, it is assumed that no impossible condition combinations occur.

-7-

b
b

a b
3 1

ACV [1, 3] = [3 5 63 3 4 3 1]
ACV [2, 1] = [1 1 2235633563]
ACV [2, 2] = [334434313431]

Theorem

IACV [1, 3]1 = 5
IACV [2, 1]1 = 5
IACV [2, 2]1 = 3 •

Let Ck be a condition in a DT. A lower bound for the number of decision columns in
a contracted DT, in which Ck is the first condition tested, is:

statllllm[k]

LB[k] = L (IACV [k, s]1- X[k, s])
.1'=1

with statnum [k] : the number of condition states of condition Ck;

X [k, s] : the number of action configurations that has to be subtracted in case
state s of condition Ck can be contracted with state s-l;
X [k, 1] = 0;
X [k, s] = 0 if s> 1 and ACV [k, s] :;z': ACV [k, s-l];
X [k, s] = IACV [k, s]\ if s> 1 and ACV [k, s] = ACV [k, s-l]. •

Proof
It is a necessary though not sufficient condition for contraction of two decision
columns belonging to the same condition state, that these columns have equal action
configurations. As a result, the number of decision columns belonging to one
condition state, say s, of the condition Ck can be maximally reduced to the number of
different action configurations appearing in it (lACV [k, s]l).
If adjacent states of condition Ck have the same action configuration vector, these
condition states can be contracted. In this case, the number of different action
configurations belonging to the concerning states, have to be counted only once. •

Example
With regard to the DT in figure 4, the following holds:

LB [1] = (lACV[l, 1]\- X[I, 1]) + (lACV[I, 2]\- X[I, 2]) + (lACV[I, 3]\- X[I, 3])

= (4 - 0) + (5 - 0) + (5 - 5)

=9

LB [2] = (lACV[2, 1]\- X[2, 1]) + (lACV[2, 2]\- X[2, 2])

= (5 - 0) + (3 - 0)

=8

LB [3] = 9

LB[4]=IO.

4.2. The algorithm

The proposed algorithm uses the branch and bound technique. Each node of the
search tree corresponds with a partially defined condition order. For each condition

-8-

that is not tested yet, the lower bound is calculated for the number of decision
columns in a contracted DT which condition order meets the order supplied by the
node expanded with the concerning condition. These lower bounds act as limitation
factor curtailing the growth of the search tree. Different search strategies are
possible (depth first, best first). The search process continues until a complete test
order with the smallest lower bound, which then actually equals the number of
decision columns in the contracted DT, is found.

The lower bound of a condition in a node of the search tree is determined as follows:
with each combination of, contracted if possible, condition states of the conditions
that are already fixed, corresponds a subtable of the DT. For each condition (k) that
is not fixed yet and for each sub table (t), the minimum number of contracted
columns (when this condition is the first condition tested) is calculated as follows
(d. theorem):

.<tatnum[k]

LB[k, t] = 2: (lACV [k, s, t]\- X[k, s, t])
.<=1

with ACV [k, s, t] : ACV [k, s] in subtable t;
X [k, s, t] : X [k, s] in subtable t.

The lower bound of condition k (over all sub tables) is then given by:

LB[k] = 2:LB[k, t]
t

Example
Suppose with regard to the DT in figure 4 that condition 2 is already chosen. This
condition divides the DT in two subtables: one corresponding with condition state '
2a and one corresponding with condition state 2b.

The lower bound of e.g. condition 1 can then be calculated as follows:

LB[I] = LB[I, 1] + LB[I, 2] = 10

3

LB[I, 1] = I, (IACV[I, s, 1]1- X[I, s, 1])
3

LB[l, 2] = I, (lACV[l, s, 2]1- X[l, s, 2])
s=1 ,~=t

= (2 - 0) + (3 - 0) + (3 - 3) = (2 - 0) + (3 - 0) + (3 - 3)

=5 =5

Suppose now that condition 2 and condition 1 are chosen in this order. These
conditions divide the DT in 4 sub tables, corresponding with the condition
combinations (2a, Ia), (2a, Ib or Ic), (2b, Ia) and (2b, Ib or Ic).

The lower bound of e.g. condition 3 can then be calculated as follows:

LB[3] = LB[3, 1] + LB[3, 2] + LB[3, 3] + LB[3, 4]
=2+4+2+4

= 12 •

-9-

The structure of the algorithm when applying the depth first strategy and when
retaining one condition order, is given in figure 6. The algorithm operates as
follows:
The smallest number of columns found so far is stored in the variable TreeMin. A
partial condition order under investigation is extended only if its lower bound is less
than the value of TreeMin (in the other case, extension can impossibly result in a
better condition order than the one already found). Only extensions that are not
conflicting with possible precedence constraints are examined. When a complete
condition order is found with a lower bound less than the value of TreeMin, this
condition order and its corresponding lower bound become the best solution so far.
The algorithm ends when all the partial solutions that are generated are examined in
this way.

In PROLOGA, a DT is restricted to have 9 conditions, with a maximum of 6 states for
each condition and 1024 decision columns in the expanded DT. Large scale
problems are modeled by means of a hierarchy of DTs. These DTs can be
transformed separately into optimal contracted DTs. As performance is only related
to one table, it does not constitute a problem. Experience has shown that execution
time of the algorithm is negligible and produces no noticeable slow-down of an
interactive system.

4.3. Illus tratio n

Figure 7 shows the search tree that is generated when the algorithm of figure 6 is
applied with respect to the DT in figure 4. The (partially) defined condition order
corresponding with a node of the search tree is represented in the first box of each
node. The occurrence of e.g. the numbers 1,4,0, 0 in this box means that condition 1
is tested first, followed by condition 4, while the test order of condition 2 and
condition 3 is not determined yet. The number in the second box of each node
concerns the order in which the nodes are generated by the algorithm, while the
numbers in the last box represent the lower bounds of the conditions that are not
tested yet.

The optimal solution found by the algorithm is the condition order 1, 2, 4, 3. The
corresponding contracted DT has 11 decision columns (see figure 5).

Cl a borc
C2 a b a b
C4 - - a b a b
C3 a b a b a b a b - a b

AC 1 2 3 4 3 6 5 3 3 4 1

Figure 5: The resulting optimal contracted DT

-10 -

Set the value of TreeMin to infinity;
Set the value of EndOfAlgorithm to false;
Calculate the lower bounds of the elements of the root node, i.e. the
node in which no conditions are fixed yet;
Make the root node current;

While not EndOfAlgorithm do
Begin

Select in the current node the next element that has to be
evaluated;
Set the value of LB to the lower bound of this element;
If LB >= TreeMin
Then

Begin
If the element being evaluated is the last of its node
Then

Make the first ancestor that still has elements to evaluate
current, or, if no such ancestor exists, set the value of
EndOfAlgorithm to true

End
Else {LB < TreeMin}

End;

If the current node is a leaf
Then {a new minimal condition order is found}

Begin
Set the value of TreeMin to the number of decision columns in
the DT with the condition order of the current node;
Make the first ancestor that still has elements to evaluate
current, or, if no such ancestor exists, set the value of
EndOfAlgorithm to true

End
Else {current node is not a leaf}

If condition order is acceptable (i. e. if all conditions
that need to precede the current element are already
chosen)

Then
Begin

Branch the current element;
Make the child node current

End
Else {condition order is not acceptable}
If the element being evaluated is the last of its node
Then

Make the first ancestor that still has elements to evaluate
current, or, if no such ancestor exists, set the value of
EndOfAlgorithm to true

Figure 6: Structure of the algorithm

-11-

10,0,0,0 I
I 1 I

1 9
2 8
3 9
4 10

11,0,0,01

I 2 I

2 10
3 10
4 10

12,0,0,01

I 8 I
1 10
2 -
3 11
4 13

13,0,0,01

I 10 I
1 10
2 11
3 -
4 14

14,0,0,01

I 12 I
14

2 13
3 14
4

11,2,3,01

I 4 I

11,2,0,01 i / IfTl
I 3 1/ lli
lillJI ~ I~ 11,2,4,01 3 12

4 11 I 5 I

11,3,0,01

I 6 I rn-2 12
3 -
4 11

11,4,0,01

I 7 I rn-2 11
3 11
4 -

12,1,0,01

I 9 I

lillJ-2 -
3 12
4 11

13,1,0,01

I 11 I rn-2 12
3 -
4 11

lTD m

Figure 7: Example of a search tree generated by the algorithm

-12 -

4.4. Impossible combinations of condition states

In what precedes, it was assumed that no impossible combinations of condition
states occur in a DT. In practice, however, it is possible that there is no sense in
combining certain condition states. Different ways exist to deal with the occurrence
of impossibilities in a DT (see [21] for a discussion). One way is to contract
impossible combinations of condition states with neighboring decision columns. In
this section it is explained how the foregoing algorithm can be extended in order to
incorporate this kind of contraction. The difference, which is in the calculation of the
lower bound for the number of decision columns in a contracted DT, will be
illustrated with regard to the DT in figure 8. In this DT, action configurations are
indicated by positive numbers, while the action configuration part corresponding
with an impossible combination of condition states is given the number zero.

Cl a b

C2 a b c a b c

C3 a b a b a b a b a b a b

AC 1 2 1 2 0 1 3 0 0 2 2 0

Figure 8: Example DT with impossible combinations of condition states

Definitions

Let Ck be a condition in a DT and s a condition state of Ck' s > 1.

ACV [k, s-l] = [a j a2 ••• an] and ACV [k, s] = [b j b 2 ••• bn] are contractible
if and only if ViE {1, 2, ... , n} : if a j *- 0 and b j *- 0 ~ a j = bi"

The components c j of the contracted vector of ACV [k, s-l] and ACV [k, s],
contracted (ACV [k, s-l], ACV [k, s]), satisfy c j = max (ajl b j).

The order of ACV [k, s], IACV [k, s]l, is defined as the number of different non-zero
action configurations in ACV [k, s]. •

Example
With regard to the DT in figure 8, the following holds:

ACV [2, 1] = [1 2 3 0]

ACV [2, 2] = [1 2 0 2]
ACV [2, 3] = [0 1 2 0]

IACV [2, 1]1 = 3
IACV [2, 2]1 = 2
IACV [2, 3]1 = 2

ACV [2, 1] and ACV [2, 2] are contractible.
Contracted (ACV [2, 1], ACV [2, 2]) = [1232]. •

The consequence of contracting condition states 2a and 2b is that the impossible
combinations of condition states (lb, 2a, 3b) and (lb, 2b, 3a) are related to
respectively action configurations 2 and 3 in the contracted DT.

-13 -

Calculation of the lower bound
In the case that impossible combinations of condition states exist, the calculation of
the lower bound for the number of decision columns is more complicated, because
contractible action configuration vectors have to be actually contracted. The
following algorithm calculates the lower bound for the number of decision columns
in a contracted DT in which Ck is the first condition tested:

LB [k] : = 0;
contr .- ACV [k, 1];
for s : = 2 to statnum [k] do
begin
if contractible (contr, ACV [k, s])
then contr .- contracted (contr, ACV [k, s])
else
begin

LB [k] . - LB [k] + I contr I ;
contr . - ACV [k, s]

end;
LB [k] : = LB [k] + I contr I ;

Example
Applying the algorithm with respect to condition 2 of the DT in figure 8 results in

the following successive assignments to LB [2]:

LB[2]:= 0

LB[2]:= LB[2] + 1[1232]1

LB[2]:= LB[2] + 1[0 12 0]1

The final value for LB [2] is:

LB[2]=5 •

Remark
It should be noted that applying the above algorithm, not always results in a
minimal solution in the case that impossibilities occur. Suppose for instance the
following three action configuration vectors, corresponding with the three states of a
condition Ck :

[0 2 0 0] [1 0 2 0] [1 3 2 0]

Applying the above algorithm results in a contraction of the first two action
configuration vectors and a lower bound LB [k] = 5. However, contraction of the last
two action configuration vectors would have resulted in a lower bound LB [k] = 4.
This problem could be avoided by checking all possible ways in which the action
configuration vectors of a condition can be contracted. This would however result in
a severe increase in complexity. Since such a case does not occur frequently in
practice and in most cases a reasonable approximation of the minimal solution is
found if it occurs, we have chosen to implement the above algorithm in the PROLOGA

workbench.

-14 -

Conclusion

The representational capabilities of the expanded DT make it a valuable tool in
knowledge acquisition and verification and validation. The knowledge enclosed in
an expanded DT can be represented in several ways. In this paper a branch and

bound algorithm is presented to contract DTs in an optimal way. The algorithm

outperforms earlier algorithms and procedures with respect to the simplification of

DTs. It can be applied in order to optimize the representation of complex decision

processes.

References

[1] Bonami, C, De Optimale Volgorde van Condities in een Beslissingstabel, Dissertation,
KU.Leuven, Dept. of Applied Economic Sciences, 1993, 80 pp.

[2] CODASYL, A Modern Appraisal of Decision Tables, Report of the Decision Table Task
Group, ACM, New York, 1982.

[3] Engelen, J., Minimalisatie van de Omvang van Beslissingstabellen, Dissertation,
KU.Leuven, Dept. of Applied Economic Sciences, 1985, 89 pp.

[4] Hicks, R C, Minimizing Maintenance Anomalies in Expert Systems, Information &
Management, Vol. 28, 1995, pp. 177-184.

[5] Maes, R, Bijdrage tot een Kritische Herwaardering van de Beslissingstabellentechniek,
Doctoral Dissertation, KU.Leuven, Dept. of Computer Sciences, 1981, 397 pp.

[6] Maes, R., Van Dijk, J. E. M., On the Role of Ambiguity and Incompleteness in the
Design of Decision Tables and Rule-Based Systems, The Computer Journal, Vol. 31, No.6,
1988, pp. 481-489.

[7] Merlevede, P., Vanthienen, J., A Structured Approach to Formalization and Validation
of Knowledge, IEEEjACM International Conference on Developing and Managing Expert
System Programs, Washington, D. C, Sept. 30 - Oct. 2, 1991, pp. 149-158.

[8] Ngwenyama, O. K, Bryson, N., A Formal Method for Analyzing and Integrating the
Rule Sets of Multiple Experts, Information Systems, Vol. 17, No. I, 1992, pp. 1-16.

[9] Pollack, S. L., Hicks, H. T. Jr., Harrison, W. J., Decision Tables: Theory and Practice, John
Wiley & Sons, Inc., New York, 1971, 179 pp.

[10] Puuronen, S., A Tabular Rule Checking Method, Proc. AvignonB7, Vol. 1,1987,
pp.257-268.

[11] Quinlan, J. R, Induction of Decision Trees, Machine Learning, Vol. I, No. I, 1986,
pp.81-106.

[12] Remus, W. E., An Empirical Investigation of the Impact of Graphical and Tabular Data
Presentations on Decision Making, Management Science, Vol. 30, No.5, 1984,
pp. 533-542.

[13] Remus, W. E., A Study of Graphical and Tabular Displays and Their Interaction with
Environmental Complexity, Management Science, Vol. 33, No.9, 1987, pp. 1200-1205.

[14] Santos-Gomez, L., Darnell, M. J., Empirical Evaluation of Decision Tables for
Constructing and Comprehending Expert System Rules, Knowledge Acquisition, Vol. 4,
1992, pp. 427-444.

-15 -

[15] Shiffman, R N., Greenes, R A, Use of Augmented Decision Tables to Convert
Probabilistic Data into Clinical Algorithms for the Diagnosis of Appendicitis, In:
Clayton, P. D., ed., Symposium on Computer Applications in Medical Care, Washington
D. c., McGraw Hill, 1991, pp. 686-690.

[16] Shwayder, K., Combining Decision Rules in a Decision Table, Communications of the
ACM, Vol. 18, No.8, 1975, pp. 476-480.

[17] Strunz, H., Grundlagen und Anwendungsmoglichkeiten der Entscheidungstabellentechnik bei
der Gestaltung rechnergestiitzter Informationssysteme, Doctoral Dissertation, University of
Kbln (West Germany), 1975.

[18] Subramanian, G. H., Nosek, J., Raghunathan, S. P., Kanitkar, S. S., A Comparison of the
Decision Table and Tree, Communications of the ACM, Vol. 35, No.1, 1992, pp. 89-94.

[19] Tanaka, M., Aoyama, N., Sugiura, A, Koseki, Y., Integration of Multiple Knowledge
Representation for Classification Problems, Proceedings of the Fifth International
Conference on Tools with Artificial Intelligence, Boston, Mass., Nov. 8-11, 1993,
pp.448-449.

[20] Vanthienen, J., Automatiseringsaspecten van de Specificatie, Constructie en Manipulatie van
Beslissingstabellen, Doctoral Dissertation, K.U.Leuven, Dept. of Applied Economic
Sciences, 1986,378 pp.

[21] Vanthienen, J., Dries, E., Decision Tables: Refining the Concept and a Proposed
Standard, to appear in Communications of the ACM.

[22] Vanthienen, J., Dries, E., Illustration of a Decision Table Tool for Specifying and
Implementing Knowledge Based Systems, International Journal on Artificial Intelligence
Tools, Vol. 3, No.2, 1994, pp. 267-288.

[23] Vanthienen, J., Mues, c., Aerts, A, Wets, G., A Modularization Approach to the
Verification of Knowledge Based Systems, Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI 95), Workshop on Validation & Verification of Knowledge-Based
Systems, Aug. 19,1995, Montreal, pp. 96-102.

[24] Vanthienen, J., Wets, G., From Decision Tables to Expert System Sheils, Data &
Knowledge Engineering, Vol. 13,1994, pp. 265-282.

[25] Vessey, 1., Weber, R, Structured Tools and Conditional Logic: An Empirical
Investigation, Communications of the ACM, Vol. 29, No.1, 1986, pp. 48-57.

[26] Zhou, X.-J. M., Dillon, T. S., Theoretical and Practical Considerations of Uncertainty
and Complexity in Automated Knowledge Acquisition, IEEE Transactions on Knowledge
and Data Engineering, Vol. 7, No.5, 1995, pp. 699-712.

-16 -

Contents

ABSTRACT

1. INTRODUCTION

2. CONCEPTS AND PURPOSE OF THE ALGORITHM

3. PREVIOUS RESEARCH

4. THE ALGORITHM

4.1. PRELIMINARIES

4.2. THE ALGORITHM

4.3. ILLUSTRATION

4.4. IMPOSSmLE COMBINATIONS OF CONDITION STATES

CONCLUSION

REFERENCES

CONTENTS

-17 -

1

2

3

6

7

7
8

10
13

15

15

17

