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Abstract 

Does one make money trading on the deviations between observed bond prices and values 
proposed by bond-pricing models? We extend Sercu and Wu (1997)'s work to more models and 
more data, but we especially refine the methodology. In particular, we provide a normal-return 
benchmark that markedly improves upon the Sercu-Wu ones in terms of noisiness and bias. We 
also obtain an impression as to how much of the typical deviation consists of mispricing and 
how much is model mis-estimation or mis-specification. Lastly, we find that pooled time-series 
and cross-sectional estimation, as applied by e.g. De Munnik and Schotman (1994), does help 
in stabilizing the parameter, but hardly improves the trader's profits. In terms of performance 
for trading purposes there is little difference across models, at least when one re-estimates and 
trades daily, and we observe no relation with various measures of fit in the estimation stage. 

Keywords: Term Structure of Interest Rates, Bonds 
JEL-codes: . 



Selecting a bond-pricing model for trading: 
benchmarking, pooling, and other issues 

Introduction 

Since the late 1970s, term-structure (TS) theory has evolved from qualitative propositions 

about shapes of interest-rate curves to very specific, non-linear models that price both bonds 

and derivatives. Following Sercu and Wu (1997), our test of eight such models center on 

the question how much money can be made by trading on the deviations between observed 

bond prices and values proposed by bond-pricing models. Sercu and Wu (SW) report that such 

trading generates abnormal returns. Our original objective, in the present paper, was to extend 

their work to more data and more models, including especially two-factor models. However, 

when we also applied the SW trading-rule to a-select portfolios (like buying short-term bonds 

only, or long-term bonds only), we found that some of these naive buy-and-hold strategies 

seemed to provide abnormal returns too. This prompted us to come up with a new benchmark

return strategy that avoids such biases and minimizes noise. Another difference relative to SW 

is that estimation is not necessarily based on a single cross-section, but alternatively also on 

five or twenty pooled cross-sections, following De Munnik and Schotman (1994). We find that 

there are moderate abnormal profits to be made from using formal models, of the order of 

two to four percent per year. Pooled estimation does help in stabilizing the parameters, but 

hardly improves the trader's profits. In terms of performance for trading purposes there is 

little difference across models, at least when one re-estimates and trades daily, and we observe 

no relation between usefulness as a trading tool and statistical performance measured by the 

goodness of fit obtained at the estimation stage. 

In the remainder of this introduction we position our work relative to other empirical TS 

work, we justify some fundamental choices in the research design, and we outline the paper. 

In general, the empirics spawned by (and providing feedback to) theoretical work relate to 

either the appropriateness of the models' assumptions, or the prices it produces, or its delta's 

or hedge ratios. In the first category one strand of studies, illustrated by Chan, Karolyi, 

Longstaff and Sanders (1992), attempts to accept or reject the stochastic form of the factors 

put forward in TS theory. Others pragmatically let the data decide on the data-generating 

process for often-used factors in TS modelling like the short term interest rate, and also try out 
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additional features like non-linearities (Alt-Sahalia, 1996a, 1996b; Stanton, 1997; Chapman and 

Pearson, 1999) or volatility clustering (Bali, 2003) or regime shifts (Ang and Bekaert, 2002a, 

2002b). Work related to the prices produced by these models, rather than to the underlying 

processes, ranges from purely fitting the term structure to bond prices (as do e.g. De Munnik 

and Schotman, 1994, and Brown and Dybvig, 1985) to determining whether derivative prices 

calculated from estimated TSs are close to observed market prices. In practice, deriving sound 

prices for all types of instruments at the same time proves to be a difficult task. Lastly, rather 

than studying underlying processes or fitted prices, one can also verify the correctness of the 

delta or hedge ratios proposed by these models, like e.g. Driessens, Klaassen and Melenberg 

(2000), Gupta and Subrahmanyam (2000), and Sercu and Vinaimont (2003). Our work fits 

in the second category-prices-but has linkages to the third strand of empirical work: like 

studies of hedge ratios, it has a dynamic, intertemporal flavor and adopts the professional user's 

point of view. So while we do look at the static goodness of fit within cross-sections (and even 

provide a new measure of flexibility), this is mainly to see whether statistical goodness of fit 

bears any relation to price-change predictability and practical use. 

The raw material we work with is straight government bonds, in particular Belgium's 

"OLO" bonds. The advantage of a simple instrument is that there is absolute clarity with 

respect to terms and conditions. Also, turnover in OLOs is high. 'frue, we could also include 

derivative products in the analysis. However, the BEF market was entirely OTC; thus, there 

is no organized market, no records of transaction prices nor a coherent data set of quotes; and 

the terms and conditions are not standardized. 

The models we select are all closed-form as far as zero-bond bond prices are concerned. 

This does limit the range of the work. However, selecting these models makes the estimation 

procedure in essence straightforward, as there is no need for numerical approximations. A 

concomitant advantage is that all models can be estimated in essentially the same way, non

linear least squares. While an assessment of whether the estimation procedure influences the 

performance can be interesting as well, we prefer to keep this outside this particular paper. 

Within the range of closed-form models we limit our selection to a few one- and two-factor 

models. Our aspiration is not to cover all possible specifications, but to sample a range of 

models that differ in terms of complexity and ability to fit the data. 

We close our introduction with an outline of the paper. In Section 1 we present our shortlist 

of TS models; we describe the data; and we provide some statistical measures on how each of 

the models fit the bond prices cross-sectionally. In Section 2, we determine whether models are 
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able to detect mispricing. This consists of a review and validity check of various measures of 

normal returns, a regression analysis of abnormal returns, and the implementation of various 

trading strategies. Section 3 discusses the question whether anything is gained by doing the 

estimation in pooled cross-sections. Section 4 connects the results from Sections 1 and 2, and 

concludes. 

1 Statistical Fit 

1.1 The models 

The models we work with are, in order of complexity, (i) the cubic spline; (ii) two seminal 

one-factor models, (iii) four two-factor models. Most of these are widely known, but to identify 

the parameter estimates presented below we nevertheless need to agree on a notation. Thus, 

the key factor processes or equations are presented below. 

The Vasicek model. Vasicek(1977) assumes a mean-reverting Gaussian process for the instan

taneous interest rate, 

dr(t) = a (,8 - r(t)) dt + O"dW(t), (1.1) 

where a> 0 is the mean reversion parameter, ,8 the unconditional mean ofr(t), 0" the volatility 

of the spot rate, and W(t) a standard Brownian motion. The price of risk is assumed to be 

constant. 

The Cox-IngersolL-Ross Model. The second model, by Cox, Ingersoll and Ross (1985), is 

general-equilibrium in nature. It assumes log-utility investors facing a mean-reverting square

root process for output, and from these derives a mean-reverting square-root process for the 

instantaneous rate and an endogenous price of risk. The process for r is 

dr(t) = a (,8 - r(t)) dt + O";;WdW(t) (1.2) 

where a > 0 is the mean reversion parameter, ,8 the unconditional mean of r(t), 0" a measure 

of volatility of the spot rate, and W(t) a standard Brownian motion. 

The Richard Model. Starting from the Fisher equation, Richard (1978) assumes that the 

instantaneous real interest rate (R) and the expected inflation rate (7r) each follow a mean

reverting squareroot process: 

dR(t) 

d7r(t) 

a(R* - R)dt + O"RVR dZR(t), and 

c(7r* - 7r)dt + 0"1I"v0f dZ1I"(t). 

(1.3) 

(1.4) 
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The correlation between ZR and Z" is assumed to be zero. Actual inflation is expected inflation 

plus noise, and the nominal rate is the real rate plus expected inflation: 

dP(t)/P(t) 

r(t) 

7r(t)dt + up(7I', R)dZp(t) , and 

R(T) + 7r(t)(l- u~). 

(1.5) 

(1.6) 

The Longstaff and Schwartz model. Longstaff and Schwartz (1992) develop a two-factor general 

equilibrium model of the term structure that builds upon em. They take the short-term 

interest rate and the instantaneous variance of the short-term interest rate as the two driving 

factors. The mathematical structure is very smilar to Richards', though. Initially, Longstaff 

and Schwartz assume two unobservable state variables, X and Y, which follow squareroot 

processes, 

dX 

dY 

(a - bX)dt + Cv'XdW2(t), and 

(d - eY)dt + jn dW3(t) , 

and which affect expected returns on investment as follows: 

(1.7) 

(1.8) 

(1.9) 

where W2 is assumed to be uncorrelated with WI and W3. Assuming log utility, expected 

growth in marginal utility-the instantaneous interest rate-is expected output minus variance 

of output. Thus, 

r(t) = ax + f3y (1.10) 

where a = p,c'l, f3 = (fJ - u2)P, x = X/c?, Y = Y/P, I = a/c, 8 = b, 'TJ = d/p. The variance 

of changes in the short-term interest rate is 

(1.11) 

The Balduzzi, Das, FOTesi and Sundamm model. Balduzzi, Das, Foresi and Sundaram (2000) 

develop a two-factor model where the first factor r is the short rate and the second factor, 

fJ, is the mean level of the short rate (in the sense of the long-run level to which the rate is 

attracted, everything else being the same). The short rate follows the same process as in the 

Vasicek setting, 

dr(t) = K,(fJ - r)dt + UdWI(t). (1.12) 

except that it is attracted not to a constant mean but to a moving target, with 

(1.13) 
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with a, band TJ constants. The two processes can be correlated: dWldW2 = pdt. The prices 

of risk are assumed to be constant. 

The Baz and Das model. Baz and Das (1996) extend the Vasicek model by adding a Poisson 

jump process N(t) with intensity rate A. The process for the short-term rate in the extended 

Vasicek jump-diffusion process then becomes: 

dr(t) = 0: (f3 - r(t)) dt + O"dW(t) + JdN(t). (1.14) 

with 0: the mean reversion coefficient, f3 the long-term mean of the short interest rate, and 

0" the instantaneous volatility. The intensity of the jump is defined by J, which is assumed 

to be a normal variable with mean 8 and a standard deviation of 6. This one-factor model 

jump-diffusion model can be easily extended when one assumes two orthogonal factors. To 

that end two similar processes can be defined: 

dYl(t) 

dY2(t) 

r(t) 

0:1 (f3l - Yl(t)) dt + O"ldWl(t) + JldNl(t) 

0:2 (f32 - Y2(t)) dt + 0"2dW2(t) + hdN2(t), 

Yl(t) + Y2(t) 

where dYl(t) and dY2(t) are independent. 

(1.15) 

(1.16) 

(1.17) 

The Cubic Spline. McCulloch (1975) uses the cubic spline to curve-fit the TS. The price of a 

discount bond with remaining life r is then given by 

K 

P(r) = air + a2r2 + a3r3 + Lc4 [max(r - kj,O)]3 
j=l 

(1.18) 

where ki are the K knot points or knots. These divide the maturity range into K + 1 distinct 

sections, within each of which the TS follows a cubic and where the cubics smoothly join 

at the knots. The choice of the number of knots and their values is rather arbitrary. For 

comparability with Sercu and Wu, we set two knots, at 2 and 7 years. The parameters aI, a2, 

a3, dl and d2 can be estimated by an ordinary linear regression. 

This finishes our presentation of the models and their notation; the data to which these 

models are taken come next. 

1.2 Data 

The test ground for our selection of term structure models are a class of Belgian government 

bonds called Obligations Lineaires / Lineaire Obligaties (OLOs). OLOs have many advantages 
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relative to ordinary Belgian government bonds. OLO maturities nowadays run up to thirty 

years and contain no embedded option features. Being registered bonds rather than bearer 

securities, OLOs are mainly held by corporations, making tax clientele effects less likely. FUr

thermore, Belgian OLOs are actively traded each working day: there are about twenty market 

makers obliged to quote on request, with a legal bound on the spread. Transaction costs are 

therefore low and comparable between bonds. We obtain the OLO mid-prices from the Cen

tral Bank of Belgium. As Belgian government bonds are mainly traded off the exchange, the 

Central Bank of Belgium, comparable to practices by the Fed in the US, carries out a daily 

survey at 3 pm. The quotes represent the view of the biggest market makers on the fair value 

of each bond and are as such not transaction prices. 1 Our sample contains 29 OLOs in total. 

We choose our sample period to include all trading days between June 1, 1992 to December 

13, 1998. The decision is based on minimum cross-sectional sample size and an even maturity 

range. Before June 1992, too few OLOs were traded to meaningfully fit the different models. 

Secondly, on December 13, 1998, for the first time a 30-year OLO gets introduced. Before that 

date, the longest issues were OLOs with 20 years to maturity. The first issue of the 3D-year 

OLO creates a serious gap in time to maturity/duration between the 30-year bond and the 

bond with the next-longest time to maturity (then 18 years). Limiting the sample to Decem

ber 1998 also reduces potential influence from the introduction of the common currency in the 

Euro-zone. We also include T-bill data for six maturities (two and four weeks; and 2, 3, 6 

and 12 months) to enhance the estimation of the short end of the term structure. The T-bills, 

however, do not enter the performance tests. 

1.3 Estimation of the Term Structure Models 

Note that we estimate directly from all available raw coupon-bond data, not from a few zero

coupon interest rates or swap quotes. That is, each coupon-bond price is written as the 

sum of the present values of its pay-outs, each of these present values being specified as the 

zero-coupon-bond pricing equation of the model that is being considered. In the unpooled 

estimation, our base case, the procedure is that for each day in the sample we estimate the 

models cross-sectionally by non-linear least squares, that is, by minimizing the sum of squared 

errors between observed bond prices and fitted values. The optimization method used is a 

'The advantage of using mid-prices instead of transaction prices is that we need to worry less about bid-ask 
bounces, non-synchronized data or temporal liquidity shocks creating extra noise in transaction data. 



Table 1: Cross-sectional estimation of the Vasicek model, estimated and derived parameters 

Vasicek 
4>0 '" 4>1 4>2 r RL p. u' 

average 0.20483 0.37432 0.37575 -0.01756 0.05288 0.08631 -0.00786 -0.00193 
Median 0.15103 0.31329 0.26753 -0.02941 0.05281 0.08591 -0.00518 0.00436 

Cox-Ingersoll-Ross 
iiI 92 03 r RL u' P. 

average 0.31491 0.24019 1.20002 0.04859 0.08255 0.05943 0.0074 
Median 0.22633 0.10522 1.08310 0.05036 0.08298 0.01885 0.0081 

Richard 
a c UR 4>R u" 4>" R' 11"' up R 11" r 

Average -0.00027 0.23 0.030 0.54 0.2900 -35.60 573.36 0.245 0.907 0.069 -0.042 0.059 
Median 0.00000 0.21 0.001 0.54 0.0005 -0.00012 0.00088 0.244 0.919 0.064 -0.000 0.062 

Longstaff-Schwartz 

'" (3 6 'Y v 1/ r V RL 
average 0.1055 0.2142 0.0272 1.1847 1.1711 -0.4185 0.0547 0.0096 0.0866 
Median 0.0535 0.0937 0.0728 0.2563 0.2793 0.0510 0.0472 0.0044 0.0870 

Balduzzi-Das-Foresi-Sundaram ,. U a b 1/ P ,\ r 0 

Average 0.1673 0.0012 0.0603 -1.3691 0.0943 2.8690 -1.123 0.0529 0.0337 
Median 0.1302 -0.0001 0.0636 -.5533 0.0744 0.3071 0.4021 .04507 .03927 

Baz-Das 

"'1 "'2 "1 "2 U1 U2 (31 (32 01 02 61 62 '\1 '\2 Y1 Y2 
Average 1.2402 0.2694 0.5199 -3.7014 -0.0063 0.0054 0.0495 0.0410 -0.0461 0.2756 0.0114 0.1741 0.3384 0.0757 0.1188 0.0618 
Median 1.2634 0.2531 0.0999 -3.3513 0.0000 0.0051 0.0410 0.0138 -0.0117 0.0168 0.0000 0.0001 0.1659 0.0065 0.0364 0.0333 

Cubic Spline 
a1 a2 a3 d1 d2 

average -0.05086 -0.00061 -0.00002 0.00018 -0.00018 
Median -0.04600 -0.00333 0.00030 -0.00009 -0.00020 

RMS 
0.0018 
0.0015 

RMSE 
0.0021 
0.0020 

RMSE 
0.0016 
0.0015 

RMSE 
0.0015 
0.0013 

RMSE 
0.0012 
0.0010 

RMSE 
0.0017 
0.0016 

RMSE 
0.0014 
0.0013 

~ 
JJ' 
0-
§ 
i:l. 
~ ::t 
~. 
i3 o 
0-
f} 

-'I 
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Marquardt procedure. 

Averages and medians of the coefficients and of the implied numbers with a ready economic 

interpretation, like the long-run asymptotic interest rate, produce acceptable values, as can be 

seen in table 1. 

As expected from pure cross-sectional regressions, and as documented before by e.g. Brown 

and Dybvig (1985) and De Munnik and Schotman (1994), parameters occasionally turn non

sensical for some subperiods and some models. For instance, estimated implicit variances can 

be negative. The alternative would be to force specific parameters to behave within theoretical 

constraints-for instance, 2': 0 for the variance. However, all too often the solution then is to 

set the parameter at the bound. Also, estimation then often turns unstable or the models show 

absolute inability in fitting the term structure. Nonsensical estimates and unstable solutions 

tend to mean that the objective function is hardly affected by the parameter. By allowing the 

parameters to free-range, we are mainly assessing whether the functional form of the model 

provides a good tool to summarize the term structure. Violations of theoretical constraints do 

not necessarily mean that this specific model is less useful. Indeed, one of the themes in this 

paper is to investigate the link between practical usefulness, complexity and fit. 

1.4 Goodness of fit, cross-sectional and longitudinal 

In this section, we explore the characteristics of the regression residual and proceed by ranking 

the models according to their ability to fit the coupon bond prices in the market. Summary 

statistics on the bond-price residuals can be found in Table 2. The tables are not set up per 

individual bond because of the changing time to maturity as time passes on. Instead, we 

package the bonds into six simple time-to-maturity portfolios. For every day in the sample, 

the first portfolio combines residuals from bonds with time-to-maturity not exceeding 1 year 

at that time. The other groups similarly contain bonds from 1 to 2, 2 to 4, 4 to 8, 8 to 15 and 

over 15 years time to maturity. A puzzling feature of the average errors per bracket is that, 

for all time-to-maturity brackets, all models are unanimous about the direction of mispricing; 

even the ad hoc spline, with the fewest restrictions on the TS shape, perfectly agrees with the 

average errors of the more structured models. Especially eIR has problems with estimating 

the shortest end of the TS, with an average error of minus 13.3 and and average absolute error 

of 18 basis points. Our concern, initially, had been that no model would be able to capture the 

short end of the TS well, characterized as it was by a sharp hump during the 1992 and 1993 

turmoil in the Exchange Rate Mechanism. However, the period was, apparently, too short to 
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Table 2: Summary numbers on bond-price residuals from pure cross-sectional estimation, 
grouped by time-to-maturity. 

Key: Bond-price residuals for each model are grouped into time-to-maturity brackets. The summary statistics 

we show are the Average Error (Avg) and the Average Absolute Pricing Error (AAE) per time-to-maturity 

bracket. All numbers are in basis points and par value for bonds equals 100. 

vasicek cir rich ls bdfs b-d spline 
>3m ~ly avg -2.9 -13.3 -4.4 -3.7 -3.8 -1.4 -4.1 

AAE 8.3 18.0 9.3 7.3 7.3 7.8 6.9 
>ly ~2y avg 3.1 2.6 0.3 -0.8 0.7 2.7 2.0 

AAE 8.6 11.4 7.1 6.4 6.9 8.2 8.2 
>2y ~4y avg 1.0 2.1 1.6 1.4 1.3 -4.3 1.9 

AAE 10.5 10.9 9.1 7.4 8.6 14.2 8.7 
>4y ~8y avg -4.6 -1.7 0.3 -1.2 -2.2 -4.3 -2.5 

AAE 14.2 16.5 14.3 13.5 13.6 14.2 12.5 
>8y ~15y avg 7.4 5.3 2.7 3.2 4.1 8.1 2.8 

AAE 24.0 24.2 21.6 21.0 21.6 24.3 18.6 
>15y avg -10.3 -9.0 -5.4 -5.0 -5.6 -12.4 -1.2 

AAE 16.1 13.5 12.6 12.0 11.1 19.8 7.5 
overall avg 0.19 0.30 0.58 0.17 0.18 0.33 0.26 

AAE 15.6 16.9 14.3 13.3 13.7 15.8 12.4 

matter in the average. Instead, across all models, the highest Average Absolute Errors (AAEs) 

are actually found in the bracket containing bonds with time-to-maturity between eight and 

fifteen years. 

The ranking for overall AAEs and average RMSEs is summarized in table 3, alongside 

other rankings that will be introduced later. The top three models in terms of fit for both 

criteria are BDFS, Longstaff-Schwartz and the spline. The worst model with respect to these 

criteria is eIR's, even though the differences are never staggering. Yet that ranking is totally 

overturned as soon as we adopt two other measures of goodness of fit that have to do with 

longitudinal properties. These measures are (i) the autocorrelation in the residuals, extracted 

from the daily cross-sectional regressions and grouped bond by bond into time series; and (ii) 

the average run length, i. e. the average number of consecutive days where the residuals of 

a given bond all have the same sign. Both are measures of persistence of unexplained bond 

values. Of course, these numbers do not tell us whether any high persistence is due to market 

inefficiency (the market is slow to realize and correct its mistakes) or model mis-specification 

(some TS shapes cannot be captured, and since the shapes persist, the apparent pricing errors 

persist too) or persistent mis-estimation; but the same ambiguity reigns with respect to the 
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Table 3: Size and persistence of errors, across models 

Key: We show two measures of unexplained variability in prices, the Average Absolute Error (AAE) and the 
Average Root Mean Square, the average standard deviation of the residuals. Both are measured in basis points. 
Also shown are the autocorrelation, averaged across bonds, of the time series of residuals per bond extracted 
from each cross section, and the average run length (in days), where a run is defined as a sequence of days where 
the residuals have the same sign. 

vasicek cir rich Is bdfs b-d spline 
statistics 

AAE 15.6 16.9 14.3 13.3 13.7 15.8 12.4 
ARMSE 17.5 20.5 16.0 14.6 12.0 17.1 13.9 
autocorr 0.94 0.85 0.74 0.85 0.86 0.73 0.93 
avg runl 17.6 12.2 7.7 14.9 13.9 7.4 17.7 

ranking of models 
AAE 5 7 4 2 3 6 1 
RMSE 6 7 4 3 1 5 2 
autocorr 7 3 2 4 5 1 6 
avg runl 6 3 2 5 4 1 7 

MSE of a regression. 

The autocorrelations are unexpectedly high, ranging from 0.74 (Baz-Das) to 0.93-0.94 (Va

sicek and the spline), with most other models hovering around 0.85. In the same vain, cor

recting a mistake requires on average anywhere between 7 days (Baz-Das) and 18 (Vasicek). 

Equally unexpectedly, there is little connection between size and persistence of pricing errors. 

The spline, which does well in terms of cross-sectional fitting, produces quite persistent errors 

while OIR, rather bad at fitting across bonds, does relatively better in terms of persistence. 

The distinct performance of Baz-Das in terms of persistence--the difference with the second 

best is quite marked-is likewise hard to explain from the MSEs. Still, the size of the au

tocorrelations and the lengths of runs of same-sign residuals is disconcerting. It is hard to 

believe that all of this would be pure market efficiency; rather, inability to capture twists in 

the TS seems to be at least as plausible an explanation. This second view could fit in with 

our earlier observation that all models seem to produce similar errors for bonds in the same 

time-to-maturity bracket. Tests of what part of the error is market mistakes versus model 

misspecification are the main subject of the next section. 

2 Mar ket errors v model errors 

In the previous section we established a ranking of the competing models based on the natural 

belief that smaller errors between model and observed prices translate in better pricing capa

bilities of that model. Especially for the purpose of pricing options, many potential users of a 
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model would balk if that model misprices the underlying. The fact that there still is a residual 

would be acceptable if these were random and short lived deviations caused by, say, transaction 

costs or stale data and causing, in turn, some random estimation error in the coefficients too. 

The high persistence of the residuals we observed belies this: there must be a market error or 

inefficiency and/or a model error. In this section we attempt to quantify these components. 

2.1 Decomposing scaled residuals into abnormal returns and model errors 

Denote observed and fitted prices by Pi,t and Pi:t , respectively, and use Yi,t to denote the 

unobservable true value. Ideally we would decompose the residual into a market error (the 

pricing mistake) and a model error, i.e. mis-specification and -estimation: 

def * Pi,t - P;,t 

P;,t - Yi,t ---..-... 
market error at t 

+ Yi,t - Pi:t . ---..-... 
model error at t 

(2.19) 

(2.20) 

The obvious problem is that the true value is not observable. We proceed initially under the 

testable null that the previous price is correct and the fitted price useless. (We later generalize.) 

If so, then Yi,t = Pi,t-l [1 + Jii\t-l] , with HPi,t-l the normal holding-period return for a bond 

with the terms and conditions of i between days t - 1 and t. The normal return should also 

take into account market movements in the TS during that day. Leaving aside, for a moment, 

the question of how the normal return should be identified, we proceed as follows. Under the 

null, the decomposition becomes 

RESi,t = :i,t - P;,t-l ~ 1 + HPi,t-1l + ~,t-l [1 + ~i,t-l] - P;::. (2.21) 

market error at t, under He model error at t, under He 

In the previous section we looked at the autocorrelation in the price-scaled residuals. These 

variables can now be decomposed into 

RESi,t 

F'i,t-l 
[P't-P:t-l - ] [- P*t] " p. " - HPi,t-l + 1 + HPi,t-l - p!- ' 

',t-l ',t-l 

- [- [ Ptt ]] = HPi,t-l - HPi,t-l + HPi,t-l - n-'- - 1 
, v ' r-i,t-l 

abnormal return 

(2.22) 

Thus, first, the components of the scaled residual are (i) the abnormal return, and (ii) the 

difference between the normal return and the percentage price-change needed to wipe out 

yesterday's apparent mispricingj and, second, the abnormal-return component is directly linked 
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to the percentage market error.2 The component we chose to study is the familiar abnormal 

return. Under the null Pi,t-I = Yi,t-I, yesterday's apparent mispricing is a fiction created by 

bad models, so it can affect neither the normal return nor the actual one. Thus, we should find 

no link between abnormal return and yesterday's deemed mispricing. In the regression below, 

A~,t def HPi,t-1 - Jjl\t-I, 

b RESi,t-1 
G-i,t + i,t n + ci,t 

ri,t-I 
(2.23) 

the slope b should be zero. This testable proposition can be weakened to situations where 

yesterday's price is not fully correct, but still correct only up to random noise. Then an errors

in-variables problem biases the slope towards zero but as the prediction is a zero slope anyway, 

this does not matter under the Null. 

The Null, in the above, was that prices are correct possibly up to random noise; the fitted 

model value had, by assumption, no information content. Suppose, more generally, that the 

true price is a convex combination of the model's fitted value and the observed price. (Below, 

we will call the weight of the model price in the convex combination---w, in the first equation 

below-the "relevance" coefficient for the model.) It is easy to show that, in that case, the 

slope should be between zero and -1: 

if Yi,t 

and HPi,t-1 

then A~,t-I 

(1- W)Pi,t-1 + w ~:t-I 

ll,t-I - w RESi,t-1 

[Yit-I - Pit-I] a' , + news 
Pi,t-l 

-a w RESi,t-1 + (news - lfi\t-I) (2.24) 

In general, therefore, the size of the slope b in (2.23) depends on w (the relevance of the 

fitted price in the convex combination) and a (the adjustment speed between actual and true 

value). The limit case is b = -1: the fitted price fully captures yesterday's true value, and all 

of yesterday's pricing error is set right overnight (up to random noise). If the first equation 

contains noise, the estimates of a . w are biased towards zero. 

From the length of the runs in the time series of residuals studied in the previous section, 

the adjustment speed over one single day may be quite low. To have an idea of the relevance 

of yesterday's residual, w, separately, we extend the holding period from one day to two and 

2This assumes that the previous price is correct; but since deviations are a matter of a few basis points, the 
inaccuracy introduced by an incorrect lagged price is very much second order of smalls. 
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four weeks-a horizon that encompasses the longest average run lengths documented in the 

previous sections, so that the adjustment can be assumed to be reasonably complete. Then b 

gives an indication of the long-run relevance w, probably still biased towards zero because of 

an errors-in-variables problem. 

To make all this operational, we need an acceptable measure of normal return. This is 

discussed in the next section. 

2.2 Normal returns and abnormal returns 

We need to know what the normal holding-period return is between days t - 1 and t on a 

bond like i, given what happened in the market during that period. By definition there are no 

individual bonds with matching characteristics in the market,3 and if there had been one, it 

would have been impossible to determine whether that matching bond is priced correctly on 

days t - 1 and t. We have considered five models for the normal return, three of them already 

adopted in SW (1997) and two new ones. 

The own-model fitted return. From the model and the daily parameter estimates SW compute 

fitted prices at times t - 1 and t, and from those they compute the expected return. This 

approach does take into account market movements as well as the i-th bond's terms and 

conditions. But the fitted prices are subject to model-specification and -estimation errors. 

More fundamentally, if we want to distinguish the performance of various models, each model 

will have its own benchmark and each model is temporarily presumed to be the correct one. 

We abandoned this approach on these grounds. 

A delta-neutral zero-investment portfolio. A rather different approach would be to discard the 

use of benchmarks completely and construct portfolios with the allegedly underpriced bonds 

held long and the overpriced bonds short, setting the weights such that the entire position is 

delta-neutral. This appraoch is subject to estimation errors in levels and deltas and does not 

allow a separate analysis of under- and overpriced bonds.4 The interpretation is ambiguous, 

too: we are testing, at the same time, the model's ability to get the bond price right and its 

delta(s). Finally, comparison across models becomes harder, as for each test the framework is 

again model dependent. 

3Subsequent bond issues with the same terms and conditions are assimilated with the original "line", hence 
the same "linear bond". 

4Shortsell restrictions may reduce the market's ability to reduce overpricing. 
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The duration-based market model. This benchmark return, proposed by Elton and Gruber 

(1991) and adopted by SW, is based on the "market mode" familiar from stock-market stud

ies. In the bond-market version the bond's market sensitivity or beta is not estimated but 

computed, notably as the ratio of the duration of the target bond to the duration of the mar

ket as a whole. This approach does take into account the market movements and the i-th 

bond's terms and conditions, at least in sofar as they affect duration. Estimation errors in the 

duration are minimal, and pricing errors are largely diversified away by taking a wide portfolio 

as the basis. By construction, this approach generates a zero abnormal return for the market 

as a whole, that is, it is correct on average, across all bonds. Long and short positions can be 

studied separately. The drawback is that it only works under the well-known duration-model 

assumptions. N on-parallell shifts, like rotation, may (and do) induce serious errors in the 

estimated normal returns for short or long bonds separately. 

The duration-and-convexity matching portfolio. In this benchmark, proposed by SW, one con

structs a mimicking portfolio from three equally weighted subportfolios, each consisting of all 

available short, middle and long bonds, respectively, that are in the market. The mimicking 

consists of matching price, duration and convexity of the target bond. Because three subport

folios are used and the problem is linear, the weights for each of the subportfolios are uniquely 

defined. This model has similar pros and cons as the duration market-model. One difference 

is that, being a quadratic approximation rather than a linear one, this model is better suited 

to deal with large shifts. Also, since it uses three portfolios, it will price correctly, on average, 

each of the three subclasses of bonds rather than just the market-wide average bond. However, 

it may (and does) still misprice the very short or very long bonds. Also, the three benchmark 

portfolios, consisting of just one third of the (limited) market, are less well diversified than the 

market portfolio and, therefore, more subject to measurement error. 

The minimum-variance duration-and-convexity matching portfolio. In this last approach in 

our list we form a matching portfolio not from three pre-determined portfolios but from all 

individual bonds (except, of course, for the bond that is being studied). The weights Xi for 

each traded bond i are chosen so as to minimize the variance of the portfolio subject to the 

constraint that the portfolio weights sum to unity and that the portfolio has the same duration 

and convexity of the bond that is to be matched.5 To estimate the covariance matrix of the 

5We also stop bonds from taking up more than one quarter of the portfolio, so that the mimicking portfolios 
are well-diversified; but it turns out that this restriction is never binding. 
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bonds that enter the portfolio, we use 60 trading days of historical returns. When a bond 

does not trade over the 60-day estimation period (e.g. when it was issued very recently) it is 

not included as a possible candidate for the portfolio. Relative to the previous normal-return 

model, this approach does look for a portfolio that best resembles the bond to be studied. 

Duration and convexity are just taken as two conveniently familiar characteristics that heavily 

rely on time to maturity, and also the minvar approach helps guaranteeing that we pick bonds 

with similar characteristics. 

We have validity-tested the three methods that avoid the circularity of using the model to 

be evaluated.6 Which of these three return benchmarks is most reliable can be determined 

by examining the "abnormal" returns realized by holding static, a-select portfolios (e.g. an 

equally weighted portfolio of short-lived bonds). Abnormal returns on such test portfolios 

measured against the benchmark candidates should on average be close to zero. 

Figure 1 provides plots of the time series of accumulating abnormal returns generated by 

the candidate benchmarks for four equally weighted portfolios: the total sample, and the bonds 

in the 4-8, 8-15, and >15 year brackets. The duration ratio model does well for the all-bond 

portfolio, by construction, but rather badly fails the test for subportfolios: after 6 years, the 

cumulative "abnormal" return on this simple investment strategy peaks at 8% for the short 

bonds and drops to minus 14% for the long bonds. The results for Sercu and Wu's three

portfolio duration-convexity matched investments are only marginally better. The minimum

variance benchmark, by contrast, prices all time-to-maturity-bracket portfolios correctly and 

performs equally well for the all-sample portfolio, never drifting farther than one percent from 

the zero line. We therefore use, in what follows, the minimum-variance benchmark to calculate 

abnormal returns. 

2.3 Regression Tests 

Using the normal-return model validated in the preceding section we can now compute abnor

mal returns on each bond. The next step is to regress the abnormal return for bond i between 

t-l and t, ARi,t, on RESi,t-l-L/ Pi,t-l-L, the relative pricing error observed at the beginning 

6The portfolios used to construct Duration-and-Convexity matches are the T -bills, the l-to-3-year bonds, 
and the >3-year issues, as in SW. 
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Figure 1: Benchmark Tests. 
Key: Three control strategies are tested for producing (near-) zero abnormal returns. These control strategies 

are (i) a duration-matching combination of the T-bills and the OLO bond market portfolio (DRM); (ii) a 

duration-and-convexity-matching combination of the T-bills, the OLO bond market below 3 years, and the 

market above 3 years (DOM); and (iii) a minimum-variance duration-and-convexity-matching combination of 

all bonds expect the one to be matched (MV). The four test portfolios used below are the market portfolio and 

three time-to-maturity-bracket funds: ~3y, 3-Sy, and >Sy; in the graphs below they are labeled "all", "short", 

"medium" , and "long". 
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of the holding period (L = 0) or the day before (L = I): 

AR b RESi,t-I-L 
i,t = ai,t + i,t p + ci,t 

i,t-I-L 
(2.25) 

Recall from (2.24) that b = -0· w, where 0 is the adjustment speed and w the relevance of 

the model's fitted price, both numbers between 0 and 1. The version with L = 0 was discussed 

before. SW also work with L = 1 (and higher, in fact). One reason is that their prices are 

transaction prices, thus inducing bid-ask bounce correlated with the next-day return.7 Our 

data being midpoint quotes, the problem does not arise here. Nevertheless, the trader inter

ested in the information content cannot instantaneously import the data, run a complicated 

non-linear regression, and still buy or sell the very moment a quote is given. Even though 

building-in a full 24-hour delay vastly exxagerates in the other direction, it is the best we can 

do with daily data. In addition to experimenting with L = 1, we vary the holding period in 

the abnormal return from 1- to 10- and 20-day periods; at 20 days, the degree of adjustment 

towards the correct price, 0, should be close to unity and the corresponding b therefore gives 

an idea of the total relevance of the observed price discrepancy. We run these 2 x 3 regressions 

for each individual bond and test two specific hypotheses HI: b = 0 and a = 0 (that is, no 

relevance); and H2: b = -1 and a = 0 (perfect relevance, and full adjustment within the 

holding period). 

Table 4 summarizes the regression results (average, mean, significance and sign of the 

estimates) for 1-, 10- and 20-day holding periods, and for L = 0 (top part) and L = 1 

(bottom part). For virtually all regressions with respect to one-day holding periods we see 

negative estimates of b for both immediate and one-day-Iagged trading. Most of these are also 

significant; the rare positive estimates, in contrast, are never significant. Thus, statistically 

there is an information content and the market does react to it. Algebraically, however, the 

average immediate one-day reaction coefficients are low-between -0.052 (OIR) and -0.083 

(LS)-and the next-day reactions are up to one-half lower again. 

If these low one-day immediate reaction coefficients reflect sluggishness in the market rather 

than a low relevance coefficient, then a low b is good news for a trader. In an attempt to extract 

from this b coefficient the relevance coefficient w, we increase the holding period for AR to 

10 and 20 days. Average slope coefficients for a two-week holding period are now much more 

seizable, ranging between -0.20 (BDFS) and -0.28 (LS); and adding another 2 weeks further 

TIf the last trade at t -1 is at the bid, then the residual tends to be low, while the subsequent return starting 
from that low price tends to be high. This biases b negatively. 



Table 4: Regression tests on abnormal returns: market v model errors 
Key: We regress AR.,t = a;,t+"',,[RES.,t_l_L/ ~,t-l-LI+6.,t with AR;,t = abnormalreturn for bond i between t-1 and t-1+A, A = {1, 10, 20} days; and RES.,t_l_L/P',t_l_L 
= the bond's L-days-lagged relative pricing error, L = {1,2} days. Entries like ''pos 27(19)" mean that 27 coefficients were positive, whereof 19 significantly so. 

Panel A: Instant Reaction (L = 0) 
Vasicek (IF) CIR (IF) Richard (2F) LS (2F) BDFS (2F) Baz-Das (2F) Spline 

1~ b a b a b a b a b a b a b a 
average -0.058 5.30f!r07 -0.052 1.60f!rI)5 -0.062 2.22&05 -0.083 6.70E-06 -0.064 1.70E-05 -0.056 9.82E-06 -0.076 1.69E-05 
median -0.037 8.60E-06 -0.040 8.70&-06 -0.041 7.94&06 -0.039 3.20E-06 -0.041 9.70E-06 -0.038 8.62E-06 -0.054 5.60E-06 
# neg 27(19) 12(4) 27(19) 8(1) 27(21) 9(1) 27(19) 11(3) 25(19) 8(1) 26(19) 9(2) 27(20) 12(3) 
#pos O(oj 15(2j 0(0) 19(2) O(oj 18(2) 0(0) 16(4j 2(0) 19(3j 1(0) 18(2j 0(0) 15(4j 
10 day b a b a b a b a b a b a b a 
average -0.232 1.60E-05 -0.249 2.77&-05 -0.223 5.07&-05 -0.281 3.74E-05 -0.208 4.15E-05 -0.216 3.24&05 -0.275 1.21E-05 
median -0.226 5.51E-05 -0.273 7.22E-05 -0.213 6.05E-05 -0.240 5.64E-05 -0.218 8.B4E-05 -0.213 6.68E-05 -0.281 3.07&-05 
# neg 24(20) 11(5) 27(26) 12(3) 26(21) 11(4) 25(19) 11(3) 23(20) 11(3) 25(20) 9(4) 24(21) 12(5) 
#pos 3(Qi 16(8) OeO) 15(lot i(1) 16(10) 2(0) 16(7) 4(0) 16(10) 2(0) 18(10) 3(0) 15{9} 
20 day b a b a b a b a b a b a b a 
average -0.311 3.83E-05 -0.362 3.80E-05 -0.311 7.63E-05 -0.353 5.86E-05 -0.298 5.62E-05 -0.279 5.45E-05 -0.373 2.4E-06 
median -0.319 1.47&-04 -0.369 1.50E-04 -0.270 1.38E-04 -0.367 8.73E-05 -0.358 1.64E-04 -0.293 1.47&04 -0.394 7.3&05 
# neg 23(19) 12(5) 27(21) 12(3) 23(20) 11(6) 22(20) 11(5) 22(20) 10(5) 22(20) 9(4) 23(20) 12(7) 
#pos 4(lj 15(l1j O(oj 15(12) 4(1) 16(l1j 5(1) 16(10j 5(3j 17(11) 5(1) 18(11j 4(2) 15(10 

- ---- ~ - - ----y - - -- --- ----- - -

Vasicek 1F CIR 1F Ricl1a.rd 21". L::i 21" BDFS 2F Baz-Das 2F Spline 
1 day b a b a b a b a b a b a b a 
average -0.028 3.20&06 -0.032 7.30E-06 -0.029 8.27&-06 -0.042 8.40E-06 -0.028 8.70E-06 -0.028 2.87E-06 -0.037 4.90&061 
Median -0.027 8.60E-07 -0.027 5.30E-06 -0.025 7.25E-06 -0.027 4.10&06 -0.025 6.80E-06 -0.027 5.41E-06 -0.034 6.50E-07 
# neg 23(11) 13(1) 27(17) 9(1) 25(8) 10(1) 27(11) 12(2) 25(9) 11(1) 26(11) 9(1) 24(12) 13(2) 
# pos 4(0) 14(0) 0(0) 18(1) 2(0) 17(1) 0(0) 15(3) 2(0) 16(3j i(oj 18(lj 3(Oj 14(2) 
10 day b a b a b a b a b a b a b a 
average -0.181 2.09E-05 -0.209 1.21E-05 -0.170 3.09E-05 -0.206 3.75E-05 -0.154 2.74E-05 -0.163 2.49E-05 -0.209 5.97E-07 
Median -0.210 6.65E-05 -0.226 6.39E-05 -0.184 6.30E-05 -0.211 4.46E-05 -0.145 7.B4E-05 -0.188 6.16E-05 -0.240 4.09E-05 
# neg 23(18) 12(4) 27(21) 12(3) 24(18) 11(2) 23(16) 11(3) 22(17) 10(3) 23(19) 9(3) 23(18) 12(5) 
#pos 4(0) 15(7) 0(0) 15(lOj 3(1) 16(7) 4(Oj 16(8j 5(1) 17(8j 4(0) 18(9) 4(1) 15(8j 
20 day b a b a b a b a b a b a b a 
average -0.260 4.27E-05 -0.322 3.09E-05 -0.256 5.98E-05 -0.269 6. 15E-05 -0.242 4.51E-05 -0.229 4.79E-05 -0.303 -8.2E-06 
Median -0.301 1.13E-04 -0.324 1.51E-05 -0.273 1.23&-04 -0.315 8.04&-05 -0.297 1.27E-04 -0.254 1.07E-04 -0.338 5.7E-05 
# neg 23(18) 11(5) 27(21) 13(3) 23(18) 11(5) 22(18) 10(5) 21(20) 11(6) 22(20) 11(4) 23(19) 12(7) 
#pos 4(3) 16(11) 0(0) 14(12) 4(2) 16(10) 5(1) 17(10) 6(4) 16(11) 5(2) 16(l1j 4(3) 15(10) 
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boosts the coefficients to at least -0.28 (Baz and Das) and occasionally even -0.37 (spline). 

Thus, the news is good from the trader's point of view. First, 30 percent or more of the 

observed price discrepancy is relevant in the sense that it gets reflected in the price within one 

month. And second, the adjustment seems to be slow: even a trader that has to wait a full 

day before reacting loses a mere 3-5 percent of that 3D-plus. On the downside, note that the 

20-day return is noisier, too: the relative importance of the initial mispricing shrinks because, 

over a longer horizon, there are so many other influences affecting the price. This noisiness is 

reflected in the variability of the 20-day b coefficients across bonds, an indicator of which is 

the number of instances with the wrong (positive) sign for the 20-day-AR regressions. 

The economic importance of all this is still unclear as the initial signals are quite small: 

30 percent of a 15-bp mispricing is not a large gain. Thus, we need to know how often large 

gains occur, whether it is wortwhile focusing on large gains only, and so on. These issues are 

addressed in the next section. 

2.4 Base-Case Trading Rules: set-up and results 

We construct contrarian portfolios by buying underpriced bonds and selling overpriced bonds. 

Contrarian strategies are based on the deviation of observed asset prices from their fundamental 

values. The further an observed asset deviates from its fundamental value, the larger should 

be the correction and, therefore, the higher the weight that should be assigned to the asset in 

the contrarian portfolio. In implementing this trading strategy, we set up two basic portfolios, 

a "buy" portfolio, where weights are assigned to undervalued assets, and a "sell" portfolio that 

contains overpriced assets. When we construct such a time-(t - 1) short or long portfolio p 

(where p = s (sell) or b (buy)) on the basis of the pricing errors observed at t - 1 - L, with 

L = 0 for instant trading and L = 1 for delayed trading, then we set the weight for bond i as 

follows: 
. _ RESi,t-l-LDp,i,t-l-L _ b 

wp,.,t-l-L - Np.t ,p - , s , (2.26) 

I: RESi,t-l-LDp,i,t-l-L 
i=l 

where RESi,t-l-L is the residual for bond i as estimated from the time-(t-1-L) cross-section; 

Db,i,t-l-L = 1 if RESi,t-l-L is positive and 0 otherwise; D.,i,t-l-L = -1 if RESi,t-l-L is 

negative and 0 otherwise; and Np,t the number of assets in portfolio p. Note that Wp,i,t-l-L ~ 0 
Nt 

and I: Wp,i,t-l-L = 1. The abnormal return of a contrarian strategy can then be measured as 
i=l 

Nt 

ARp,t,L = L Wp,i,t-l-LDpARi,t, 
i=l 

(2.27) 
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where p = (b, s), Dp is equals 1 when p = band -1 when p = s. This is our base-case setup. 

In variants discussed in the next section we ignore the smaller signals RES and/or trade less 

frequently than daily. 

Table 5 displays percentage profits from contrarian strategies, cumulative over 6.5 years, 

for L = 0 or 1. All the outcomes are statistically very significant, so t-stats are omitted. Our 

discussion is centered on the combined payoffs from buying and selling ("b + s", in the table), 

which are obtained by adding the accumulated gains from the long and short positions and 

expressing them as a fraction of the initial notional value. (Since "b + s" is a zero-investment 

strategy, the resulting percentages are not returns in the usual sense.) The table also provides 

cumulative abnormal returns for buy and sell separately, but there is little to say about these 

except that they are usually quite similar, and always statistically indistinguishable. 8 

At this stage we are interested in the base-case numbers only, starting with one-day holding 

periods and instantaneous trading. Although the pricing models seemed rather different in 

terms of in fit, persistance of mispricing, and reaction coefficients, all models produce very 

similar "b + s" CARs, ranging from 21% to 23% over 6.5 years-about 3% per annum. The 

results are not due to one or two freak episodes; rather, they accumulate steadily over time 

throughout the period, as can be seen from Figure 2 where the evolution of contrarian profits 

over time is illustrated for immediate trading. Nor are the results due to a few bonds or 

to one or two maturity classes: when we group the CARs of individual bonds into the six 

time-to-maturity brackets used before, we find that each of the brackets contributes positively. 

When introducing a one-day lag between signal recognition and the actual trading, CARs 

drop markedly, by about 11% cumulative: a one-day interval between the signal and the 

execution of trades yields CARs between 11% and 12.5% in total, i.e. about 1.5% p.a. True, 

it is unlikely that professional investors need 24 hours to import the data and run a regression, 

so that the realistically feasible profits are probably closer to the no-lag profits than to the 

once-lagged result. Still, the "L = 0" results are too optimistic. In the next tests, we try and 

jazz up the base case by being more selective: should we react to each signal, no matter how 

small? Also, how much is lost if we trade every 10 or 20 days rather than daily? It turns out 

that a good dose of selectivity recuperates half of the revenue that would be lost by waiting a 

full day. 

8The buy results do dominate the sell returns in most cases, but in view of the enormous dependencies across 
the experiment it is probably dangerous to attach much importance to this observation. 
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Figure 2: Evolution of CARs over time. Pure cross-sectional estimation. Minimum variance 
portfolio used as Benchmark. 
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The results are before costs. There are no records of detailed spreads per market maker or 

best quotes at any moment, but in those days spreads were of the order of magnitude of 6 bp 

(of the price). Given an annual churn rate of about 25, two-costs would amount to about 1.5% 

p.a. for a buy or a sell strategy and 3% for b+s, which would reduce the base-case strategies to 

mere break-even propositions at L = 0, and loss proposisions at L = 1. However, the selective 

applications return far more, as documented below. More fundamentally, many banks trade 

for liquidity reasons. So their transaction costs are inevitable and, therefore, irrelevant for our 

purpose. Given that they have to buy or sell, the message is that it is worth pausing two 

seconds to run a simple spline regression before the trade. For a portfolio manager who faces 

random in- and outflows every day, a quick look at the residuals would have added about 1.5% 

to the annual return. 

2.5 Filtering out the smaller discrepancies or revising less often 

In the preceding section, the bond weights were proportional to the estimated discrepancy; 

still, we might be able to improve the results by altogether eliminating the bonds with the 

smallest residuals. Two obvious reasons are that the expected gain is small anyway (a relevant 



Table 5: Cumulative Abnormal Returns for trading Strategies, in percent 
Key: In the base case, all bonds are held (short or long depending on the sign of the initial or lagged mispricing), while in the filtered versions only the top 50% 
or 25% of the mispricing signals are acted upon, the rest is ignored. The best among the buy strategies and the best among the sell strategies of a given row are 
indicated by sharps (#)j the worst buy and sells are indicated by fiats ('). 

Instant Reaction (L=O) 
One-factor models 

I 
Two-factif models (n.a.) 

Vasicek I OIR Richard LS BDFS I Baz-Das Spline 

b+s buy sell b+s buy sell I b+s buy sell b+s buy sell b+s buy sell I b+s buy sell I b+s buy sell 
Panel A: One-day holding period 

base case 21.8 11.5 10.3 21.4 11.8 '9.5 22.8 "13.0 9.8 21.6 11.6 9.9 21.6 11.3 10.3 23.4 12.7 "10.8 21.6 11.6 9.9 
50% biggest 20.0 '10.3 9.8 25.0 13.4 11.6 28.0 #15.4 12.6 25.8 13.0 12.8 25.4 12.4 13 27 13.8 "13.2 20.8 11.2 '9.6 
25% biggest 34.8 '16.4 "18.5 33.8 18.4 15.3 34.6 "20.1 '14.5 32.8 17.4 15.5 35.6 17.7 18 34.8 17.5 17.3 33.2 17.4 15.7 

Panel B: Two-week Holding Period 
base case 11.2 6.5 4.6 11.0 6.4 4.7 10.8 "6.8 4.1 10.8 6.4 4.4 10.2 5.6 4.7 12.4 6.6 "5.9 9.8 5.9 '4.0 
50% biggest 10.0 5.6 4.5 12.6 6.7 5.9 13.0 7.5 5.5 12.8 7.0 5.9 12.0 6.6 5.4 14.6 "8.1 "6.5 9.2 '4.9 '4.4 
25% biggest 17.0 10.6 6.5 15.2 9.1 '6.0 17.0 "10.9 6.2 17.8 10.2 7.6 16.6 9.9 6.7 18.4 10.5 "7.8 14.2 '7.7 6.6 

Panel C: One-Month Holding Period 
base case 8.0 4.9 3.1 1 8.8 5.2 3.61 8.4 "5.4 3.11 7.8 4.7 3.1J 7.8 '4.2 3.51 9.0 4.9 "4.0 I 7.4 4.6 '2.7 
50% biggest 7.2 4.1 '3.1 10.2 5.6 "4.6 10.2 5.9 4.3 9.2 4.8 4.4 9.2 5.1 4.0 10.6 "6.1 4.4 6.8 '3.6 '3.1 
25% biggest 11.8 7.2 4.5 11.4 7.2 '4.1 13.0 "8.3 4.7 12.4 6.7 "5.7 12.4 7.6 4.8 13.2 7.9 5.3 10.4 '5.4 4.9 

Delayed Reaction (L=1) 
Vasicek I CIR I Richard I LS I BDFS I Baz-Das I Spline 

b+s buy sell I b+s buy sell L b+s buy sell I b+s buy sell I b+s buy sell I b+s buy sell I b+s buy sell 
Panel A: One-day holding period 

base case 13.0 6.9 6.0 113.2 7.6 5.61 13.6 ~8.0 
5.61 13.4 7.0 

6.41 12.8 6.4 6.41 14.6 7.9 6.81 13.4 7.0 6.4 
50% biggest 10.8 5.7 '5.2 16.2 "9.3 6.9 15.8 8.8 7.1 15.6 7.5 8.0 15.4 7.8 7.6 17.2 8.8 "8.5 10.8 '5.5 5.3 
25% biggest 19.0 10.8 8.1 17.8 12.0 '5.8 22.0 "12.5 9.5 21.8 10.0 "11.8 17.2 9.4 7.9 17.8 9.4 8.3 14.8 '8.8 6.1 

Panel B: Two-week Holding Period 
base case 9.6 5.8 3.81 9.8 5.7 4.1 I 9.4 5.9 3.41 9.4 5.6 3.71 8.8 4.8 4.0 110.6 5.6 4.91 8.2 5.0 3.3 
50% biggest 8.6 4.8 '3.7 11.0 5.9 5.2 11.2 6.5 4.7 11.2 6.1 5.1 10.4 5.8 4.6 12.4 "7.0 "5.4 7.8 '4.0 3.8 
25% biggest 14.4 #9.5 5.0 12.6 7.9 '4.7 14.4 9.3 5.1 15.4 8.9 "6.5 14.2 8.6 5.6 15.6 9.2 "6.5 11.8 '6.2 5.6 

Panel C: One-Month Holding Period 
base case 7.2 4.5 2.81 8.0 4.8 3.31 9.4 ~5.0 3.41 7.0 4.3 2.71 7.0 '3.8 3.1 I 8.0 4.4 "3.61 6.4 4.1 2.3 
50% biggest 6.6 3.8 '2.7 9.4 5.2 4.2 9.2 5.4 3.7 8.2 4.3 "3.9 8.2 4.7 3.5 9.6 "5.7 "3.9 6.0 '3.2 '2.7 
25% biggest 10.6 6.7 3.8 10.2 6.7 '3.4 11.6 "7.6 4.1 11.0 6.0 "5.1 11.0 7.0 4.0 11.8 7.3 4.5 9.0 '4.7 4.3 
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consideration when trading is costly) and that noise is probably important relative to the 

signal. More subtly perhaps, if mispricing takes time to disappear, mispricing may also take 

time to build up; if so, it is better for the trader to wait until the discrepancy is peaking before 

moving in. 

When building our selective portfolios, we again construct two groups, one containing bonds 

with negative residuals and one including bonds with positive residuals. In each group and for 

each trading day, we now rank the bonds in terms of the size of the absolute residual. We try 

out two variants of filtering: the first rule keeps only the bonds with the 50% biggest absolute 

pricing errors in each group, while the second filter is even more selective and considers only 

bonds in the top quartile of absolute pricing errors. Individual bond weights are then again 

weighted as indicated in equation (2.26), except that, of course, we are more picky when setting 

the Ds. 

Panel A in table 5, the second and third lines in each cell provide the CARs from the 

contrarian strategy based upon the 50% and the 25% loudest signals of each day. Introducing 

the mild filter has a positive but unspectacular effect for most models; there are, even slightly 

negative effects for the Vasicek model and the spline. The Richard model benefits most (at lag 

0), with CARs increasing 5%, but for L = 1 the effect is far smaller. The jump model by Baz 

and Das still remains the best performing model, with CARs now up to 27% for lag 0 and 17% 

for lag 1. When introducing the strong filter, in contrast, outcomes do change dramatically, 

in some instances almost doubling the CARs for the base case. CARs are shown in panel 

C. In contrast to the introduction of a weaker filter, now also the Vasicek model and spline 

function benefit from using the stronger filter. The BDFS model and Richard model benefit 

most: CARs increase with 14% for immediate trading and now attain a level of 36% (almost 

5% p.a.). Note as well that CARs remain on average very high even for longer lags. 

Many private investors would not bother to evaluate and rebalance their portfolios each 

and every day. Thus, in this section we also investigate to what extent a reduction in the 

frequency of trading erodes the abnormal returns of the contrarian strategies and filter rules. 

In a first experiment we consider a holding period of two weeks. After the trade is made based 

on the contrarian strategy weights, the portfolio holding remains unchanged for two weeks. At 

the end of the two-week period, we then identify the then prevailing over- and underpricing 

and adjust the portfolio accordingly. In a second variant, we consider a holding period of one 

month. As in the previous sections, we investigate, next to immediate trading, the influence 

of a one-day difference (lag 1) between the mispricing signal and the actual trade. 



Selecting bond-pricing models 24 

Earlier, we showed that mispricing tends to gradually disappear, but with the largest 

adjustments in the days immediately after the detection of the pricing errors. By rebalancing 

only one every tenth trading day, for instance, we miss nine out of the ten best days; and 

in a filtered version of the trading rule, we also hold on to positions that would have been 

liquidated already if rebalancing had been done on a daily basis. Thus, when considering 

longer holding periods, and therefore less frequent rebalancing, CARs must inevitably erode. 

The good news, as shown in Table 5, is that the effects of rebalancing every two weeks and 

each month are not dramatic: for the base case without filter, CARs remain positive, in the 

8-10% range. Predictably, CARs for monthly revisions are lower than for two-week periods. 

The difference between starting the period immediately (L=O) and leaving one day in-between 

(L=O) is relatively small. Again, introducing filters seriously enhances the CARs. By and 

large, the best performing models are the two-factor models. The spline comes out a clear last, 

this time. 

2.6 To pool or not to pool? 

A last variant we discuss is about the estimation stage rather than the trading rule itself. 

Schotman (1996) remarks that day-by-day cross-sectional regressions generate a lot of vari

ability in the parameters and hence in the implied deltas, which would trigger many (probably 

pointless) trades for the derivatives desk. One recommended solution is to combine several 

consecutive cross sections. We implement this with 5- and 20-day pooling. In the economic 

models we constrain the parameters to be equal across cross-sections if they are assumed to be 

intertemporally constant. The risk-free rate, an implied number, notably is left to vary from 

day to day, and so is the other factor in the two-factor models. For the spline, there is no good 

theoretic reason to fix some parameters; indeed, when we fix all parameters the results are so 

atrocious that we do not bother to show them. Lastly, the pooled estimations for the Baz-Das 

model usually failed utterly to converge. So we are now down to five competing models. 

The results, as summarized in Table 6, are not encouraging. The general rule is that pooling 

worsens the results, and pooling 20 days is worse than 5. There are a few exceptions: BDFS 

tends to improve marginally, and the combination of filtering 50% with pooling 5 days beats 

the base-case estimation about half of the time. But in the absence of a good reason why these 

exceptions would be externally valid, the general conclusion seems to be that pooling does not 

help for current purposes. 



Table 6: Cumulative Abnormal Returns for trading Strategies, in percent: pooled versus unpooled 
Key: In the base case, all bonds are held (short or long depending on the sign of the initial or lagged mispricing), while in the filtered versions only the top 50% 
or 25% of the mispricing signals are acted upon, the rest is ignored. The best among the buy strategies and the best among the sell strategies of a given row are 
indicated by sharps ("); the worst buy and sells are indicated by flats ('). 

filter pooling I Vasicek eIR I Richard I Longstaff-Schwartz I BDFS 
I Hs buy sell I b+s buy sell I b+s buy sell I b+s buy sell I b+s buy sell 

Panel A: One-day holding period 
base case none 21.8 11.5 10.3 21.4 11.8 9.5 22.8 '13.0 9.8 21.2 11.6 9.9 21.6 11.3 10.3 

5 days 18.9 9.1 9.8 19.0 9.4 9.6 21.3 12.0 9.3 21.2 10.6 10.6 20.8 9.9 10.9 
20days 16.8 '7.6 9.3 14.4 '7.6 '6.8 22.9 11.8 "11.1 19.3 10.0 9.4 21.2 10.7 10.5 

50% biggest none 20.0 10.3 9.8 25.0 13.4 11.6 28.0 '15.4 12.6 25.8 13.0 12.8 25.4 12.4 13.0 
5 days 23.9 11.1 12.8 22.9 10.7 12.2 24.9 14.1 10.8 26.8 13.4 13.4 26.1 12.2 "13.9 
20days 20.7 '8.4 12.3 18.8 11.1 '7.8 26.7 13.6 13.1 24.4 12.5 11.9 25.5 12.5 13.0 

25% biggest none 34.8 16.4 18.5 33.8 18.4 15.3 34.6 '20.1 14.5 32.8 17.4 15.5 35.6 17.7 18.0 
5 days 29.6 13.0 16.6 25.4 13.7 11.7 32.1 18.5 13.6 33.6 16.0 17.6 35.4 16.4 "19.0 
20days 24.8 '10.0 14.8 25.4 15.4 '10.0 28.6 16.3 12.3 28.5 16.0 12.6 33.6 17.6 15.9 

Panel A: two-week holding period 
base case none 11.2 6.5 4.6 11.0 6.4 4.7 10.9 '6.8 4.1 10.8 6.4 4.4 10.2 5.6 4.7 

20days 9.1 '3.9 5.3 7.6 '3.9 '3.7 11.3 5.7 5.5 9.8 4.7 5.1 12.5 6.2 "6.3 
50% biggest none 10.0 5.6 4.5 12.6 6.7 5.9 13.0 7.5 5.5 12.8 7.0 5.9 12.0 6.6 5.4 

5 days 12.6 6.6 6.1 10.8 5.6 5.3 12.6 6.8 5.8 13.3 6.7 6.6 13.3 6.9 6.5 
20days 11.4 '4.8 6.6 9.7 5.5 '4.1 13.5 7.0 6.5 12.2 6.0 6.2 15.4 "7.9 "7.6 

25% biggest none 17.0 10.6 6.5 15.2 9.1 6.0 17.0 P10.8 6.2 17.8 10.2 7.6 16.6 9.9 6.7 
5 days 16.0 8.6 7.5 11.6 7.1 4.5 15.6 8.6 7.0 16.9 8.5 8.4 17.2 9.4 7.8 
20days 13.2 '4.9 8.2 12.1 7.7 '4.4 15.8 8.6 7.3 14.9 7.0 8.0 19.6 10.3 "9.3 

Panel A: One-month holding period 
base case none 8.0 4.9 3.1 8.8 5.2 3.6 8.5 '5.4 3.1 7.8 4.7 3.1 7.8 4.2 3.5 

5 days 7.6 3.9 3.6 7.1 3.6 3.4 8.5 4.7 3.8 8.0 4.1 3.8 8.1 4.2 3.9 
20days 7.1 '3.4 3.7 6.1 '3.4 '2.7 8.4 4.3 4.1 6.8 3.7 3.1 9.1 4.7 "4.4 

50% biggest none 7.2 4.1 '3.1 10.2 5.6 4.6 10.3 '5.9 4.3 9.2 4.8 4.4 9.2 5.1 4.0 
5 days 9.2 5.0 4.2 8.3 4.5 3.8 9.7 5.4 4.3 9.5 5.2 4.4 9.9 5.3 4.6 
20days 8.5 '4.0 4.5 7.7 4.5 3.2 9.7 5.2 4.5 8.6 4.9 3.7 11.0 5.9 "5.1 

25% biggest none 11.8 7.2 4.5 11.4 7.2 4.1 13.0 P8.3 4.7 12.4 6.7 5.7 12.4 7.6 4.8 
5 days 11.3 6.3 5.0 8.8 5.7 '3.0 11.9 6.7 5.2 11.9 6.7 5.2 13.0 7.3 5.7 
20days 10.0 '4.4 5.5 9.8 6.3 3.5 11.0 6.2 4.8 10.7 6.2 4.5 14.0 7.7 "6.3 
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Table 7: Various measures of performance, across models 

Key: We show two measures of unexplained variability in prices, the Average Absolute Error (AAE) and the 
Average Root Mean Square, the average standard deviation of the residuals. Both are measured in basis points. 
Also shown are the autocorrelation, averaged across bonds, of the time series of residuals per bond extracted 
from each cross section, and the average run length (in days), where a run is defined as a sequence of days 
where the residuals have the same sign. Next come the regression coefficients of abnormal returns on initial 
mispricing, for 1- or 20-day holding periods and with or without lag (L = (1,0). Lastly we show some CARs, 
for daily and monthly revision frequencies and for trading rules where we act only upon the 50 or 25 percent 
strongest signals. In the second part of the table we show the ranks of the models rather than the statistics. 

vasicek cir rich Is bdfs b-d spline 
statistics 

AAE 15.6 16.9 14.3 13.3 13.7 15.8 12.4 
ARMSE 17.5 20.5 16.0 14.6 12.0 17.1 13.9 

autocorr 0.94 0.85 0.74 0.85 0.86 0.73 0.93 
avg runl 17.6 12.2 7.7 14.9 13.9 7.4 17.7 

b, 1d, L = 0 -0.058 -0.052 -0.062 -0.083 -0.064 -0.056 -0.076 
b, 2Od, L = 0 -0.311 -0.362 -0.311 -0.353 -0.298 -0.279 -0.373 
b, 2Od, L = 1 -0.260 -0.322 -0.256 -0.269 -0.242 -0.229 -0.303 

CAR, daily, 50%, L = 0 20.0 25.0 28.0 25.8 25.4 27.0 20.8 
CAR, monthly, 25%, L = 0 11.8 11.4 13.0 12.4 12.4 13.2 10.4 
CAR, daily, 50%, L = 1 10.8 16.2 15.8 15.6 15.4 17.2 10.8 
CAR, monthly, 50%, L = 1 10.6 10.2 11.6 11.0 11.0 11.8 9.0 

ranking of models 
AAE 5 7 4 2 3 6 1 
RMSE 6 7 4 3 1 5 2 

autocorr 7 3 2 4 5 1 6 
avg runl 6 3 2 5 4 1 7 

b, 1d, L = 0 5 7 4 1 3 6 2 
b, 20d, L = 0 3 2 4 3 6 7 1 
b, 2Od, L = 1 4 1 5 3 6 7 2 

CAR, daily, 50%, L = 0 7 5 1 3 4 2 6 
CAR, monthly, 25%, L = 0 5 6 2 3 3 1 7 
CAR, daily, 50%, L = 1 6 2 3 4 5 1 6 
CAR, monthly, 50%, L = 1 5 6 2 3 4 1 7 
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3 Conclusion 

In this paper we fit a set of term structure models to government bonds.9 The central question 

is whether a fixed-income-desk trader who faces an in- or outflow can more or less randomly 

pick a bond in a desirable time-to-maturity bracket, or instead should take a few minutes or 

seconds to run a cross-sectional regression. We find she should. A trader who wants to swap 

an overpriced bond for an underpriced one should be selective and heed only clear signals, 

because for these non-liquity-driven trades transaction costs are not irrelevant. Still, also for 

this purpose the regression residuals are useful. Another reliable finding is that there is no 

good case to be made for pooling, at least for our purpose; rather, the indications are mostly 

against such pooling. A third result is that duration- or duration-and-convexity matched 

control strategies are not reliable, at least when they work with pre-set portfolios covering a 

wide time-to-maturity spectrum. What is needed, instead, is a control portfolio with similar 

bonds, like the minimum-variance portfolio we adopt here. 

Which model to select, if profitability is the criterion? The models are conspicuous in the 

similarity of their cumulative abnormal returns, at least for the base case of daily rebalanc

ing. For filtered applications and less frequent revisions the results are more divergent, but it 

remains unclear to what extent this is a reliable result or just a reflection of the higher random

ness one expects when there are far fewer trades. While applications in other data may shed 

light on this, we think that, for anyone hoping for a reliable ranking, the omens are not good. 

Table 7 summarizes some performance measures, both statistical and economic ones, along 

with the models' rankings for each of the criteria. A comparison of the spline and the Baz-Das 

model serves to make the case. In terms of MSE the spline looks near-perfect and Bas-Daz way 

below average; yet these rankings switch almost perfectly when we look at another measure of 

(in)flexibility, the persistence of the deviations between observed and fitted values. The same 

happens when we consider economic content rather than statistical fit. On the basis of the 

regressions one would have anticipated a great future for the spline-based trading rule, as the 

spline's residuals seemed to come out way ahead in terms of predicting subsequent abnormal 

returns. Yet the spline does bad in the trading experiments. And Bas-Daz does very well 

there, even though its regression coefficients were about the worst among all models. Thus, 

9The Belgian data set is not particular in any way, but allows to work with a comfortable number of bonds. 
We do not believe this choice is driving any particular results. The findings in Sercu and Wu, using a similar 
set of Belgian data, have been confirmed by German data. 
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one may be better off chasing wild geese than clearly outstanding models. 
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