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Prediction Focussed Model Selection for Autoregressive Models

Gerda Claeskens 1,2, Christophe Croux 1, and Johan Van Kerckhoven 1

Katholieke Universiteit Leuven

Summary

In order to make predictions of future values of a time series, one needs to specify a forecast-

ing model. A popular choice is an autoregressive time series model, where the order of the

model is chosen by an information criterion. We propose an extension of the Focussed Infor-

mation Criterion (FIC) for model-order selection with focus on a high predictive accuracy

(i.e. the mean squared forecast error is low). We obtain theoretical results and illustrate in a

simulation study that this FIC can outperform classical order selection criteria in the setting

with one series to predict and a different series for parameter estimation. We also demon-

strate, via a simulation study and some real data examples, that in the practical setting of

only one available time series, the performance of the FIC is comparable to the performance

of other information criteria.

Key words : autoregressive order selection, focussed information criterion, prediction, time

series

1 Introduction

In many fields of applied research (e.g. economics, demographics, . . . ), a variable is observed

over time, and the researcher wishes to model the time-structure of the data and predict

future values of the variable. This modelling consists of two important parts: first, the

general trend over time is modelled and seasonal effects are identified, and then the dynamic

structure of the resulting stationary series is investigated. In this paper we are concerned
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with the latter. A popular choice is the autoregressive model,

Zt = φ1(p)Zt−1 + · · ·+ φp(p)Zt−p + εt(p), (1)

which predicts the stationary variables Zt by its lagged variables. Model (1) is an autore-

gressive model of order p, abbreviated as AR(p)-model. The variables Zt have been centered

by their average, and the εt(p) are zero mean, white noise innovation terms. Modelling the

time series can serve many purposes, but usually the goal is to make accurate predictions of

the series in the unobserved future.

We focus on making forecasts of the series h steps beyond the last observation. Generally,

the accuracy of these forecasts depends on the autoregressive order p of the model used, in

other words on how far in the past we look in order to model the series. If we restrict ourselves

to only the recent past, p small, then we might fail to capture more long-term influences.

Conversely, if we include the far past, p large, then the accuracy of the predictions will

suffer because of the chosen model’s complexity. Hence, a balance between completeness

and simplicity must be chosen and a commonly used method of selecting an appropriate

AR-order is by computing the value of an information criterion for each candidate model,

and selecting the model with the best value of the criterion.

In this paper, we propose an adapted version of the Focussed Information Criterion

(abbreviated FIC) as defined in Claeskens & Hjort (2003). The main novel aspects are the

application to time series and that we allow the maximal order of the autoregressive model

to increase slowly to infinity as the length of the series increases. We also provide a bound

on the rate of this increase by adapting a theorem in Portnoy (1985) to the time series

setting. This result is needed because, originally, the theory behind FIC was developed for

the case where the maximal number of variables in the model, or in this case the maximal

considered autoregressive order, remains constant. We develop these ideas in the setting of

two independent realisations of the data generating process, hereby following Shibata (1980),

Bhansali (1996), and Lee & Karagrigoriou (2001). This framework is described in Section 2,

where we also provide an extension to the more realistic case of only one realisation of

the data generating process. Section 3 contains the derivation of the Focussed Information

Criterion.

In Section 4 we report the results of a simulation study. We compare the efficiency in
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mean squared error sense of the models selected by FIC, and two well-known criteria: AIC

(Akaike, 1974) and BIC (Schwarz, 1978), also sometimes called SIC. First, the two-series

setting is discussed, where AIC has been proven to be an asymptotically efficient criterion

(Shibata, 1980, Bhansali, 1996, Lee & Karagrigoriou, 2001). We expect FIC to perform

very well in this setting since, unlike AIC and BIC, it uses information from both available

time series. Moreover, FIC is constructed to minimise the estimated MSE of the predictions.

Additionally, we also performed a simulation study in the one-series setting. Recently, AIC

was proven to be also asymptotically efficient in this situation (Ing & Wei, 2005).

To illustrate the practical use of FIC, we compare in Section 5 the performance of the

aforementioned criteria on two real data examples. In Section 6, we provide some extensions

to the ideas presented in this paper such as the application of the FIC to simultaneously

select a subset of regression variables and the autoregressive order of the error terms, as in

Shi & Tsai (2004). Finally, we summarise and make some concluding remarks in Section 7.

2 Model Setting

In this section we state the model setting, and define h-step ahead predictions of a time

series (as in Shibata, 1980, and Bhansali, 1996). The true time series is a realisation of an

AR(∞)-process, and we approximate this by a finite order autoregressive model. We first

assume that we have a univariate time series {yt} available, where t = 1, . . . , T , and that we

want to make a prediction of this series at time-horizon h. We denote this prediction ŷT+h.

We also assume that we have a second series {xt} available of the same length T . These

two series are assumed to be independent realisations of the same length T of a stochastic

process {Zt}, with the following dependency structure,

Zt = εt + φ1Zt−1 + φ2Zt−2 + · · · . (2)

We assume that the innovation terms εt are independent and identically normally distributed,

with mean 0 and variance σ2. We also assume that the autoregression coefficients φi are

absolutely summable (that is
∑

i |φi| < ∞), and that the associated power series

Φ(z) = 1− φ1z − φ2z
2 − · · ·
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converges and is different from zero for |z| ≤ 1. Our goal is to select the best approximating

autoregressive model of order p, with 0 ≤ p ≤ pT , using the series {xt}. Here we allow the

maximal considered AR-order, denoted by pT , to depend on T . This is done because one

typically fits a time series model of a higher order if the length of the series increases. Next,

we use this selected model to make a h-step ahead forecast for the series {yt}. In practice,

however, the user often has only one time series {xt} available. In such case, we make a

h-step ahead prediction of the series {xt} itself. Our results are valid for both situations:

one series and two series. For notational simplicity, we continue to work in the two-series

setting. The results for the single-series setting are obtained by setting {yt} equal to {xt}.
There are two methods to make the h-step ahead forecast ŷT+h. The first method is the

direct method, which assumes that we estimate different models

Zt = φ1(p, h)Zt−h + · · ·+ φp(p, h)Zt+1−h−p + εt(p, h) (3)

for each horizon h. The εt(p, h) are assumed to have zero mean and variance σ2(p, h). We

forecast the series {yt} at horizon h by ŷT+h = φ̂1(p, h)yT + · · · + φ̂p(p, h)yT+1−p. Here,

the parameters φi(p, h) are estimated using ordinary least squares. This would make little

difference as opposed to using the maximum likelihood estimator, especially for large T , while

the ML-estimator would complicate the computations. The second method is the plug-in

method. This is the more common approach and follows immediately from the estimates of

model (2). Here, we compute recursively

ŷT+h(p) = φ̂1(p)ŷT+h−1(p) + · · ·+ φ̂p(p)ŷT+h−p(p) (4)

with ŷt(p) = yt for t ≤ T . Once again, the parameter estimates φ̂i(p) are obtained using

OLS. Observe that both methods are identical for h = 1. In the main part of this paper we

make predictions using the direct method, however, see Section 6.1 for the plug-in method.

The main advantage of using the direct method and not the plug-in method is shown in

Bhansali (1996). He showed that the lower bound on the MSE of predictions obtained via

the direct method method is lower than for the plug-in method. Also, he showed that for

the direct method this lower bound can be achieved, which is not the case for the plug-in

method.

Even in the situation of two independent series {xt} and {yt}, the classical information

criteria depend only on the series {xt}. As a consequence, the extra information contained
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in the series {yt} is ignored during the model selection step. In contrast, the Focussed

Information Criterion (FIC), as originally proposed by Claeskens & Hjort (2003) and further

explored and adapted in the rest of the paper, takes this extra information into account.

3 The Focussed Information Criterion

In this section we propose an extended version of the Focussed Information Criterion (ab-

breviated FIC) as defined in Claeskens & Hjort (2003). The idea of the FIC is that an

information criterion should take into account the purpose of the statistical analysis, by

trying to estimate the MSE of the estimate of a focus parameter. In our setting, this focus

parameter is the h-step ahead prediction of the time series. In this extension, we allow the

number of variables to increase towards infinity with the sample size. In time series analysis

we select an AR(p)-model which fits the available data best, with 0 ≤ p ≤ pT . Recall that

pT is the maximal autoregressive order, depending on the length of the series. We allow the

number of variables to increase to infinity by letting the maximal autogressive order increase

as the length of the time series increases. Using an adaptation of a theorem in Portnoy

(1985), we obtain an upper bound for this rate of increase such that the FIC theory still

holds. Aim is to predict the series {yt}, based on an AR-model estimated from {xt}.
At this point, we introduce some notation for the “direct” model (3). First, denote

the vectors xt(p, h) = (xt−h, . . . , xt+1−h−p)
′, φ(p, h) =

(
φ1(p, h), . . . , φp(p, h)

)′
, and y(p) =

(yT , . . . , yT+1−p)
′. The OLS-estimates based on the series {xt} of the parameters φ(p, h) are

φ̂(p, h). Consequently, the h-step ahead prediction of the series {yt} is ŷT+h = φ̂(p, h)′y(p) if

1 ≤ p ≤ pT , and ŷT+h = 0 for p = 0. Because our goal is to make this prediction as accurate

as possible, we take as focus parameter µ(p, h) = φ(p, h)′y(p).

Our goal is now to construct an information criterion aimed at selecting the model yield-

ing the “best” estimate for the focus parameter from the pT + 1 possible AR(p)-models.

“Best” is defined in the sense of having the lowest mean squared forecast error. If we select

the order p too low, the h-step ahead prediction of the series {yt} will be biased. On the

other hand, choosing p too high, will inflate the variance of the prediction. Therefore, we

need to select p such that the h-step ahead prediction has at the same time a small bias and

a small variance.
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To define the Focussed Information Criterion, we will assume that we work in the same

setting as in Claeskens & Hjort (2003). In particular, the results for the FIC apply in a

local misspecification setting where the true, or optimal, values of the focus parameters are

µtrue = δ(pT )′y(pT )T−1/2. Here, δ is a fixed (though unknown) vector of infinite length, of

which for practical purposes the first pT components are used, which are denoted by δ(pT ).

A similar setup is assumed for le Cam’s contiguity results, the local asymptotic normality,

and in calculations under local alternatives for hypothesis testing problems. Let JT,full be

the estimated pT × pT information matrix of the AR
(
pT

)
-model, the largest model under

consideration, and assume that this matrix is of full rank. Since we will use straightforward

OLS-estimation for the parameters, this matrix can be estimated by

ĴT,full =
R̂(pT , h)

σ̂2(pT , h)
.

Here

R̂
(
pT , h

)
=

1

T + 1− h− pT

T∑

t=pT +h

xt(pT , h)xt(pT , h)′ (5)

is the estimated autocovariance matrix of order pT of the series {xt}, and σ̂2(pT , h) is the

estimated variance of the residuals after OLS-estimation. On the other hand, R(pT ) is the

true autocovariance matrix of order pT , and σ2(pT , h) the true variance of the error terms.

Using the ML-estimator would increase the complexity of the information matrix in the finite

sample setting, while OLS and ML lead to the same limit expression for JT,full. We define

the matrices K̂T,p = σ̂2(pT , h)R̂(p, h)−1, and

M̂T,p = σ̂2(pT , h)


 R̂(p, h)−1 0

0 0


 of dimension pT × pT .

Finally, define

DT = δ̂(pT , h) =
√

T φ̂(pT , h).

The following proposition states the limit distribution of the estimated focus parameter.

This result is the cornerstone of the Focussed Information Criterion when applied in this

setting. The proof is found in the Appendix. Using similar notation as in Claeskens & Hjort

(2003), we set

δ(pT , h) =
√

Tφ(pT , h)
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and

δ(p, h) =


 R(p, h)−1 0

0 0


 R(pT , h)δ(pT , h).

Proposition 1 Take h fixed and let µ̂(p, h) = φ̂(p, h)′y(p) be the h-step ahead forecast of

the true value µtrue. Under conditions (A1), (A2), (A3) listed in the appendix and if

pT

√
log T

T
→ 0 as T →∞,

then we have for every 0 ≤ p < ∞
√

T (µ̂(p, h)− µtrue)
d−→ Λp, for T →∞, (6)

where Λp is normally distributed with mean and variance given by

λp = IE[Λp] = lim
T→∞

y(pT )′
(
δ(p, h)− δ(pT , h)

)
(7)

σ2
p = Var(Λp) = y(p)′R(p, h)−1y(p) lim

T→∞
σ2(pT , h). (8)

This proposition does not assume that the time series {xt} and {yt} are independent. In

fact, the results remain valid for yt = xt, stating the proposition for the single-series setting,

but conditional on the observed data.

Hjort & Claeskens (2003) prove (although not specific for time series) that the proposition

holds for a finite maximal AR-order pT . The additional condition on the rate of increase

of pT is a result of an adaptation of Theorem 3.2 in Portnoy (1985), which is formulated

as Lemma 1 in the appendix, where also the proof of Proposition 1 may be found. The

distribution of Λp in (6) is normal, with non-zero mean due to the local misspecification

setting in which we work.

The distribution of Λp is the key result upon which the FIC is constructed. Specifically,

the limiting distribution has mean squared error

r(p) = lim
T→∞

y(pT )′
(
δ(p, h)− δ(pT , h)

)(
δ(p, h)− δ(pT , h)

)′
y(pT )

+ y(p)′R(p, h)−1y(p) lim
T→∞

σ2(pT , h).

The FIC estimates this risk quantity for each AR-order p under consideration. To es-

timate r(p), we estimate the unknown R(pT , h) and σ2(pT , h) by R̂(pT , h), see (5), and
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σ̂2(pT , h). We also unbiasedly estimate the quantity δ(pT , h)δ(pT , h)′ by δ̂(pT , h)δ̂(pT , h)′ −
σ̂2(pT , h)R̂(pT , h)−1, where we used that Cov

(
δ̂(pT , h)

)
= σ2(pT , h)R(pT , h)−1. Finally, we

drop the limit of T tending to infinity. After some algebraic manipulation we get,

r̂(p) =
{

y(pT )′
(
δ̂(p, h)− δ̂(pT , h)

)}2

+ 2σ̂2(pT , h)y(p)′R̂(p, h)−1y(p)

− σ̂2(pT , h)y(pT )′R̂(pT , h)−1y(pT ).

If we add σ̂2(pT , h)y(pT )′R̂(pT , h)−1y(pT ), which is independent of p, we arrive at the more

compact expression for the FIC:

FICp =
{

y(pT )′
(
δ̂(p, h)− δ̂(pT , h)

)}2

+ 2σ̂2(pT , h)y(p)′R̂(p, h)−1y(p). (9)

We then select the AR-order p with the smallest value for the FICp.

4 Simulations

We present the results of a simulation study to examine the performance of FIC compared

to AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion), both in

the two-series setting and in the one-series setting. We provide the precise details of the

simulation settings, and give an interpretation of the results.

Recall that we estimate the parameters and select the AR-order using one series {xt}.
We also assume that the actual prediction is done on a different series {yt}, independent of

{xt}, though with the same stochastic structure. This is a similar setup as in Shibata (1980),

Bhansali (1996) and Lee & Karagrigoriou (2001). In practical applications however, such

a situation does not occur. Usually there is only a single time series available, and model

selection, as well as parameter estimation and prediction have to be done using this single

time series.

We performed simulation experiments to compare the performance of FIC with the more

classical AIC (Akaike, 1974) and BIC (Schwarz, 1978). In all the studies, the true data-

generating process is an ARMA(1,1)-model

Zt = φZt−1 + εt + ηεt−1,
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where εt ∼ N (0, 1) i.i.d., and both φ and η take values in {−0.9,−0.7, . . . , 0.9}. The sta-

tionarity and invertibility conditions on the parameters in this model reduce to |φ| < 1

and |η| < 1. Hence, the ARMA(1,1)-model has an AR(∞)-representation. We let both

parameters vary to examine whether or not the relative performance of the different infor-

mation criteria depends on the values of these parameters. Note that although the true

data-generating process is an ARMA(1,1)-model, this model is not included in the group of

considered models, i.e. autoregressive models of finite order. Hence, the selected model will

always be the “best” approximating model among the candidate autoregressive models.

In the first simulation experiment we generate for each setting a series {xt} of length

T = 200, which we use for both model order selection and parameter estimation. Then, for

each of the M = 1000 simulation runs, we generate an independent series {yt} for which we

make a prediction. This series {yt} is generated up to length T +h to allow an out-of-sample

estimate of the prediction accuracy of the h-step ahead forecast of {yt}. Based on the series

{xt}, we select the model as in (3) for 0 ≤ p ≤ pT , and h = 2, which yields the “best” finite-

order AR approximation of the series {xt}. We have chosen the maximal order pT = 20

here. For each simulation run, the selection is done by AIC, BIC and FIC. Once the model

is selected, a h-step ahead forecast is made of this series {yt} using the parameter-estimates

from the selected model of {xt}. This forecast is denoted by ŷ
(j)
T+h = y(ph,j)

′φ̂(ph,j, h), where

j is the number of the simulation run, and ph,j is the AR-order of the model selected for

the h-step ahead forecast in simulation run j. Note that for AIC and BIC the order of the

selected model is always independent of the series {yt} whereas for FIC the order of the

selected model will also depend on this series.

The second simulation experiment is similar to the first, except that the h-step ahead

forecast of the series {yt} is executed with the plug-in method. Hence, we select and estimate

the model (1):

Zt = Zt(p)′φ(p) + εt(p),

which fits the series {xt}, and use the estimated parameters to predict the series {yt} using

the recursion formula,

ŷT+h = φ̂1ŷT+h−1 + · · ·+ φ̂pŷT+h−p,

where ŷt = yt for t ≤ T and where ŷT+i is derived using the same relation as above, see also

(4).

9



For each simulation setting in the experiments above, we present the mean squared error

of the h-step ahead prediction of the series {yt}, where the prediction is performed using the

models selected by (i) AIC, (ii) BIC, and (iii) FIC. We define the Mean Squared Error by

MSE(ŷT+h) =
1

M

M∑
j=1

(ŷ
(j)
T+h − yT+h)

2,

with ŷ
(j)
T+h as defined above, and with yT+h the true generated value of the series {yt}. We

also define the Relative Mean Squared Error as

rMSE(ŷT+h, xIC1, xIC2) =
MSE(ŷT+h,xIC1)

MSE(ŷT+h,xIC2)
, (10)

where ŷT+h,xIC1 and ŷT+h,xIC2 are the h-step ahead predictions of the series {yt} made with

models chosen by respectively xIC1 and xIC2 as information criteria. If the relative MSE is

smaller than 1, it means that xIC1 selects models with a lower MSE for the h-step ahead

prediction than xIC2

Tables 1 and 2 present the simulated relative MSEs of the models selected by FIC with

respect to AIC (relative MSE(ŷT+h, FIC, AIC), top tables), and those with respect to BIC

(relative MSE(ŷT+h, FIC, BIC), bottom tables). A first examination of these tables shows

that they have a very similar structure. More precisely, we see that in the region where |φ+η|
is smaller than 1, FIC and AIC select models with about the same MSE for the 2-step ahead

predictor, since the values are around 1. When |φ + η| is large (top left and bottom right

corner of each table), we see that FIC selects models with a lower MSE for prediction of

the 2-step ahead estimator than both AIC and BIC. We also observe that the larger |φ + η|
is, the better the FIC performs as compared to AIC and BIC. Intuitively speaking, |φ + η|
large means that more coefficients of the AR(∞)-representation of the ARMA(1,1)-model

are significantly different from zero. The results of Table 1 (upper sub-table) are graphically

represented in Figure 1. We clearly observe a large area in the (φ, η) parameter space where

FIC performs much better than AIC (values below 1). In the center part of the graph, both

methods perform approximately equally well (values around 1).

We can explain why FIC selects models with a lower or equal MSE than AIC with the

following intuitive argument. Assume that we keep the two time series {xt} and {yt} fixed.

By construction, FIC is, up to a constant, an unbiased estimator of the asymptotic MSE for
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φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0.239 0.325 0.270 0.316 0.335 0.384 0.529 0.654 0.881 1.072

-0.7 0.582 0.721 0.735 0.709 0.770 0.978 1.032 1.022 1.051 1.104

-0.5 0.881 0.875 0.892 0.984 0.935 1.001 1.018 1.048 1.011 1.019

-0.3 0.998 1.069 1.022 1.093 1.001 1.136 1.044 1.029 1.020 0.979

-0.1 1.091 1.087 1.076 1.089 1.036 1.099 1.033 1.050 1.059 1.024

0.1 1.020 1.101 1.046 1.069 1.032 1.071 1.067 1.075 1.053 1.106

0.3 0.992 1.131 1.036 1.047 1.027 1.011 1.001 0.997 0.982 1.100

0.5 1.203 1.025 1.032 1.042 1.015 0.995 0.980 0.893 0.874 0.824

0.7 1.016 1.090 1.010 0.911 0.852 0.782 0.768 0.639 0.681 0.606

0.9 1.079 0.945 0.707 0.514 0.400 0.383 0.371 0.296 0.242 0.247

φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0.239 0.325 0.270 0.316 0.335 0.384 0.529 0.654 0.881 1.072

-0.7 0.582 0.721 0.735 0.709 0.770 0.978 1.032 1.022 1.051 1.104

-0.5 0.881 0.875 0.892 0.984 0.935 1.001 1.018 1.048 1.011 1.019

-0.3 0.998 1.069 1.022 1.093 1.001 1.136 1.044 1.029 1.020 0.979

-0.1 1.091 1.087 1.076 1.089 1.036 1.099 1.033 1.050 1.059 1.024

0.1 1.020 1.101 1.046 1.069 1.032 1.071 1.067 1.075 1.053 1.106

0.3 0.992 1.131 1.036 1.047 1.027 1.011 1.001 0.997 0.982 1.100

0.5 1.203 1.025 1.032 1.042 1.015 0.995 0.980 0.893 0.874 0.824

0.7 1.016 1.090 1.010 0.911 0.852 0.782 0.768 0.639 0.681 0.606

0.9 1.079 0.945 0.707 0.514 0.400 0.383 0.371 0.296 0.242 0.247

Table 1: Ratios of mean squared errors for the 2-step ahead prediction of the series {yt},
with model order selection using series {xt}, and prediction according to the direct method.

An ARMA(1,1)-process generated both series {xt} and {yt}. The autoregression parameter

φ can be found in the leftmost column, and the moving average parameter η is indicated

in the top row. The upper table shows the rMSE(·, FIC, AIC), the lower table shows the

rMSE(·, FIC, BIC), as defined in (10). If this ratio is smaller than 1, the FIC selects a

model with lower MSE for prediction.
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φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0.249 0.275 0.283 0.297 0.338 0.415 0.467 0.710 0.947 1.102

-0.7 0.649 0.655 0.673 0.749 0.799 0.841 0.907 0.974 1.005 1.076

-0.5 0.875 0.886 0.863 0.892 0.914 1.074 1.020 1.010 1.072 1.048

-0.3 1.036 1.002 0.982 1.068 1.002 1.013 1.020 1.051 1.063 1.042

-0.1 1.090 1.061 1.023 1.007 1.032 1.035 1.036 1.024 1.134 1.054

0.1 1.097 1.035 1.029 1.005 1.022 1.014 1.081 0.999 1.076 1.068

0.3 1.046 1.000 1.059 1.104 1.122 1.014 1.000 1.005 1.072 1.004

0.5 0.988 1.035 1.048 1.059 1.038 0.941 0.937 0.939 0.914 0.968

0.7 0.997 1.110 0.991 0.888 0.818 0.792 0.702 0.724 0.703 0.626

0.9 1.041 0.863 0.647 0.491 0.390 0.336 0.327 0.246 0.270 0.242

φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0.249 0.275 0.283 0.297 0.338 0.415 0.467 0.710 0.947 1.102

-0.7 0.649 0.655 0.673 0.749 0.799 0.841 0.907 0.974 1.005 1.076

-0.5 0.875 0.886 0.863 0.892 0.914 1.074 1.020 1.010 1.072 1.048

-0.3 1.036 1.002 0.982 1.068 1.002 1.013 1.020 1.051 1.063 1.042

-0.1 1.090 1.061 1.023 1.007 1.032 1.035 1.036 1.024 1.134 1.054

0.1 1.097 1.035 1.029 1.005 1.022 1.014 1.081 0.999 1.076 1.068

0.3 1.046 1.000 1.059 1.104 1.122 1.014 1.000 1.005 1.072 1.004

0.5 0.988 1.035 1.048 1.059 1.038 0.941 0.937 0.939 0.914 0.968

0.7 0.997 1.110 0.991 0.888 0.818 0.792 0.702 0.724 0.703 0.626

0.9 1.041 0.863 0.647 0.491 0.390 0.336 0.327 0.246 0.270 0.242

Table 2: Ratios of mean squared errors for the 2-step ahead prediction of the series {yt},
with model order selection using series {xt}, and prediction according to the plug-in method.

An ARMA(1,1)-process generated both series {xt} and {yt}. The autoregression parameter

φ can be found in the leftmost column, and the moving average parameter η is indicated

in the top row. The upper table shows the rMSE(·, FIC, AIC), the lower table shows the

rMSE(·, FIC, BIC), as defined in (10). If this ratio is smaller than 1, the FIC selects a

model with lower MSE for prediction.
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Figure 1: 3D-surface plot for the ratios of mean squared errors for the 2-step ahead prediction

of the series {yt}, with model order selection using series {xt}, and where prediction is done

using the direct method. An ARMA(1,1)-process generated both series {xt} and {yt}. The

autoregression parameter φ can be found on the phi axis, and the moving average parameter

η is indicated on the eta axis. The surface shows the rMSE(·, FIC, AIC) as defined in (10).

If this ratio is smaller than 1, the FIC selects a model with the lower MSE for prediction.
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the h-step ahead prediction. The model with the smallest value of FIC is selected. Or in

other words, we select the model with the smallest estimated mean squared forecast error.

In most applications however, we do not have 2 different time series available with the

same stochastic structure, and we have to construct our forecasts using the same series as that

we use to estimate the AR-parameters. A recent paper by Ing & Wei (2005), demonstrates

that AIC is asymptotically efficient in this one-series setting. We investigate this more

realistic situation of only one time series in the third and fourth simulation study. Therefore,

in the third simulation study we generate, for each of the M = 1000 simulation runs, a series

{xt} of length T = 200, and we select an AR(p)-model of the form (3) with 0 ≤ p ≤ pT , and

h = 2, which best fits this series. For each simulation run the selection is done by (i) AIC,

(ii) BIC and (iii) FIC. Once the model is selected, we make a h-step ahead forecast of this

series {xt}, using the direct method as described above, employing the parameter estimates

from the selected model. This forecast is denoted by x̂
(j)
T+h = xT+h(ph,j, h)′φ̂(ph,j, h), where

j is the number of the simulation run, and ph,j is the AR-order of the model selected for the

h-step ahead forecast in run j. The fourth simulation experiment proceeds along the same

lines as the third setting, with the exception that now, for the h-step ahead prediction of

the series {xt}, we use the plug-in method. The results of these simulation experiments are

summarised in Tables 3 and 4.

These tables show the relative MSE of the 2-step ahead prediction in the models selected

by FIC, compared to those selected by AIC (top tables) and compared to those obtained by

BIC (bottom tables). Table 3 shows the results using the direct method for forecasting is

done, and Table 4 shows the results for forecasting using the plug-in method. The favourable

results for FIC, obtained in the two time series setting (Tables 1 and 2), no longer apply. All

three criteria FIC, AIC, and BIC now perform similarly. This is observed more clearly in

Figure 2, which is a graphical representation. Across the entire range of the (φ, η) parameter

space, the surface is almost flat with values close to 1, from which we conclude that none of

the model selection methods significantly outperforms the others in mean squared prediction

error sense. Another observation is that the relative MSEs do not change significantly

whether we use the direct method or the plug-in method. Finally, comparing the MSEs of

the direct and the plug-in method with each, with model selection done using AIC, we found

that the methods perform comparably well in the two-series case. This was also true for
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φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0.994 0.997 0.990 0.992 1.010 1.008 0.999 1.006 1.024 1.058

-0.7 0.994 1.013 1.019 1.027 1.017 1.033 1.015 1.029 1.037 1.052

-0.5 0.985 0.985 0.997 1.036 1.014 1.050 1.030 1.041 1.019 1.041

-0.3 1.017 1.023 1.018 1.012 1.033 1.036 1.038 1.056 1.035 1.030

-0.1 1.041 1.049 1.047 1.058 1.035 1.059 1.034 1.047 1.052 1.031

0.1 1.026 1.049 1.044 1.020 1.039 1.040 1.036 1.029 1.023 1.045

0.3 1.043 1.052 1.062 1.019 1.031 1.035 1.019 1.017 1.012 1.043

0.5 1.016 1.043 1.042 1.036 1.021 1.017 1.009 1.035 1.050 1.024

0.7 1.027 1.042 1.054 1.011 0.997 1.011 1.006 1.024 1.002 1.020

0.9 1.022 1.015 1.022 1.030 1.000 1.025 0.999 1.003 1.003 1.006

φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 1.001 1.003 1.003 1.001 1.004 1.010 1.014 1.014 1.056 1.064

-0.7 1.027 1.036 1.022 1.035 1.022 1.044 1.029 1.051 1.038 1.069

-0.5 1.013 1.004 1.022 1.044 1.024 1.057 1.049 1.050 1.032 1.088

-0.3 1.050 1.073 1.050 1.031 1.067 1.044 1.053 1.066 1.069 1.060

-0.1 1.053 1.069 1.067 1.093 1.055 1.073 1.062 1.054 1.074 1.047

0.1 1.054 1.075 1.065 1.035 1.051 1.062 1.047 1.040 1.036 1.068

0.3 1.056 1.063 1.074 1.033 1.045 1.062 1.042 1.045 1.020 1.079

0.5 1.048 1.078 1.059 1.060 1.029 1.029 1.006 1.062 1.081 1.056

0.7 1.075 1.066 1.074 1.022 1.008 1.024 1.023 1.037 1.017 1.039

0.9 1.036 1.039 1.021 1.038 1.001 1.030 1.008 1.009 1.014 1.008

Table 3: Ratios of mean squared errors for the 2-step ahead prediction of the series {xt},
with model order selection using the same series, and prediction according to the direct

method. An ARMA(1,1)-process generated the series {xt}. The autoregression parameter

φ can be found in the leftmost column, and the moving average parameter η is indicated

in the top row. The upper table shows the rMSE(·, FIC, AIC), the bottom table shows

the rMSE(·, FIC, BIC), as defined in (10). If this ratio is smaller than 1, the FIC selects a

model with lower MSE for prediction.
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φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0.999 1.041 1.030 1.033 1.010 1.026 1.039 1.063 1.036 1.031

-0.7 0.997 1.010 1.026 1.010 1.032 1.026 1.026 1.023 1.050 0.998

-0.5 1.000 1.032 1.022 1.021 1.030 1.043 1.012 1.059 1.035 1.032

-0.3 1.016 1.032 1.010 1.029 1.020 1.027 1.046 1.022 1.023 1.027

-0.1 1.002 1.003 1.006 1.002 1.020 1.053 1.048 1.038 1.022 1.012

0.1 0.988 1.022 1.021 1.048 1.039 1.031 1.005 1.017 1.009 1.012

0.3 0.999 1.023 1.009 1.037 1.032 1.039 1.015 1.049 1.018 0.985

0.5 1.028 1.045 1.012 1.023 1.057 1.038 1.046 1.032 1.023 0.988

0.7 1.025 1.034 1.047 1.033 1.079 1.016 1.016 1.041 1.023 1.000

0.9 1.062 1.036 1.026 1.026 1.041 1.025 1.030 1.049 1.015 1.007

φ/η -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 1.020 1.042 1.040 1.070 1.029 1.029 1.051 1.049 1.028 1.034

-0.7 1.002 1.019 1.050 1.041 1.044 1.039 1.016 1.041 1.061 1.008

-0.5 1.011 1.057 1.021 1.032 1.060 1.058 1.031 1.071 1.033 1.039

-0.3 1.028 1.051 1.016 1.035 1.048 1.035 1.052 1.045 1.048 1.024

-0.1 1.032 1.000 1.012 1.019 1.032 1.067 1.054 1.052 1.025 1.030

0.1 1.016 1.030 1.024 1.070 1.042 1.042 1.018 1.033 1.011 1.029

0.3 1.024 1.019 1.011 1.040 1.050 1.052 1.029 1.052 1.038 0.997

0.5 1.018 1.075 1.030 1.028 1.062 1.046 1.062 1.039 1.043 0.991

0.7 1.002 1.046 1.057 1.029 1.095 1.021 1.012 1.053 1.022 1.011

0.9 1.068 1.011 1.029 1.039 1.056 1.044 1.049 1.060 1.012 1.010

Table 4: Ratios of mean squared errors for the 2-step ahead prediction of the series {xt},
with model order selection using the same series, and prediction according to the plug-in

method. An ARMA(1,1)-process generated the series {xt}. The autoregression parameter

φ can be found in the leftmost column, and the moving average parameter η is indicated

in the top row. The upper table shows the rMSE(·, FIC, AIC), the bottom table shows

the rMSE(·, FIC, BIC), as defined in (10). If this ratio is smaller than 1, the FIC selects a

model with lower MSE for prediction.
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Figure 2: 3D-surface plot for the ratios of mean squared errors for the 2-step ahead prediction

of the series {xt}, with model order selection using the same series, and where prediction

is according to the direct method. An ARMA(1,1)-process generated the series {xt}. The

autoregression parameter φ can be found on the phi axis, and the moving average parameter

η is indicated on the eta axis. The surface shows the rMSE(·, FIC, AIC) as defined in (10).

If this ratio is smaller than 1, the FIC selects the models with the lower MSE for prediction.
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the single-series setting, but only when the autoregression parameter φ was not close to ±1.

When φ is close to 1 in absolute value, we see that the direct method for prediction yields

higher MSE than the plug-in method.

5 Real data applications

In this section we compare the performances of AIC, BIC, and FIC on two real datasets.

The datasets used are the monthly US liquor sales data (Diebold, 2001, p. 54), and monthly

life insurance data (Data available at the URL:

http://www.econ.kuleuven.be/public/NDBAE06/courses/dynmodels/ASSVIE.XLS).

The life insurance data goes from January 1964 to December 1980, and denotes the net

number of new personal life insurances for a large insurance company. Since the theory above

is developed for stationary series, we first remove the trend and seasonality effects. First, we

take the logarithm of the series to make the variance of the innovation terms constant over

time. Next, we take the first differences to remove the trend, and take seasonal differences

to remove the seasonality effects, such that we have a stationary series. Out-of-sample h-

step ahead forecasting is used to estimate the mean squared errors for each of the three

information criteria, this for horizons h = 1, . . . , 5. More precisely, we start with the first

half of the series {xt}, that is 1 ≤ t ≤ T/2, and make a prediction of xT/2+h. We then add

the next observation, xT/2+1, and based on {xt}, 1 ≤ t ≤ T/2 + 1, make a prediction of

xT/2+1+h. This process is then repeated until we use all observations up to and including

xT−h to predict xT . We choose the maximal AR-orders of the models equal to pT = 15.

Next, we perform a pairwise comparison of the estimated MSEs for each h, and test whether

there are significant differences. The MSEs are estimated as

MSE =
1

T/2 + 1

T−h∑

t=T/2

(xt+h − x̂t+h)
2.

The comparison proceeds by the Diebold-Mariano test (Diebold, 2001, p. 293-294), which is

basically a type of paired t-test for equality of means. In this case however, the data consists

of squared residuals, one group for each information criterion. As it is likely that there is

serial correlation in these residuals, special care must be taken to determine the standard

error used in computing the t-values.
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(a) h = 1 h = 2 h = 3 h = 4 h = 5

MSE(AIC) 1.153 1.516 1.509 1.566 1.630

MSE(BIC) 1.392 1.715 1.713 1.781 1.855

MSE(FIC) 1.176 1.504 1.528 1.591 1.666

Diebold-Mariano test results

AIC–FIC –0.818 (0.413) 0.312 (0.755) –0.314 (0.753) –0.740 (0.459) –0.549 (0.583)

BIC–AIC 2.735 (0.006) 2.447 (0.014) 2.618 (0.009) 2.652 (0.008) 3.086 (0.002)

BIC–FIC 2.971 (0.003) 4.003 (0.000) 2.696 (0.007) 2.545 (0.011) 1.931 (0.053)

(b) h = 1 h = 2 h = 3 h = 4 h = 5

MSE(AIC) 94.51 149.46 134.68 120.46 113.94

MSE(BIC) 76.77 119.71 117.13 120.32 118.06

MSE(FIC) 84.74 137.28 124.18 118.36 120.91

Diebold-Mariano test results

AIC–FIC 1.892 (0.059) 1.300 (0.194) 1.006 (0.314) 0.180 (0.857) –0.560 (0.575)

BIC–AIC –2.086 (0.037) –2.212 (0.027) –1.888 (0.059) –0.016 (0.987) 0.390 (0.697)

BIC–FIC –0.807 (0.420) –1.191 (0.234) –0.549 (0.583) 0.142 (0.887) –0.227 (0.820)

Table 5: Comparison of the information criteria FIC, AIC, and BIC. The table contains

the estimated mean squared forecast errors (×10−3), and t-values (p-values) of the Diebold-

Mariano test. Results are given in (a) for the US Liquor sales data, and in (b) for the life

insurance data.
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Table 5 shows the estimated mean square forecast errors for the different prediction hori-

zons h and the different order selection criteria. It also shows the t-values and corresponding

p-values for the Diebold-Mariano tests. The upper table shows the resulting values for the

US liquor sales time series, and the bottom table shows the corresponding results for the Life

Insurance time series. A positive t-value means that the first criterion leads to predictions

with a higher MSE than the second criterion.

For the US liquor sales time series we observe that there are no significant differences

in performance between AIC and FIC. On the other hand, the BIC performs significantly

worse than both AIC and FIC. For the Life Insurance time series FIC performs slightly,

but not significantly, better than AIC. The BIC is not significantly better than the FIC. To

conclude, we can see that the three different information criteria perform equally well on the

two examples considered, hereby confirming the results of Section 4.

6 Extensions

In this section we list three extensions of the main ideas in this paper. First we explain

how the results need to be adapted in order to derive similar results for prediction with the

plug-in method. Second, we provide the expression for FIC when the impulse response is the

focus parameter. Third, we obtain an FIC definition for simultaneous selection of regression

variables and the autoregressive order of the error terms.

6.1 Using plug-in methods

Direct prediction results in a h-step ahead predictor which is a linear combination of the

parameter estimates. Therefore Proposition 1 is applicable. In contrast, the plug-in method

leads to a predictor which is a polynomial of order h of the parameter estimates, see equation

(4). In order to derive the distribution of the predictor in each candidate model, the first

main step is to show that a suitably scaled version of
√

T
(
g
(
φ̂(pT )

) − g
(
φtrue(pT )

))′
y(pT )

has an asymptotic normal distribution, where g(β̂) =
(
g1

(
φ̂(pT )

)
, . . . , gpT

(
φ̂(pT )

))′
with

gi

(
φ̂(pT )

)
a polynomial of degree h in φ̂1(pT ), . . . , φ̂pT

(pT ). The argument in the appendix

shows why this is the case in our setting. We then proceed by computing its limiting mean
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squared error, and by estimating this quantity in an unbiased way. This estimator is the

FIC, which is then computed for each candidate autoregressive order p. In our setting, it

has the same form as the FIC for the direct method (9), but with y(pT ) replaced by the

recursively defined

ω̂h(pT ) = m̂h(pT ) + Ω̂h(pT )φ(pT ).

Here m̂h(pT ) = (ŷT+h−1(pT ), . . . , ŷT+h−pT
(pT )) with ŷT+i defined as in (4). Also, Ω̂h(pT ) =

(ω̂h−1(pT ), . . . , ω̂h−pT
(pT )) where ω̂i(pT ) = 0 for i ≤ 0. The y(p) in expression (9) are replaced

by a vector containing the first p elements of ω̂h(pT ). This yields the FIC we have used in

the simulations of Section 4 for the plug-in method for prediction. The model finally selected

is, as before, the model with the lowest value of FIC.

6.2 Focus on the impulse response

Up to now the goal was to select the autoregressive order p to obtain the h-step ahead

predictor with the smallest value of the FIC. Here we change focus to the impulse response

at lag τ , denoted ı(τ). This situation, using FIC to select the best AR-order for making

estimates of the impulse response function at a certain lag, has been investigated via a

simulation study in Hansen (2005). Here we give a theoretical justification for the use of

FIC in this setting.

We use the same notation as in Section 2. The focus parameter µ introduced in Section 3

gets replaced by µ = ı(τ). The plug-in method based on model (1) leads to the following

estimated focus parameter

µ̂ = ı̂(τ) = φ̂1(p)̂ı(τ − 1) + · · ·+ φ̂p(p)̂ı(τ − p),

where ı̂(τ) = 0 for τ < 0 and ı̂(0) = 1.

From this expression it is clear that estimating the impulse response of a time series at lag

τ is a special case of a τ -step ahead prediction, applied to a time series with 0 on every time

t, except for a 1 on time T , where the parameter estimators are constructed from the given

time series {xt}. With this observation, the results of Proposition 1 are readily applicable

for the impulse response as a focus parameter. If the observation made in Section 6.1 holds,

this guarantees the correctness of the FIC as an unbiased estimator of the limiting mean
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squared error in the case of a growing number of parameters. The expression of FICp for

impulse response is as given in the previous subsection, though now with yT = 1 and yt = 0

for 1 ≤ t < T .

6.3 Simultaneous selection of regression variables and the AR or-

der

Up to now we considered stationary time series with zero mean. We implicitly assumed that

the trend and the seasonality effects of this series were removed beforehand. Furthermore,

we made the assumption that the series {xt} has been regressed on another explicative time

series. We worked with the residual series. This is the most commonly used technique when

estimating and predicting time series: first identify and fit the deterministic component,

and then determine the error-structure. However, if the identification of the deterministic

component includes a variable selection step, Golan et al. (1996, Chapter 10) illustrate that

the classical variable selection criteria perform poorly if the residual errors do not satisfy the

uncorrelatedness assumption. Recently, Shi & Tsai (2004) proposed an alternative selection

criterion which simultaneously selects the regression variables for inclusion in the model and

the autoregressive order of the error terms.

In a similar spirit, we can employ the Focussed Information Criterion to perform simul-

taneous selection of the regression variables to include in the deterministic part and of the

AR-order of the model errors. Assume that we have a time series {yt} and explicative series

xt =
({xt,1}, . . . , {xt,k}

)′
, and that the data are generated from the following model

yt = x′tβ + ut with ut = φ1ut−1 + · · ·+ φP ut−P + εt, (11)

where the errors εt are independent and identically normally distributed with mean 0 and

variance σ2 for t = P+1, . . . , T , and where UP = (u1, . . . , uP )′ is distributed asN (0, σ2R(P )).

The log-likelihood function under the model (11) is then (omitting constants not depending

on the model):

`(β, Φ, σ2) = −n

2
log σ2 − 1

2
log |R(P )| − 1

2σ2
(Y −Xβ)′Σ−1(Y −Xβ),

where Φ = (φ1, . . . , φP )′, Y = (y1, . . . , yT )′, X = (x1, . . . , xT )′, U = (u1, . . . , uT )′, and

Σ = Cov(U)/σ2. Note that Σ and R(P ) depend on Φ. The expressions for |R(P )| and Σ−1
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can be found in Ljung & Box (1979). To facilitate the derivations, we condition on the first

P observations, and write the conditional log-likelihood function as

`(β, Φ, σ2 | x1, . . . , xP , y1, . . . , yP )

= −n

2
log σ2 − 1

2
log |R(P )| − 1

2σ2

T∑
t=P+1

(
yt − x′tβ −

P∑
i=1

φi(yt−i − x′t−iβ)
)2

. (12)

From this expression, we derive the estimated (k + P )× (k + P ) information matrix JT,full.

This matrix has components

(
JT,full

)
βi,βj

= − 1

T − P
· ∂2`(·)
∂βi∂βj

∣∣∣∣
β̂,Φ̂,σ̂2

=
1

(T − P )σ̂2

T∑
t=P+1

(
xt,i −

P∑

l=1

φ̂lxt−l,i

)(
xt,j −

P∑

l=1

φ̂lxt−l,j

)
,

(
JT,full

)
φi,φj

= − 1

T − P
· ∂2`(·)
∂φi∂φj

∣∣∣∣
β̂,Φ̂,σ̂2

=
1

T − P
· ∂2 log |R(P )|

∂φi∂φj

∣∣∣∣
Φ̂

+
1

(T − P )σ̂2

T∑
t=P+1

(yt−i − x′t−iβ̂)(yt−j − x′t−jβ̂), and

(
JT,full

)
βi,φj

= − 1

T − P
· ∂2`(·)
∂βi∂φj

∣∣∣∣
β̂,Φ̂,σ̂2

=
1

(T − P )σ̂2

n∑
t=P+1

{
xt−j,i

(
yt − x′tβ̂ −

P∑

l=1

(yt−l − x′t−lβ̂)
)

+ (yt−j − x′t−jβ̂)
(
xt,i −

P∑

l=1

φ̂lxt−l,i

)}
.

For S a subset of {1, . . . , k} and 0 ≤ p ≤ P , let πS,p a projection matrix of dimension (|S|+
p) × (k + P ) mapping any vector ν = (ν1,1, . . . , ν1,k, ν2,1, . . . , ν2,P )′ onto (νS, ν2,1, . . . , ν2,p)

′,

where νS has components ν1,i with i ∈ S. Denote KT,S,p = (πS,pJT,fullπ
′
S,p)

−1 and MT,S,p =

π′S,pKT,S,pπS,p. The focus parameter in the FIC is the h-step ahead forecast, using the plug-in

method for prediction:

µ(β̂, Φ̂) = x′T+hβ̂ + φ̂1(ŷT+h−1 − x′T+h−1β̂) + · · ·+ φ̂P (ŷT+h−P − x′T+h−P β̂),
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and denote ω the vector with components

ω1,i = − ∂µ(β, Φ)

∂βi

∣∣∣∣
β̂,Φ̂

= − xT+h,i −
P∑

j=1

φ̂j

(
∂ŷT+h−j

∂βi

∣∣∣∣
β̂,Φ̂

− xT+h−j,i

)
1 ≤ i ≤ k

ω2,j = − ∂µ(β, Φ)

∂φj

∣∣∣∣
β̂,Φ̂

= −
P∑

i=1

(
ŷT+h−i − x′T+h−iβ̂ +

∂ŷT+h−i

∂φj

∣∣∣∣
β̂,Φ̂

)
1 ≤ j ≤ P,

where ŷt = yt and hence (∂ŷt)/(∂βi) = (∂ŷt)/(∂φj) = 0 for t ≤ T .

Combining these ingredients leads to

FICS,p = ω′(I −MT,S,pJT,full)δ̂δ̂
′(I − JT,fullMT,S,p)ω + 2ωMT,S,pω,

where δ̂ =
√

T (β̂, Φ̂)′. The model with the smallest value of FIC is selected. This version

of FIC can simultaneously select a subset of the explicative variables xt,1, . . . , xt,k and the

autoregressive order p of the error term, where 0 ≤ p ≤ P .

7 Concluding Remarks

In this paper we extended the FIC mechanism to allow for an increasing number of para-

meters as the sample size increases. We specifically worked inside the framework of h-step

ahead prediction of time series using an AR-model, with the direct method for prediction.

We illustrated, via simulations, that FIC selects models which give predictions with a lower

MSE than that of AIC in some areas of the parameter space. The best results are obtained

in the case where two independent time series are available, one series is used to estimate

the parameters, the other series to predict. In practical applications, where only one time

series is available, a simulation study and two real time series examples have shown that the

performance of the FIC is comparable to that of the classical information criteria. This simu-

lation study also demonstrated that the relative mean squared errors for the plug-in method

for prediction are quite comparable to those of the direct method. We gave a theoretical

justification for Hansen’s (2005) use of the FIC for the impulse response. An extension to si-

multaneous selection of regression variables and autoregressive order is promising to explore

more in-depth.
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Appendix

Assumptions

We make the following assumptions on the series {xt} and {yt}:

(A1) The maximum and minimum eigenvalues of X ′X satisfy (for constants B > 0 and

b > 0)

λmax(X
′X) ≤ BT ; λmin(X

′X) ≥ bT,

where X =
(
xpT +h+1(pT , h), . . . , xT (pT , h)

)′
.

(A2) We define αt(pT , h) = (X ′X)−1/2xt(pT , h), for t = pT + h + 1, . . . , T . Then uniformly

in t1 and t2,

αt1(pT , h)′αt2(pT , h) = O(pT /T ).

(A3) ‖y(
pT

)‖ = O(
√

pT ), and max{|xt(pT , h)′y(pT )| : t = pT +h+1, . . . , T} = O(pT

√
log T ).

These assumptions on the time series {xt} have an intuitive explanation. Assumption (A1)

amounts to having an empirical autocovariance matrix which is bounded for all lengths T ,

and for which the inverse exists and is bounded. (A2) states that there are no outlying

observations of the time series, and (A3) limits the extent of the dependency between the

series {xt} and {yt}.
We first prove the following lemma, which is an adaptation of Theorem 3.2 in Portnoy (1985)

for the setting in which we work.

Lemma 1 Under assumptions (A1), (A2), and (A3), and the condition pT

√
log T/T → 0

for T →∞, the following result holds,

y(pT )′
(
δ̂(pT , h)− δtrue(pT , h)

) (
1

vσ

)
→d N (0, 1) for T →∞

25



where v2 = y(pT )′(X ′X)−1y(pT ) and σ2 as in model (2).

The proof follows the same lines as the proof of Theorem 3.2 in Portnoy (1985).

Proof. Let b(pT ) = (X ′X)−1/2y(pT ). Then we can write that

v2 = ‖b(pT )‖2 and y(pT )′
(
δ̂(pT , h)− δtrue(pT , h)

) (
1

vσ

)
=

b(pT )′θ̂
‖b(pT )‖

with θ = 1
σ
(X ′X)1/2

(
δ̂(pT , h) − δtrue(pT , h)

)
. It suffices to show that for ‖b(pT )‖ = 1,

b(pT )′θ̂ →d N (0, 1). So, assume that ‖b(pT )‖ = 1. For OLS estimation and normally

distributed error terms, Lemma 3.4 of Portnoy (1985) is applicable, and gives that

b(pT )′θ̂ =
1

σ
b(pT )′

T∑

t=pT +h

αt(pT , h)′b(pT )εt(pT , h).

Using the definition of b(pT ) and assumptions (A1) and (A2), we find αt(pT , h)′b(pT ) =

xt(pT , h)′(X ′X)−1y(pT ) = c
T
xt(pT , h)′y(pT ) for some constant c. Using assumption (A3) and

the constraint on pT , we then arrive at maxt |αt(pT , h)b(pT )| = O(pT

√
T/T ) → 0 as T →∞.

With
T∑

t=pT +h

(
αt(pT , h)′b(pT )

)2
= ‖b(pT )‖2 = 1,

the Central Limit Theorem implies that b(pT )′θ̂ →d N (0, 1) as T → ∞, and the lemma

holds. 2

Proof of Proposition 1

Proof. For h-step ahead prediction

√
T

(
µ̂(p, h)− µtrue(pT , h)

)

=
√

T
(
µ̂(p, h)− µ̂true(p, h)

)
+
√

T
(
µ̂true(p, h)− µ̂true(pT , h)

)

=
√

T
(
φ̂(p, h)− φ(p, h)

)′
y(p) +

√
T

(
φ(p, h)′y(p)− φ(pT , h)′y(pT )

)
.

The first term converges in distribution to a normal distribution. This follows by application

of the limiting result in Hjort & Claeskens (2003, Lemma 3.3), where the maximal order is

equal to p finite. The second term converges to a constant, since φ(pT , h)′y(pT ) is Op(1/
√

T ).

Hence, for each p fixed, the proposition holds.
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However, the proposition must also hold for a growing number of time series components:

√
T

(
µ(pT , h)− µtrue(pT , h)

)
=

√
T

(
φ̂(pT , h)− φ(pT , h)

)′
y(pT )

=
(
δ̂(pT , h)− δ(pT , h)

)′
y(pT ).

Lemma 1 proves that this converges to a normal distribution as T →∞, and the proposition

holds. 2

Proof of Extension 6.1

Assume that h is the fixed prediction horizon and assume that pT , the maximal AR-order of

the considered models, satisfies the condition in Proposition 1. We also assume that h ≤ pT .

Then recursive substitution reveals that

µ̂(pT , h) = φ̂1(pT )µ̂(pT , h− 1) + · · ·+ φ̂h−1(pT )µ̂(pT , 1)

+ φ̂h(pT )yT + · · ·+ φ̂pT
(pT )yT+h−pT

=
[
φ̂h(pT ) + g̃1

(
φ̂(pT )

)]
yT + · · ·+ [

φ̂pT
(pT ) + g̃pT−h

(
φ̂(pT )

)]
yT+h−pT

+ g̃pT−h+1

(
φ̂(pT )

)
yT+h−pT−1 + · · ·+ g̃pT

(
φ̂(pT )

)
yT−pT

,

where we used that µ̂(pT ,−i) = yT−i for i ≥ 0. In this expression, g̃i

(
φ̂(pT )

)
for 1 ≤ i ≤ pT

are polynomials of degree h in φ̂1(pT ), . . . , φ̂pT
(pT ) without a constant term or a first degree

term. Since φ̂(pT ) = δ̂(pT )/
√

T , it can be verified easily that g̃i

(
φ̂(pT )

)
= Op(1/T ) for all

1 ≤ i ≤ pT . We use this to rewrite the expression
√

T (µ̂(pT , h)− µ(pT , h)) as

√
T (µ̂(pT , h)− µ(pT , h)) =

√
T

( pT−h∑
i=0

φ̂h+i(pT )yT−i

)
+
√

T
( pT∑

i=0

g̃
(
φ̂(pT )

)
yT−i

)
,

where µ(pT , h) is the true value of the plug-in estimator. From the previous, we see

that the second term is Op(1/
√

T ) and hence will have no contribution in the limit. We

can then apply the same reasoning as in the proof of Proposition 1, but with ỹ(pT ) =

(0, . . . , 0, yT , . . . , yT+h−pT
)′ of length pT , which proves the validity of Extension 6.1. 2
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