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Abstract

In biostatistical practice, it is common to use information criteria as a guide for

model selection. We propose new versions of the Focussed Information Criterion (FIC)

for variable selection in logistic regression. The FIC gives, depending on the quantity

to be estimated, possibly different sets of selected variables. The standard version of

the FIC measures the Mean Squared Error (MSE) of the estimator of the quantity of

interest in the selected model. In this paper we propose more general versions of the

FIC, allowing other risk measures such as one based on Lp-error. When prediction of

an event is important, as is often the case in medical applications, we construct an FIC

using the error rate as a natural risk measure. The advantages of using an information

criterion which depends on both the quantity of interest and the selected risk measure

are illustrated by means of a simulation study and application to a study on diabetic

retinopathy.

Keywords: Error rate, Focussed information criterion, Forward selection, Logistic

regression, Model selection, Risk measures.

1 Introduction

Most clinical trials result in rich datasets with numerous variables of potential influence.

Model selection methods are therefore becoming an essential tool for any data analyst. For
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an overview of model selection literature, see Burnham and Anderson (2002), George (2000),

Spiegelhalter, Best, Carlin and van der Linde (2002) or Claeskens and Hjort (2003). In the

Wisconsin Epidemiologic Study of Diabatic Retinopathy (WESDR), for example, (Klein et

al, 1984) there are eleven continuous covariates, amongst which are the duration of diabetes

and the body mass index, and four binary explicative variables, such as the patient’s gender,

and the type of his/her area of residence. It is unlikely that all of these variables are

important for all uses of the data. Outcome of interest in this study is the presence of

retinopathy of any degree and we are in particular interested in the prediction of this event.

Traditional model selection methods such as AIC (Akaike, 1974) or BIC (Schwarz, 1978)

select one subset of the covariates, no matter which use of the data will follow. The FIC,

focussed information criterion (Claeskens and Hjort, 2003), on the other hand, is developed

to select a set of variables which is best for a given focus. Hand and Vinciotti (2003)

state that “in general, it is necessary to take the prospective use of the model into account

when building it”, and address explicitly the prediction problem. Given a patient’s specific

covariate information, the FIC selects a model that is best for, for example, predicting

the presence of the disease of this particular patient. It might happen that one model is

good for all patients, however, in the analysis of the WESDR we find different models for

different patient groups. In particular, it turns out that the glycosylated hemoglobin level

is more important, from a predictive point of view, for patients (both men and women) on

a high-level insulin treatment than for patients on a low-level insulin treatment.

The FIC in its original format interprets ‘best’ model in the sense of minimizing the

mean squared error (MSE) of the estimator of the quantity of interest. A novel aspect of

this paper is that we introduce focussed model selection based on different risk measures,

and not only based on MSE. Especially in the context of prediction of an event, we propose

and develop a new focussed information criterion based on the error rate as a risk measure.
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In Section 3, we define this FIC based on minimizing the error rate, and give explicit

formulae to compute it (see Section 3.1). In addition, we define a general FIC based on Lp-

loss, and provide expressions for the most commonly used cases, in particular for the mean

absolute error (MAE) for p = 1. For p = 2 we are back to the MSE results of Claeskens and

Hjort (2003). Section 4 reports on a simulation study to assess the performance of the FIC,

as compared to AIC. Section 5 applies the new model selection criteria to the WESDR data

and some concluding remarks are made in Section 6.

2 Framework and notation

Assume that a set of data (xi, yi) is available, where xi is a covariate vector of length p + q,

containing the explicative variables which may be continuous or categorical, and yi is a 0/1

response variable. The data are distributed according to the following model:

P (yi = 1 | xi) = F (x t
i β) for 1 ≤ i ≤ n (1)

where F (·) is the inverse logit function F (u) = 1/{1+exp(−u)}, and β = (θt, γt)t is the p+q-

vector of parameters, where θ consists of the first p parameters, the ones that we certainly

wish to be in the selected model, and γ holds the last q parameters, the ones that may

potentially be included in the chosen model. While the expressions for the model selection

criteria derived in this paper are obtained for the logistic regression model, the ideas transfer

immediately to other binary regression models.

Naturally, one can choose a complicated model that incorporates all the variables, even

though usually only a few of them are significant. However, such a model is not guaranteed to

give the best estimates of the quantity of interest. Adding more variables increases the total

variability. Another issue with choosing a complex model is its lack of simplicity: medical

researchers often prefer simple models, which are easier to interpret. The goal of this paper
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is to select a submodel of the logistic regression model (1), and to use that model to predict

the value of the response variable for a “new” observation x0.

The notation used in this paper is largely the same as in Claeskens and Hjort (2003), and

the necessary quantities for defining the new FICs will be repeated here. In a local misspecifi-

cation setting, we specify the true value of the parameter vector as βtrue = (θ t
true, γ

t
0 +δ t/

√
n)t,

where n is the sample size and γ0 is the value of γ for the “null model”, i.e. the smallest model

we consider, containing only the parameter θ. For the model described above, γ0 is equal

to zero. The focus parameter µ = µ(β) is a function of the model parameters β. The score

at a covariate value x0 in the logistic model is an example of such a focus parameter, where

µ(β) = βtx0. The true value of the parameter of interest is then denoted by µtrue = µ(βtrue)

For the model selection problem there are potentially 2q estimators of µ(β) to consider,

one for each subset S of {1, . . . , q}. The model indexed by S contains the parameters θ and

those γi for which i ∈ S. Practical application might rule out some of these subsets a priori.

We denote γ0,Sc the known vector of “null” values γ0,i for i ∈ Sc, the complement of S with

respect to {1, . . . , q} and define µ̂S = µ(θ̂ t
S, γ̂ t

S, γ t
0,Sc) the maximum likelihood estimator of µ

in the model indexed by S.

Let Jn,full be the estimated (p + q) × (p + q) information matrix of the full model, that

is, the model containing θ and all γi, (1, . . . , q). We assume that Jn,full is of full rank, and

denote its submatrices Jn,00, Jn,01, Jn,10 and Jn,11, corresponding to the dimensions of θ and γ

respectively. Since the model used is a logistic regression model, straightforward calculations

show that

Jn,full =
1

n

n∑
i=1

pi(1− pi)xix
t
i ,

with pi = F (x t
i βfull) the probability associated with observation i. For other choices of

the inverse link function F , a different expression for Jn,full results. Note that Jn,full is

consistently estimated by inserting full model estimators. Let πS be a projection matrix
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of size |S| × q, which maps ν = (ν1, . . . , νq)
t to νS, the latter consisting of those νi for

which i ∈ S. Too few variables in the model (indexed by set S) will cause estimators to be

biased. Including too many variables, on the other hand, will inflate the variance. Define

now Kn = J11
n = (Jn,11 − Jn,10J

−1
n,00Jn,01)

−1 and Kn,S = (πSK −1
n π t

S)−1. Two other important

quantities are the matrix Mn,S = π t
SKn,SπS and vector

ω = Jn,10J
−1

n,00

∂µ

∂θ
− ∂µ

∂γ
,

with the partial derivatives evaluated at the full model. For example, for the particular

choice of parameter of interest µ(β) = βtx0, these derivatives are ∂µ
∂θ

= x0,0 and ∂µ
∂γ

= x0,1,

where x0 is partitioned according to θ and γ. Finally, define

Dn = δ̂full =
√

n(γ̂full − γ0)
d−→ D ∼ Nq(δ,Kn) (2)

(see Hjort & Claeskens (2003) for details and more discussion). Then the maximum likelihood

estimator of µ in the model S has the following limiting distribution (Hjort & Claeskens,

2003, Lemma 3.3)

√
n(µ̂S − µtrue)

d−→ ΛS =

(
∂µ

∂θ

)t

J −1
n,00M + ωt(δ −Mn,SK −1

n D), (3)

where M ∼ Np(0, J00) is statistically independent of D. It is immediate to verify that this

distribution has mean and variance given by

λS = E[ΛS] = ωt(Iq −Mn,SK −1
n )δ, (4)

σ 2
S = Var(ΛS) = τ 2

0 + ωtMn,Sω, (5)

with τ 2
0 = (∂µ

∂θ
)tJ −1

n,00(
∂µ
∂θ

) the variance of µ̂∅ in the null model, which is independent of S. Note

that this distribution ΛS is normal, with a non-zero mean due to the local misspecification

setting.

The distribution of ΛS in (3) is the key result on which the novel model selection criteria

are based. The new FICs involve the mean and variance of the limit distribution of ΛS,
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given in (4) and (5). The expressions presented above are the theoretical values, assuming

the limit experiment is valid. In practice we need to estimate the information matrix of the

full model Jn,full and derive the needed components from this estimate. We estimate the

vector δ, which measures the distance between the null and true model, by δ̂full =
√

nγ̂full

as in (2). This leads, first, to maximum likelihood estimates of λS and σS, the mean and

variance of the distribution ΛS, in the model S and, second, to an estimate of the information

criterion for the submodel S.

3 Prediction focussed information criteria

In Section 3.1 we derive the FIC taking as risk measure the error rate associated with the

prediction of an event, tailored for logistic regression problems. The selected submodel is

thus aimed at minimizing the probability of misclassification of a new observation x0, i.e.

the probability of incorrectly predicting the associated 0/1 outcome y0.

In Section 3.2 we derive an expression for the FIC based on the Lp-error. We then

verify this result with the FIC based on Mean Squared Error (MSE, p = 2) as obtained

in Claeskens & Hjort (2003), and present the explicit expression for the FIC based on the

Minimum Absolute Error (MAE, p = 1). The expressions for the FIC based on Lp-risk hold

in a general setting, but in the subsequent sections they will be applied with the log-odds

ratio as the focus parameter: µtrue = x t
0βtrue and µ̂S = x t

0 β̂S. In other words, the score

of an observation to predict is the focus parameter. The selected model is then aimed at

minimizing the Lp-loss when predicting the true score value.

For every considered submodel, indexed by S, the focussed information criterion is com-

puted and denoted by FICS. We select that subset S of {1, . . . , q} for which FICS is the

smallest, this leads to the FIC-selected model which is indexed by the optimal S.
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3.1 The FIC based on Error Rate

Our aim is to construct a selection criterion with the purpose of selecting the model that

has the lowest probability of misclassifying a “new” observation x0, assuming that it has

been generated from the same model as the “training” data {(xi, yi) | 1 ≤ i ≤ n}. A natural

choice for the risk function here, denoted rER(S), is the probability of misclassifying the

observation x0. The abbreviation ER stands for Error Rate. Define y0 the true response

for an observation with covariates x0 as a realization of the 0/1 random variable Y0 with

P (Y0 = 1 | x0) = F (x t
0βtrue), and let ŷ0,S be the predicted response according to the model

defined by S. Then,

rER(S) = P (Y0 = 1 and ŷ0,S = 0 | x0) + P (Y0 = 0 and ŷ0,S = 1 | x0).

Due to independence of Y0 and ŷ0,S, this expression reduces to

rER(S) = P (Y0 = 1 | x0)P (ŷ0,S = 0 | x0) + P (Y0 = 0 | x0)P (ŷ0,S = 1 | x0),

and hence, using the logistic regression model,

rER(S) = F (x t
0βtrue)P (x t

0 β̂S < 0) + {1− F (x t
0βtrue)}P (x t

0 β̂S > 0).

The misclassification rate is only concerned with the sign of the estimated log-odds ratio,

not with the actual value itself. As focus parameter we set µtrue = x t
0βtrue and µ̂S = x t

0 β̂S.

We use ΛS, the limit distribution of
√

n(µ̂S − µtrue) as in (3), to approximate

P (x t
0 β̂S < 0) = P (µ̂S < 0) = P{√n(µ̂S − µtrue) < −√nµtrue}.

by

Φ

(−√nµtrue − λS

σS

)
,

with λS and σ 2
S as in (4) and (5), and Φ(·) the cumulative density function of the standard

normal distribution. From this, the following approximation is proposed for the risk function

rER(S) ≈ F (µtrue)Φ

(−√nµtrue − λS

σS

)
+ {1− F (µtrue)}Φ

(√
nµtrue + λS

σS

)
.
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This risk measure serves as the basis for the Focussed Information Criterion based on Error

Rate. Inserting the estimators, see Section 2, this leads to the FIC based on error rate:

FICER(S) = F (µ̂full)Φ

(
−√nµ̂full − λ̂S

σ̂S

)
+ {1− F (µ̂full)}Φ

(√
nµ̂full + λ̂S

σ̂S

)
,

where we estimated µtrue by µ̂full = µ(β̂full). Note that this criterion depends on the value

of the covariate vector x0 of the observation to predict. This dependence enters through the

focus parameter µ, which is also present in the estimated values of λS and σS, see (4) and

(5).

3.2 The FIC based on Lp-error

Based on the limit distribution of
√

n(µ̂S − µtrue) in equation (3), we derive the expressions

for the Lp-error of µ̂S, and this for any subset S of {1, . . . , q} and for any positive p ≥ 1. This

Lp-risk measure is defined as the pth order absolute moment of the limit distribution ΛS,

rp(S) = E(|ΛS|p). After some computations, details of which can be found in the Appendix,

the following explicit expression is obtained for integer values of p:

rp(S) =
1√
2π

p∑
j=0

(
p

j

)
σ j

Sλ p−j
S

{∫ +∞

−λS
σS

zje−
z2

2 dz + (−1)p

∫ −λS
σS

−∞
zje−

z2

2 dz

}
. (6)

This expression can be simplified further, and we find that, for p even,

rp(S) =
1√
π

p/2∑
j=0

(
p

2j

)
2jσ2j

S λ2n−2j
S Γ

(
j +

1

2

)
, (7)

while for p odd,

rp(S) =
1√
π

(p−1)/2∑
j=0

(
p

2j

)
σ 2j

S |λS|p−2j2jΓ

(
j +

1

2

)

+
1√
π

p∑
j=0

(
p

j

)
σ j

S (−|λS|)p−j2j/2Γ

(
j + 1

2
,

λ 2
S

2σ 2
S

)
. (8)

No such explicit form exist for noninteger values of p. We denoted Γ(x) for the gamma

function evaluated in x, and Γ(x, a) (for a > 0) for the incomplete gamma function. We
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point out the dependence of rp(S) on the focus parameter µ. Different choices of µ lead

to different formulae for the focussed criterion, and as a consequence, may lead to different

selected models.

We now give details on two special cases of the FIC based on Lp-error. The first case

is FIC2 based on the L2-error, better known as the mean squared error. Henceforth this

is denoted as FICMSE. This model selection criterion has been extensively discussed in

Claeskens and Hjort (2003). We here show that FICMSE is a special case of the general

formula in the previous section. From (7), it is easy to see that for p = 2,

r2(S) =
1√
π

{
λ 2

SΓ

(
1

2

)
+ 2σ 2

S Γ

(
3

2

)}
= λ 2

S + σ 2
S .

Applying equations (4) and (5), this is written as

r2(S) = ωt(Iq −Mn,SK −1
n )δδt(Iq −K −1

n Mn,S)ω + τ 2
0 + ωtMn,Sω, (9)

which is, up to a constant term, equal to the limit FIC as defined in Claeskens and Hjort

(2003). Note that an asymptotically unbiased estimate of δδt in (9) is given by δ̂δ̂t − Kn.

Inserting unbiased estimators leads to

FICMSE(S) = ω̂t(Iq −Mn,SK −1
n )δ̂δ̂t(Iq −K −1

n Mn,S)ω̂ + 2ω̂tMn,Sω̂.

The other special case that we study is p = 1, which leads to a “new” criterion minimizing

the mean absolute error, MAE. Equation (8) yields

r1(S) = |λS|+ 1√
π

{
−|λS|Γ

(
1

2
,

λ 2
S

2σ 2
S

)
+
√

2σSΓ

(
1,

λ 2
S

2σ 2
S

)}
.

Working out this equation further, we define the Focussed Information Criterion based on

MAE as the following consistent estimator of r1(S)

FICMAE(S) = 2λ̂S

{
Φ(

λ̂S

σ̂S

)− 1

2

}
+ 2σ̂Sφ(

λ̂S

σ̂S

),

where Φ(·) is the cumulative distribution function and φ(·) the density function of the stan-

dard normal.
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4 Simulation study

In this section, a simulation study is presented to examine how well the proposed Focussed

selection criteria perform with respect to a benchmark criterion, the Akaike Information

Criterion (AIC). In Section 4.1, the particulars of the simulation sampling scheme are de-

tailed. In Section 4.2 we additionally address the issue of model averaging. The results of

the simulation are presented in Section 4.3.

4.1 Simulation settings

For the simulation study, ntest = 500 observations x0,i are independently generated from

a normal N5(0,
1
4
I5) distribution, with I5 the 5 × 5 identity matrix. These observations

constitute the test sample and remain the same throughout the entire simulation. Then,

for each of the M = 1000 simulations in the experiment, a training sample of ntrain = 50

observations (xi, yi) is generated, according to the model

P (yi = 1 | xi) = F (θ + x t
i γ),

where θ = 0, γ = (1,−1, 1,−1, 0)t and xi ∼ N5(0,
1
4
I5). The factor 1

4
is present so that the

generated scores x t
i β are distributed according to a standard normal distribution. For each

simulation run, we minimize the information criterion under investigation, hereby forcing

the intercept term to be in every model. In this experiment we compare the AIC, FICMSE,

FICMAE and FICER. In total, 25 = 32 submodels are to be compared, including the “null

model” (containing only the intercept θ) and the “full model” (containing θ and the vector

(γ1, . . . , γ5)
t). Within each simulation run, we select one AIC best model, and for each of

the ntest observations separately three FIC best models, according to MSE, MAE and ER,

respectively. In each of those selected models we estimate the scores by µ̂0,i = θ̂ + x t
0,iγ̂, of

which its sign determines the predicted value of the corresponding binary y0,i values.
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For each separate observation in the test sample, we measure the performance of the

model selection criteria via (a) the mean squared error of the predicted score (b) the mean

average deviation of the predicted score, and (c) the error rate. The MSE on the predicted

score is given by

MSE(µ̂0,i) =
1

M

M∑
j=1

(µ̂
(j)
0,i − µ0,i,true)

2,

with µ̂
(j)
0,i the estimated score for validation observation x0,i in simulation run j, and µ0,i,true

the true value of the score. Similarly, the MAE on the predicted score is computed as

MAE(µ̂0,i) =
1

M

M∑
j=1

|µ̂ (j)
0,i − µ0,i,true|.

The MAE performance measure is sometimes preferred since it is, compared to MSE, less

influenced by those simulation runs yielding large deviations from the true values. Finally,

the error rate is simulated as

ERi =
1

M

M∑
j=1

I(µ̂
(j)
0,i µ0,i,true < 0)

where I(·) is the indicator function. If the estimated and the true score have the same sign,

they give a zero contribution to the sum in the above ERi, but if the true and the estimated

score yield different values of the corresponding y0,i, they contribute to the error rate.

We emphasize that the performance measures are computed for each of the nval obser-

vations in the test sample separately. To summarize these nval values, we compute their

averages and present a boxplot representation in Figure 1.

4.2 Furter particulars

A search across all possible models is only feasible for q relatively small, because the number

of possible models to search through increases exponentially with q. A forward selection

approach is an alternative to an exhaustive search, possibly leading to a different selected
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model. Starting from the null model, this iterative procedure adds one variable at a time.

Specifically, it adds that variable which yields the lowest value for the information criterion

when added to the currently “best” model. This process is repeated until q+1 nested models

are obtained, ranging from the null model to the full model and indexed by S0, S1, . . . , Sq.

From these models, we select the model that yields the lowest value for the information

criterion.

Model averaging can be applied as an alternative to selecting a single model (see also

Hjort & Claeskens (2003)). In this case we construct a weighted average of the estimates

in the different models. For each of the nested models obtained during the forward variable

selection procedure, we compute this weight as

wj =
exp{−1

2
xIC(Sj)}∑q

k=0 exp{−1
2
xIC(Sk)}

where xIC(Sk) is the value of the Information Criterion (AIC, FIC, . . .) at the model Sk

with k included variables, for k = 0, . . . , q. For each of the submodels Sj a prediction of the

score µ0 = x t
0β for an observation to be classified is obtained, and these predicted values

µ̂0,Sj
then generate the “model-averaged” prediction

µ̂0 =

q∑
j=0

wjµ̂0,Sj
.

The advantage of a model averaged estimator is that it has, in general, reduced variability.

This will be illustrated in the simulation experiments, where results for the “model-averaged”

procedure are reported as well. In the classification literature it is a common strategy to

combine several classifiers, see, e.g., Kuncheva (2004) for an overview. Of course, averaging

over all possible subsets of the full model, or over any other sequence of models is possible.

All computations are performed using the publicly available software package R. In our

software we use AICS = −2 log L(β̂S)+2(p+ |S|), with L(β̂S) the likelihood of the estimated

model index by S, such that lower values indicate better models.

12



4.3 Simulation results

As outlined in Section 4.1, the simulation results in nval = 500 values of the MSE, MAE

and Error Rate, for prediction based on a submodel selected by AIC, FICMSE, FICMAE, and

FICER. These values are also computed for the model-averaged predictions, discussed in

Section 4.2. The boxplots in Figure 1 provide a graphical representation of these 500 values.

A log-transformation is applied to the MSE and the MAE, to make their distributions more

symmetric. Table 1 complements these plots by giving the averages of the performance

measure over the nval = 500 values, together with the standard error (SE).

Please insert Figure 1 and Table 1 here.

From Figure 1 it is seen that model averaging significantly improves the performance, at

least for the MSE and MAE performance measure. In terms of Error Rate, model averaging

does not seem to give an improvement, but neither a worsening of the results obtained with

single model selection.

For the Error Rate the results are the most clear cut. From Figure 1, we observe that

FICER performs the best on this criterion, and this remains true if we apply model averaging.

So FICER selects, compared to the other selection criteria, the models which yield the lowest

error rates. This should not be too surprising, since the risk measure associated with FICER

is the error rate (to be more precise, the error rate of the limiting experiment), and FICER

selects the model having the smallest value of an approximation of this risk measure. It can

be verified that the differences between the average Error Rate of the FICER is indeed signif-

icantly smaller than the other average error rates reported in Table 1, both for single model

predictions and for averaged-model predictions (paired comparisons with Tukey correction,

P-values < 0.001).

While FICER gives the best results for the Error Rate performance criterion, it performs

comparatively much worse for MSE and MAE. But this should not be of much concern, since
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if the researcher thinks that another risk measure than Error Rate is more appropriate for

his/her prediction problem, he/she should use a variable selection method focussed on that

particular risk function.

The two figures on top in Figure 1 show that FICMSE and FICMAE outperform the selec-

tion procedure based on AIC when using MSE and MAE as performance criterion. Again,

one can show that these differences in average performance are highly significant. After

model-averaging, these differences become even more pronounced. This is again as one

should expect, since variable selection using FICMSE and FICMAE is aimed at choosing the

“best” model as measured by the risks MSE and MAE.

Comparing FICMSE and FICMAE is more difficult. When selecting a single model, the

MAE for estimates based on FICMAE is on average slightly worse than for FICMAE, although

the difference is only minor. In the limiting experiment, such an outcome is not possible,

but at the finite-sample level there is no guarantee that the model selected using the FICMAE

indeed yields the smallest Mean Absolute Errors. Most important, however, is that, at least

in this situation setting, both FICMSE and FICMAE do better than AIC, both for model

selection and model averaging.

5 Analysis of WESDR Data

In this section we perform model selection for the data of the Wisconsin Epidemiologic Study

of Diabetic Retinopathy (WESDR) with the methods described in Section 3. The data

consists of 691 records of subjects with younger-onset diabetes (the incomplete observations

were removed before the analysis). The response variable ‘y’ is a 0/1 variable where 1

indicates the presence of retinopathy of any degree. The continuous covariates are ‘rere’

and ‘lere’, the refractive error in diopters for resp. the right and the left eye; ‘reip’ and

‘leip’, the internal eye pressure in mmHg for resp. the right and the left eye; ‘adia’, the age
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in years at which diabetes was diagnosed; ‘ddia’, the duration of diabetes in years; ‘gly’,

the percentage of glycosylated hemoglobin, ‘sysp’ and ‘diap’, the resp. systolic and diastolic

blood pressure in mmHg; ‘bmi’, the Body Mass Index, and ‘pulse’, the pulse rate in beats

per 30 seconds. The binary 0/1 covariates are ‘sex’, with 1 indicating male; ‘uri’, with 1

indicating the presence of urine protein; ‘ins’, with 1 indicating more than 1 dose of insulin

taken per day, and ‘urb’, with 1 indicating that the subject lives in an urban county. We

refer to Klein et al. (1984) for further discussion of the variables in this data set.

We examine the predictive power of the models selected by the different selection criteria

AIC, FICMSE, FICMAE, FICER as well as the model-averaged version by assessing their error

rates. Note that, since we work here with real data for which the true value of the scores is

not available, the MSE and MAE performance criteria cannot be computed. The error rate

is estimated by means of a cross-validation experiment: for each patient in the dataset, we

select and estimate a model based on all the other patients in the dataset and then make

a prediction for the presence of retinopathy of the left-out observation. The model search

includes an intercept to all of the models, and allows inclusion or exclusion of all remaining

q = 15 variables. Then, we compare the predictions with the real values of ‘y’, the presence

of retinopathy of any degree. We count the percentage of wrong predictions, which yields

an estimate of the error rate. The results are summarized in Table 2.

Please insert Table 2 here.

We observe from Table 2 that the models selected by the focussed information criteria

and the model-averaged estimates based on FIC, all yield a lower error rate than their

AIC counterparts. The McNemar test (e.g. Kuncheva 2004, page 13-15) reveals that this

difference is strongly significant (p-values < 0.025). On the other hand, the difference between

the error rates for the models selected by the different FICs is not statistically significant.

These results illustrate the advantage of selecting a possibly different set of predictor variables
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for every observation to predict. Indeed, there is a priori no reason why a unique selected

model would be best for all future predictions to be made.

To illustrate that the model selected by the FIC might depend on the observation, we

performed a second analysis. We divided the patients into four groups, according to their

gender and the number of doses of insulin taken each day, as shown below.

Group characteristics

A females taking none or a single insulin dose each day

B females taking multiple insulin doses each day

C males taking none or a single insulin dose each day

D males taking multiple insulin doses each day

The groups have roughly an equal number of observations. We record for each group the

percentage of times that each variable enters the model when predicting an observation

belonging to that group. Table 3 shows the selection frequencies for the four most often

selected variables in every group, for FICMSE and FICER.

Please insert Table 3 here.

Both FIC methods select the variable ‘ddia’ most often, and in particular the error rate

based FIC has a strong preference for this variable. A logistic regression model containing

only an intercept and this variable ‘ddia’ performs very well, with a cross-validated error

rate of 0.1888. In fact, the model selected using FICER ends up with this simple model in

46.3% of the cases. But, as follows from Table 2, the FICER approach reaches even a lower

error rate by deviating from this simple model for an important part of the observations

to classify. A possible strategy for a more refined analysis is to include the variable ‘ddia’

in the list of fixed variables which are included in every selected model, together with the

intercept.
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The second most selected variable is ‘gly’, the percentage of glycosylated hemoglobin,

which is selected about half of the time by the FIC based on MSE, and with a lower frequency

by the FIC based on error rate. Variable selection based on FICER includes the variable

‘gly’ much more often for groups B and D than for groups A and C. Hence, glycosylated

hemoglobin level is less important, from a predictive point of view, for patients taking none

or only a single dose of insulin each day (groups A and C) than for patients taking multiple

doses of insulin each day (groups B and D).

6 Discussion

In this paper, we extended the focused information criterion, as developed by Claeskens and

Hjort (2003). It is originally constructed to select a submodel minimizing the mean squared

error of the estimator of the focus point. The idea put forward in this paper is that MSE is

not the only risk measure that one can consider. We expand the construction and application

to minimize the more general Lp-norm, of which MSE (p = 2) and mean absolute deviation

(p = 1) are special cases. Another, perhaps more important, contribution of this paper is

the proposal of a Focussed Information Criterion using the error rate as risk measure. This

is of specific use in binary regression problems, where the goal is to select models which yield

the lowest error rate.

To show the usefulness of these information criteria, we presented both a simulation study

and an analysis of the WESDR dataset. In these analyses, we observed that the focussed

information criteria select models which perform significantly better, for their specific focus

(that is, lower MSE for the FIC based on MSE, and lower error rate for the FIC based on

error rate), than the Akaike information criterion. In the WESDR data analysis, it was

illustrated how different models are selected for different patients. By allowing the selected

model to vary with the observation to predict, we obtained a gain in predictive performance.
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The variable selection problem becomes even more pertinent when a large number of

variables relative to sample size is available. In this setting, the non-existence of the classical

logistic regression estimator may cause problems. It is a topic of our current research to apply

model selection methods to such data sets.
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A Appendix

Computation of the Lp-norm related risk rp(S) in equations (6), (7), and (8).

For ΛS ∼ N (λ, σ2), we write E(|ΛS|p) = E(|σZ + λ|p) where Z has a standard normal

distribution. From this it follows:

E(|ΛS|p) =
1√
2π

∫ +∞

−λ
σ

(σz + λ)pe−
z2

2 dz + (−1)p

∫ −λ
σ

−∞
(σz + λ)pe−

z2

2 dz

=
1√
2π

p∑
j=0

(
p

j

)
σjλp−j

{∫ +∞

−λ
σ

zje−
z2

2 dz + (−1)p

∫ −λ
σ

−∞
zje−

z2

2 dz

}
.

For p even, say p = 2r, the expression can be simplified as follows.

E[|ΛS|2r] =
1√
2π

2r∑
j=0

(
2r

j

)
σjλ2r−j

∫ +∞

−∞
zje−

z2

2 dz

=

√
2

π

r∑

j′=0

(
2r

2j′
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σj′λ2r−2j′
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0

z2j′e−
z2

2 dz

u= z2
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uj′−1/2e−u du

=
1√
π

r∑

j′=0

(
2r

2j′

)
2j′σ2j′λ2r−2j′Γ

(
j′ +

1

2

)
.
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For p odd, say p = 2r + 1, this leads to

E[|ΛS|p] =
1√
2π

p∑
j=0

(
p

j

)
σjλp−j

{∫ +∞

−λ
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∫ +∞

λ
σ

zje−
z2

2 dz

}

=
1√
2π

r∑

j′=0





(
2r+1
2j′

)
σ2j′λ2r+1−2j′

{∫ +∞
−λ

σ
z2j′e−

z2

2 dz − ∫ +∞
λ
σ

z2j′e−
z2

2 dz
}

+
(

2r+1
2j′+1

)
σ2j′+1λ2r−2j′

{∫ +∞
−λ

σ
z2j′+1e−

z2

2 dz +
∫ +∞

λ
σ

z2j′+1e−
z2

2 dz
}





=

√
2

π

r∑

j′=0





(
2r+1
2j′

)
σ2j′λ2r+1−2j′ sign(λ)

∫ |λ|
σ

0
z2j′e−

z2

2 dz

+
(

2r+1
2j′+1

)
σ2j′+1λ2r−2j′

∫ +∞
|λ|
σ

z2j′+1e−
z2

2 dz





u= z2

2=
1√
π

r∑

j′=0





(
2r+1
2j′

)
σ2j′λ2r+1−2j′ sign(λ)2j′

∫ λ2

2σ2

0 uj′− 1
2 e−u du

+
(

2r+1
2j′+1

)
σ2j′+1λ2r−2j′2j′+1/2

∫ +∞
λ2

2σ2

uje−u du





=
1√
π

r∑

j′=0





(
2r+1
2j′

)
σ2j′λ2r+1−2j′ sign(λ)2j′{Γ(j′ + 1

2
)− Γ(j′ + 1

2
, λ2

2σ2 )}
+

(
2r+1
2j′+1

)
σ2j′+1λ2r−2j′2j′+1/2Γ(j′ + 1, λ2

2σ2 )





=
1√
π

r∑

j′=0

(
2r + 1

2j′

)
σ2j′|λ|2r+1−2j′2j′Γ

(
j′ +

1

2

)

+
1√
π

2r+1∑
j=0

(
2r + 1

j

)
σj(−|λ|)2r+1−j2j/2Γ

(
j + 1

2
,

λ2

2σ2

)
.

This ends the proof.
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Figure 1: Boxplots of the log(MSE), log(MAE) and Error Rates of the 500 observations in the test
sample. The MSE, MAE, and Error rates have been simulated for estimators from a model selected
by the criteria AIC, FICMSE, FICMAE, or FICER, as well as for the model averaged versions of the
estimators (indicated by the prefix “a”)
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Table 1: Average values, together with their standard errors, of the log(MSE), log(MAE) and
Error Rates over the 500 observations in the test sample. The MSE, MAE, and Error rates have
been simulated for estimators from a model selected by the criteria AIC, FICMSE, FICMAE, and
FICER, as well as for the model averaged versions of the estimators (indicated by the prefix “a”) .

log(MSE) log(MAE) Error Rate

Criterion Average SE Average SE Average SE

AIC 0.14091 0.02490 -0.18210 0.01277 0.26621 0.00599

FICMSE -0.02613 0.02448 -0.29752 0.01269 0.24650 0.00643

FICMAE 0.08465 0.02390 -0.23785 0.01193 0.22875 0.00646

FICER 0.50670 0.02396 0.03379 0.01337 0.20750 0.00649

aAIC -0.01428 0.02423 -0.27092 0.01235 0.25002 0.00636

aFICMSE -0.44985 0.02117 -0.46220 0.01107 0.23927 0.00645

aFICMAE -0.46620 0.02129 -0.47364 0.01075 0.22336 0.00640

aFICER -0.25137 0.02259 -0.35661 0.01244 0.20913 0.00645

Table 2: Error rates for the WESDR data, obtained via cross-validation. The models are selected
using AIC, FICMSE, FICMAE FICER and also results for the model-averaged estimates are reported
(indicated by the prefix “a”) .

Method AIC FICMSE FICMAE FICER aAIC aFICMSE aFICMAE aFICER

Error Rate 0.198 0.174 0.174 0.177 0.193 0.172 0.174 0.174

Table 3: Model selection methods FICMSE and FICER are applied to each subject within a group
of the WESDR data. The table shows the selection percentages of the four most frequently selected
variables per group.

Group Variable 1 Variable 2 Variable 3 Variable 4

FICMSE A ddia 86.2% gly 53.8% pulse 42.6% reip 39.0%

B ddia 81.8% gly 50.0% pulse 33.8% urb 32.4%

C ddia 78.5% gly 51.3% pulse 34.4% reip 33.8%

D ddia 77.8% gly 54.9% reip 39.2% pulse 37.9%

FICER A ddia 92.3% gly 28.2% reip 17.4% uri 16.9%

B ddia 90.5% gly 45.3% uri 33.8% diap 25.0%

C ddia 89.2% gly 36.4% uri 31.8% bmi 24.6%

D ddia 90.8% gly 41.8% uri 32.0% pulse 28.8%
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