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Abstract

Despite the success of advanced credit portfolio models, many fi-
nancial institutions still continue using a variance-covariance approach
to portfolio modelling. When setting up such a framework, the para-
meters must be quantified and a certain number of assumptions has
to be made. Assessing the level of the parameters is beyond the scope
of this paper since they should ultimately pertain to peculiar features
of the actual dataset. The different assumptions however should at
least be mutually consistent, and a model with an inconsistent set of
parameters is clearly unacceptable. We found that the concept of a
stochastic loss given default in conjunction with default correlations
can give rise to an inconsistent set of axioms. We propose two con-
sistent methodologies that do not add (too much) complexity to the
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initial approach. These two models are also extremal in the sense that
the first alternative will provide a lower bound for the variance of the
portfolio loss whilst the second (comonotonic) alternative will provide
an upperbound.
Keywords: Default correlation, Loss correlation, Comonotonicity,
Variance-Covariance, Economic Capital.

1 Introduction

Advanced credit portfolio models such as J.P. Morgan’s CreditMetrics (1997),
Credit Suisse Financial Products’ CreditRisk+ (1997), PortfolioManager of
KMV (Kealhofer, 1995) and McKinsey & Company’s CreditPortfolioView
(Wilson 1997a,b) are nowadays widespread among numerous banks allowing
them to assess the credit default risk of their diverse loan portfolios. They
rely on these results to put important capital buffers aside to protect against
this risk.
The implementation of such models is often for the banks their first step

towards developing what is now called an enterprise risk framework, which
can support consistent risk and reward management on an enterprise-wide
basis by integrating all risk components. Indeed, the capital consumption
of the different business units within a financial conglomerate may seriously
affect various centrally-taken investment decisions, which in turn may impact
the performance measurement of the different business units with possible
repercussions on individual bonuses.
Despite the commercial success of the above mentioned models, many

other financial institutions are, according to Deloitte & Touch’s global Risk
Management Survey (2004), yet to set up such an integrated framework.
Amongst them, some prefer sticking with a variance-covariance approach as
portfolio model for the sake of transparency and actual applicability. In con-
trast to the bottom-up credit risk model that computes directly the distribu-
tion function of the random portfolio loss, the variance-covariance approach
focuses on the computation of the mean and the variance of this random
variable. Next, these two moments are linked to the capital through a cal-
ibration on a known two-parameter distribution such as, for example, the
Beta distribution.
The parameters used in the variance-covariance framework are: the prob-

ability of default, a deterministic exposure at default, a stochastic loss given
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default (LGD) modelled by its mean, variance and the default correlation be-
tween the obligors. These parameters can also be found in the quantitative
groundings of the New Basel Accord (2004). Before setting up that variance-
covariance framework, we must quantify and establish a certain number of
assumptions. Assessing the level of the parameters is beyond the scope of
this paper since they should ultimately pertain to the actual dataset features.
However, the different assumptions should at least be mutually consistent:
indeed, a model that produces an inconsistent set of parameters is clearly
unacceptable. When introducing the variance-covariance framework, Fortis,
a financial conglomerate based in Belgium, considered in a first stage the
variance of LGD to be equal to zero. In a second stage, a more sophisticated
approach would be followed by assuming a stochastic LGD. We found that
this concept in conjunction with the use of default correlations can give rise
to an inconsistent set of assumptions and should therefore be considered with
caution.
In this paper we propose two consistent variance-covariance frameworks.

Both methods maintain the concept of a stochastic loss given default but im-
prove some other (correlation) assumptions. Whilst the first alternative relies
on an independency assumption between the different LGD’s, we assume in
the second alternative that the different LGD’s are comonotonic, meaning
that they are all monotonic functions of a common random variable. We
observe that these two alternatives do not add (too much) complexity to the
initial approach. These two models are also extremal in the sense that the
first alternative will provide a lower bound for the variance of the portfo-
lio loss whilst the second (comonotonic) alternative will provide an upper
bound.
The structure of the paper is as follows: after introducing some general

results (section 2) we will describe a typical set of assumptions that is used
when setting up a variance-covariance framework for portfolio modelling (sec-
tion 3) and we will prove its inconsistency (section 4). In sections 5 and 6
we describe the two consistent alternatives and demonstrate their boundary
properties. We conclude in section 7 with some final remarks.

2 Description of the problem

Consider a portfolio of n credit risks. Let Ii be defined as the indicator
random variable (r.v.) which equals 1 if risk i leads to failure in the next
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period, and 0 otherwise. The probability that risk i leads to a failure is
denoted by qi:

qi = Pr [Ii = 1] . (1)

Hence, qi is the probability of default. Further, let (EAD)i denote the
Exposure-at-Default and (LGD)i the Loss-Given-Default of risk i.
The Exposure-at-Default is the maximal amount of loss on risk i, given that
default occurs. It is assumed to be a deterministic quantity.
The Loss-Given-Default is the percentage of the loss on risk i, given default
occurs. In this paper, the Loss-Given-Default is assumed to be a r.v.
The Portfolio Loss during the reference period is then defined as the sum of
the losses on the individual credit risks. It is given by:

L =
nX
i=1

Li (2)

=
nX
i=1

Ii (EADi) (LGDi) . (3)

The Credit Economic Capital is determined as a high percentile (e.g. a
99.97%-quantile) of the Portfolio Loss distribution minus its expectation.
The Default Correlation of risk pair (i, j) is denoted by ρDi,j. It is given by

ρDi,j = ρ (Ii, Ij) , (4)

where ρ (Ii, Ij) is the Pearson’s correlation coefficient for (Ii, Ij):

ρ (Ii, Ij) =
cov (Ii, Ij)

σ (Ii)σ (Ij)
. (5)

with:
σ2(Ii) = qi (1− qi). (6)

The LGD Correlation of risk pair (i, j) is denoted by ρLGDi,j . It is given by

ρLGDi,j = ρ (LGDi, LGDj) . (7)

Finally, the Loss Correlation of risk pair (i, j) is denoted by ρLi,j. It is given
by

ρLi,j = ρ (Li, Lj) . (8)
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In the next sections we will discuss how to construct (and how not to
construct) a consistent model of correlations ρDi,j, ρ

LGD
i,j and ρLi,j. Whilst it

is of course correct to consider LGD as a r.v. and not as a deterministic
quantity, we show that the consequences of such an assumption should be
carefully considered. Since the equality between loss and default correlations
hold in case the LGD are deterministic, it is tempting to continue assuming
that ρLi,j = ρDi,j holds for all risk pairs (i, j) also when LGD is a r.v. We
will show that this assumption, in conjunction with the use of a stochastic
LGD, leads to inconsistencies. A number of authors have considered methods
of estimating default correlations, including theoretical models of Hull and
White (2001) and Zhou (2001). Some estimates from real data are used
in Stevenson et al (1995) and Gollinger and Morgan (1993). On the other
hand, much less literature seems to exist on the more general concept of loss
correlations.

3 Some general results

Throughout this paper we will assume that the vector of Default Bernoulli
random variables (Ii, · · · , In) and the vector of Loss Given Default random
variables (LGD1, · · · , LGDn) are mutually independent. Hence, in line with
most credit default risk models, we will assume

ASSUMPTION(1) : Ii and LGDj are mutually independent,

for any pair (i, j) . (9)

We emphasize that the mutual independency of Ii and LGDi is just a techni-
cal assumption. Indeed, only the random variable LGDi | Ii = 1 is relevant.
So we can choose the distribution function of LGDi | Ii = 0 as we want.

A convenient choice is to assume that (LGDi | Ii = 0) d
= (LGDi | Ii = 1),

where d
= stands for the equality in distribution. This is indeed a good choice,

because it makes the random variables LGDi and Ii mutually independent
which is convenient from a mathematical point of view. The assumption of
mutually independency between Ii and LGDj for i 6= j cannot be considered
as a technical assumption.
In the sequel, we will also set all EADi equal to 1. Results and conclusions
can easily be generalized to Exposures-at-Default with values different from
being all equal to one.
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From

cov (Li, Lj) = E [cov (Li, Lj) | Ii, Ij]+cov [E (Li | Ii, Ij) , E (Lj | Ii, Ij)] (10)

we find using assumption (1) that

cov (Li, Lj) = E (Ii Ij) cov (LGDi, LGDj)

+E(LGDi) E(LGDj) cov(Ii, Ij)

= [cov(Ii, Ij) + qi qj] cov(LGDi, LGDj)

+E(LGDi) E(LGDj) cov(Ii, Ij). (11)

Hence,

ρLi,j σ(Li) σ(Lj) =
£
ρDi,j σ(Ii) σ(Ij) + qi qj)

¤
ρLGDi,j σ(LGDi) σ(LGDj)

+ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj). (12)

Also from expression (10) we find that

V ar(Li) = V ar [E (Li | Ii)] +E [V ar (Li | Ii)]
= E2(LGDi) qi (1− qi) + qi V ar (LGDi) . (13)

From the derivations above, we find that a general expression for V ar(L) is
given by

V ar(L) =
nX
i6=j

cov(Li, Lj) +
nX
i=1

V ar(Li)

=
nX
i6=j

£
ρDi,j σ(Ii) σ(Ij) + qi qj)

¤
ρLGDi,j σ(LGDi) σ(LGDj)

+
nX
i6=j

ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj)

+
nX
i=1

qi
¡
E2(LGDi) (1− qi) + V ar (LGDi)

¢
. (14)

From expression (12) we obtain that ρLi,j is given by:
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ρLi,j =
A+Bp

V ar(Li)V ar(Lj)
(15)

with:

A =
£
ρDi,j σ(Ii) σ(Ij) + qi qj)

¤
ρLGDi,j σ(LGDi) σ(LGDj)

B = ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj) (16)

4 An inconsistent model

In case all LGDi are deterministic, it is straightforward to prove that for
any risk pair (i, j) the loss correlation is equal to the default correlation.
Therefore, a natural assumption seems that this holds in general:

ASSUMPTION (2a) : ρLi,j = ρDi,j for all (i, j). (17)

However, LGD is considered to a random variable and the question raises
whether assumption (2a) can be made in this case. The inconsistency of
assumption (2a) when adding it to the existing set of assumptions can be
shown easily by a numerical counterexample:
Taking

qi = 0.001

qj = 0.01

E (LGDi) = 0.8

E (LGDj) = 0.2

V ar (LGDi) = 0.04

V ar (LGDj) = 0.04

ρDi,j = ρLi,j = 0.03

We find from (13) and (15) that:

V ar(Lj) = 0.00068

V ar(Lj) = 0.00080

From (15) we find now that

ρLGDi,j = 1.669

7



which is in contradiction with ρLGDi,j ≤ 1.
We can conclude that the pair of assumptions (1) and (2a) lead to unac-

ceptable inconsistencies. This makes the assumption (2a) inappropriate for
practical use. We remark that the assumption of equality between the loss
correlations and default correlations is correct when the LGDi are assumed
to be deterministic. In this case it is even not necessary to assume (2a). It
is just a property that follows from the model.
We will now propose two consistent alternatives. Both alternatives still

use the concept of a stochastic LGD but replace the inconsistent assumption
2a by another consistent assumption.

5 Consistent methodology I

Consider the individual loss random variables Li = Ii (LGDi), i = 1, · · · , n,
as defined above. As mentioned earlier, throughout this paper we assume that
the vector of Default Bernoulli random variables (Ii, · · · , In) and the vector
of Loss Given Default random variables (LGD1, , · · · , LGDn) are mutually
independent.
The simplest consistent methodology derives from additionally assuming

that Loss-Given-Defaults are mutually independent:

ASSUMPTION (2b) : ρLGDi,j = 0 for all i 6= j. (18)

In this case, we find from the general expression (12) that

Cov(Li, Lj) = ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj)), i 6= j, (19)

or equivalently,

ρLi,jσ(Li) σ(Lj) = ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj)), i 6= j, (20)

From (14) we find now the following expression for the variance of the Port-
folio Loss:

V ar(L) =
nX
i6=j

ρDi,j

q
qi(1− qi)qj(1− qj) E(LGDi) E(LGDj))

+
nX
i=1

qi
¡
E2(LGDi) (1− qi) + V ar (LGDi)

¢
. (21)
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Finally, using the same theoretical example setting as in Section 4, we find
from (20) that

ρLi,j = 0.021

and not ρLi,j = 0.03, as it was the case in the inconsistent methodology.

6 Consistent methodology II

Consider the individual loss random variables Li = Ii (LGDi), i = 1, · · · , n,
as defined above. Again we assume that the vector of Default Bernoulli ran-
dom variables (Ii, · · · , In) and the vector of Loss-Given-Default random vari-
ables (LGD1, , · · · , LGDn) are mutually independent. But now we assume
that the vector (LGD1, , · · · , LGDn) is a comonotonic vector. This means
that (LGD1, · · · , LGDn) has the same distribution as

¡
F−1LGD1

(U), · · · , F−1LGDn
(U)

¢
,

where U is a random variable that is uniformly distributed on the unit interval
(0, 1), and F−1LGDi

is the inverse distribution function of the random variable
LGDi. The assumption of comonotonicity implies that the different LGDi

are monotonic functions of a common random variable, which also explains
the word comonotonic (common monotonic) and shows that comonotonicity
is indeed a strong dependency structure. One intuitively expects that the
assumption of comonotonicity for the vector (LGD1, , · · · , LGDn) will give
rise to an upper bound for the variance of the Portfolio Loss.

ASSUMPTION (2c) : cov (LGDi, LGDj) = cov
³
F−1LGDi

(U), F−1LGDj
(U)

´
for all (i, j) .

Note that the vectors (LGD1, · · · , LGDn) and
¡
F−1LGD1

(U), · · · , F−1LGDn
(U)

¢
have the same marginal distributions, so that the LGD-correlations are given
by

ρLGDi,j =
cov

³
F−1LGDi

(U), F−1LGDj
(U)

´
p
V ar (LGDi) V ar (LGDj)

(22)

It is straightforward to show that if ρLGDi,j = 1 for all i 6= j then this
implies that (LGD1, , · · · , LGDn) is comonotonic, but the opposite statement
is only true if there exists a random variable Y , positive real constants ai
and real constants bi such that the relation LGDi

d
= aiY + bi holds for

i = 1, 2, . . . , n.
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However, it can be proven that the comonotonicity of (LGD1, , · · · , LGDn)
is equivalent with the maximization of the ρLGDi,j for all pairs (LGDi, LGDj)
with i 6= j, see Dhaene et al (2000a) for a proof.

From (12) we find

Cov(Li, Lj) =
£
ρDi,j σ(Ii) σ(Ij) + qi qj)

¤
cov

³
F−1LGDi

(U), F−1LGDj
(U)

´
+ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj). (23)

or equivalently

ρLi,j σ(Li) σ(Lj) =
£
ρDi,j σ(Ii) σ(Ij) + qi qj)

¤
cov

³
F−1LGDi

(U), F−1LGDj
(U)

´
+ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj). (24)

The variance of the Portfolio Loss follows from (14):

V ar(L) =
nX
i6=j

£
ρDi,j σ(Ii) σ(Ij) + qi qj)

¤
cov

³
F−1LGDi

(U), F−1LGDj
(U)

´
+

nX
i6=j

ρDi,j σ(Ii) σ(Ij) E(LGDi) E(LGDj)

+
nX
i=1

qi
¡
E2(LGDi) (1− qi) + V ar (LGDi)

¢
. (25)

Assuming that ρDi,j and ρ
D
i,j are both non-negative for all (i, j), we find by

comparing the general expression (12) for ρLi,j with the expressions (20) and
(24) respectively that:

ρLi,j[methodI] ≤ ρLi,j[consistent method] ≤ ρLi,j[method II] (26)

and also that

V ar(L)[method I] ≤ V ar(L)[consistent method] ≤ V ar(L)[method II].
(27)
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7 Conclusion and final remarks

In this paper, we proved that, when using a stochastic LGD, the method
of setting default correlations and loss correlations equal is inconsistent. We
proposed two consistent models. These two models are extreme models, in
the sense that for any possible consistent method (with all ρLGDi,j and ρDi,j
being non-negative) the following inequalities will hold:

ρLi,j[methodI] ≤ ρLi,j[consistent method] ≤ ρLi,j[method II] (28)

and

V ar(L)[method I] ≤ V ar(L)[consistent method] ≤ V ar(L)[method II].
(29)

Note that these inequalities hold as far as the distribution functions of the
Ii and of the LGDi, as well as the correlations ρDi,j are the same for the
different methods. We point out that method I relies on an independency
assumption between the different LGDi’s whilst in the most prudent method
II, one assumes that the different LGDi’s are comonotonic. The theory of
comonotonicity has been extensively studied in a series of papers, starting
from Dhaene & Goovaerts (1996) and pursued in Kaas et al (2000) and
Dhaene et al (2000a). The theory has been applied to a number of important
financial and actuarial problems such as the pricing of Asian and Basket
options in a Black & Scholes model, the setting of provisions and required
capitals in an insurance context and the determination of optimal portfolio
strategies. We refer to Albrecher et al (2005), Dhaene et al. (2002b), Dhaene
et al. (2004), Vanduffel et al. (2002) and Vanduffel et al. (2005) where these
applications have been investigated.
Finally, we remark that all the results in this paper continue to hold if

we generalize the model to the case that the defaults (I1, · · · , In) depend on
some conditioning random vector (Q1, · · · , Qn) such that

Qi = Pr [Ii = 1 | Qi] . (30)

This leads to
Pr [Ii = 1] = E (Qi) = qi. (31)

Hence, the probability of default of risk i can be interpreted as the expecta-
tion of the conditioning random variable Qi in this case.
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