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Abstract

Recently, Kessels et al. (2006) developed a way to produce Bayesian G- and V-
optimal designs for the multinomial logit model. These designs allow for precise
response predictions which is the goal of conjoint choice experiments. The authors
showed that the G- and V-optimality criteria outperform the D- and A-optimality
criteria for prediction. However, their G- and V-optimal design algorithm is com-
putationally intensive, which is a barrier to its use in practice. In this paper, we
present an efficient algorithm for calculating Bayesian optimal designs by means of
the different criteria. Particularly, the speed of computation for the V-optimality
criterion has improved dramatically. The new algorithm makes it possible to use
Bayesian D-, A-, G- and V-optimal designs that are tailored to individual respon-
dents in computerized conjoint choice studies.

Keywords: conjoint choice design, multinomial logit, Bayesian D-, A-, G- and V-
optimality, adaptive algorithm, Cholesky decomposition, coordinate-exchange

1 Introduction

Conjoint choice experiments or more succinctly, choice experiments, are widely used in
marketing to measure how the attributes of a product or service jointly affect consumer
preferences. In a choice experiment, a product or service is characterized by a combina-
tion of attribute levels called a profile or an alternative. Respondents then choose one
from a group of profiles called a choice set. They repeat this task for several other choice
sets presented to them. All submitted choice sets make up the experimental design. The
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aim of a choice experiment is to estimate the importance of each attribute and its levels
based on the respondents’ preferences. The estimates are then exploited to mimic real
marketplace choices by making predictions about consumers’ future purchasing behavior.

Designing an efficient choice experiment involves selecting those choice sets that result
in an accurately estimated model providing precise predictions. Kessels et al. (2006) com-
pared four different design criteria based on the multinomial logit model to reach this goal.
They studied the predictive performance of the D- and A-optimality criteria versus the G-
and V-optimality criteria. Special attention was paid to the G- and V-optimality criteria
which aim at making precise predictions. The authors were the first to work out these
criteria for the multinomial logit model. On the other hand, the D- and A-optimality
criteria focus on accurate estimates. Until now, the D-optimality criterion has been most
often employed to construct efficient choice designs (see Huber and Zwerina 1996; Sándor
and Wedel 2001).

Because the multinomial logit model is nonlinear in the parameters, the computation
of the optimality criteria depends on the unknown parameter vector. To solve this prob-
lem, Kessels et al. (2006) adopted a Bayesian design procedure as proposed by Sándor
and Wedel (2001). Following these authors, they approximated the design criteria using
a Monte Carlo sample from a multivariate normal prior parameter distribution. Monte
Carlo sampling involves taking a large number of random draws from a probability distri-
bution as a surrogate for that distribution. Like Sándor and Wedel (2001), Kessels et al.
(2006) used 1, 000 random draws. The four optimality criteria in the Bayesian context are
labelled the DB-, AB-, GB- and VB-optimality criteria. Kessels et al. (2006) implemented
these criteria in a modified Fedorov algorithm (Cook and Nachtsheim 1980; Fedorov 1972)
to construct DB-, AB-, GB- and VB-optimal designs. We refer to their complete algorithm
as the Monte Carlo modified Fedorov algorithm (MCMF).

Kessels et al. (2006) showed that the GB- and VB-optimality criteria outperform the
DB- and AB-optimality criteria in terms of prediction accuracy. They warn, however,
that the computation of GB- and VB-optimal designs is substantially more demanding
than the search for DB- and AB-optimal designs. The long computing times resulting
from MCMF make the GB- and VB-optimality criteria impractical to use. Also, the com-
putational burden implies that the application of the DB-, AB-, GB- and VB-optimality
criteria to computerized conjoint choice studies is limited. Ideally, computerized conjoint
studies use choice designs that are tailored to the individual respondents so that maxi-
mum information is obtained on the individuals’ preferences and thus on the heterogeneity
between subjects.

The goal of this paper is to present a novel design construction algorithm that is
much faster than MCMF employed by Kessels et al. (2006). The speed of the new
algorithm allows the GB- and VB-optimality criteria to be used in practice and it also
opens the perspective of applying individualized Bayesian optimal choice designs in web-
based conjoint studies.

2



The new algorithm has four key features. First, it uses an update formula to economi-
cally calculate the change in any of the optimality criteria for two designs that differ only
in one profile. In this way, the optimality criterion values do not need to be re-computed
from scratch. Second, it involves a formula for the VB-optimality criterion so that its
computation is even more efficient. Third, the algorithm is an adaptation of Meyer and
Nachtsheim’s (1995) coordinate-exchange algorithm which is much faster than the modi-
fied Fedorov algorithm. Lastly, it relies on a designed sample of only 20 prior parameters
instead of the Monte Carlo sample of 1, 000 draws. However, the algorithm still checks
the designs produced by each random start using the Monte Carlo sample. Because of
this re-evaluation, the algorithm is called the adaptive algorithm.

The outline of the remainder of the paper is as follows. Section 2 reviews the DB-,
AB-, GB- and VB-optimality criteria for the multinomial logit model. In Section 3, we
present the adaptive algorithm as an alternative to MCMF for faster computation of the
optimal designs for all four criteria. We use the design example from Kessels et al. (2006)
for comparison purposes. Section 4 discusses the four key features of the adaptive algo-
rithm and Section 5 considers a more challenging scenario made possible by the faster
method. Section 6 summarizes the results and suggests some opportunities for further
research.

2 Design criteria for the multinomial logit

To present our improved design construction approach, we start with an overview of
the different design criteria for the multinomial logit model. The model draws on a
choice design matrix X = bx′jscj=1,...,J ;s=1,...,S where xjs is a k × 1 vector of the attribute
levels of profile j in choice set s. A respondent’s utility for that profile is modelled as
ujs = x′jsβ + εjs where β is a k× 1 vector of parameters and εjs is an i.i.d. extreme value
error term. The multinomial logit probability a respondent chooses profile j in choice
set s is pjs = ex′jsβ/

∑J
t=1 ex′tsβ. The information matrix M, which is the inverse of the

variance-covariance matrix of the parameter estimators, is the sum of the information
matrices of the S choice sets Ms as shown below:

M(X, β) = N

S∑
s=1

Ms(Xs,β)

= N

S∑
s=1

X′
s(Ps − psp

′
s)Xs,

(1)

where Xs = [x1s, ...,xJs]
′, ps = [p1s, ..., pJs]

′, Ps = diag[p1s, ..., pJs] and N is the number
of respondents. Kessels et al. (2006) implemented different design criteria or functions of
the information matrix (1) for constructing optimal choice designs. This task is compli-
cated by the fact that the information on the parameters depends on the unknown values
of those parameters through the probabilities. Therefore, the authors adopted a Bayesian
design strategy that integrates the design criteria over a prior parameter distribution
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π(β). The multivariate normal distribution N (β|β0,Σ0) was chosen for this purpose.

The design criteria employed are the D-, A-, G- and V-optimality criteria. The D- and
A-optimality criteria both are concerned with a precise estimation of the parameters β in
the multinomial logit model. The D-optimality criterion aims at designs that minimize
the determinant of the variance-covariance matrix of the parameter estimators, while the
A-optimality criterion aims at designs that minimize the trace of the variance-covariance
matrix. The Bayesian D-optimality criterion is

DB =

∫

Rk

{det(M−1(X, β))}1/kπ(β)dβ, (2)

with the DB-optimal design minimizing (2). The AB-optimal design minimizes

AB =

∫

Rk

tr(M−1(X,β))π(β)dβ. (3)

The G- and V-optimality criteria were developed to make precise response predictions.
These criteria are important in this context since predicting consumer responses is the
goal of choice experiments. The G- and V-optimality criteria for the multinomial logit
model were first elaborated by Kessels et al. (2006). They are defined with respect to a
design region χ consisting of all Q possible choice sets of size J that can be composed from
the candidate profiles: χ = {{x1q, ...,xJq}| q = 1, ..., Q}. A G-optimal design minimizes
the maximum prediction variance over the design region χ, while a V-optimality design
minimizes the average prediction variance over this region. Formally, the GB-optimality
criterion is

GB =

∫

Rk

max
xjq∈χ

var{p̂jq(xjq,β)}π(β)dβ =

∫

Rk

max
xjq∈χ

c′(xjq)M
−1(X,β)c(xjq)π(β)dβ, (4)

where p̂jq(xjq,β) denotes the predicted choice probability for xjq and

c(xjq) =
∂pjq(xjq,β)

∂β
= pjq

(
xjq −

J∑
t=1

ptqxtq

)
, (5)

the partial derivative of the multinomial logit probability with respect to β. The VB-
optimality criterion is

VB =

∫

Rk

∫

χ

c′(xjq)M
−1(X,β)c(xjq)dxjqπ(β)dβ (6)

with c(xjq) given by (5).

3 The adaptive algorithm versus MCMF for comput-

ing DB-, AB-, GB- and VB-optimal designs

We propose the adaptive algorithm for generating DB-, AB-, GB- and VB-optimal designs
instead of the Monte Carlo modified Fedorov algorithm (MCMF) employed by Kessels et
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al. (2006) (see Section 1). The adaptive algorithm is much faster than MCMF so that for
a given computing time the resulting designs outperform the designs produced by MCMF.

We illustrate the better results from the adaptive algorithm versus MCMF using the
design example of Kessels et al. (2006). These authors constructed DB-, AB-, GB- and
VB-optimal designs of two classes: 32× 2/2/12 and 32× 2/3/8. The design profiles in the
two classes have a similar attribute structure with two attributes at three levels and one
attribute at two levels. Hence, the sets of candidate profiles of the classes comprise the
same 32 × 2 = 18 profiles. The designs of the first class consist of twelve choice sets of
size two, while the designs of the second class consist of eight choice sets of size three. So,
the designs of both classes contain 24 profiles. Since we exploit this design example of 24
profiles to compare the adaptive algorithm to MCMF, we refer to it as the comparison
example and label it 32 × 2/24.

Using effects-type coding (see Kessels et al. 2006), the number of elements, k, in the
parameter vector is five. As prior parameter distribution, Kessels et al. (2006) proposed
the multivariate normal distribution π(β) = N (β|β0,Σ0), with β0 = [−1, 0,−1, 0,−1]′

and Σ0 = I5. They approximated this distribution by drawing a Monte Carlo sample of
R = 1, 000 prior parameter values βr, r = 1, ..., R, from it. The Bayesian optimal designs
were then obtained from 200 tries or random starts of the modified Fedorov algorithm.
This algorithm iteratively improves the starting design by exchanging its profiles with
profiles from the candidate set. To compute the GB- and VB-optimality criteria for the
two-alternative designs, the design region χ consists of Q =

(
18
2

)
= 153 choice sets or 306

profiles, whereas for the three-alternative designs, it includes Q =
(
18
3

)
= 816 choice sets

or 2, 448 profiles.

Based on the same normal prior distribution we employed the adaptive algorithm to
reproduce the DB-, AB-, GB- and VB-optimal designs for the comparison example. Be-
sides the two- and three-alternative designs, we also generated the four-alternative designs
containing six choice sets. The design region χ in this case is quite extensive involving
Q =

(
18
4

)
= 3, 060 choice sets or 12, 240 profiles. The optimal designs from the adaptive

algorithm appear in Tables A.1, A.2 and A.3 of the Appendix. In Table 1, we compared
their criterion values with the criterion values from MCMF that we copied from the work
of Kessels et al. (2006). As can be seen, the two-alternative DB-optimal designs from both
algorithms are equivalent. However, in all the other cases with two and three alternatives,
the designs generated with the adaptive algorithm outperform the designs generated with
MCMF.

The best criterion values from the adaptive algorithm were the result of 1, 000 random
starts rather than the 200 random starts utilized to obtain the best criterion values from
MCMF. Because the adaptive algorithm is so much faster than MCMF, the extra random
starts were still accomplished using far less computing time. The computing times for one
try of the adaptive algorithm and MCMF appear in Tables 2a and 2b, respectively. We
performed all computations in MATLAB 7 using a Dell personal computer with a 1.60
GHz Intel Processor and 2 GB RAM.
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Table 1: DB-, AB-, GB- and VB-criterion values of the DB-, AB-, GB- and VB-optimal
designs for the comparison example 32×2/24 computed using the adaptive algorithm and
the Monte Carlo modified Fedorov algorithm.

Optimal 2 alternatives 3 alternatives 4 alternatives
design Adaptive MCMF Adaptive MCMF Adaptive MCMF
DB 0.73024 0.73024 0.75362 0.76617 0.86782 —
AB 6.55212 6.60563 5.97903 6.02261 6.57135 —
GB 0.49887 0.51997 0.51051 0.51843 0.60494 —
VB 0.07184 0.07219 0.06267 0.06285 0.05728 —

Tables 2a and 2b show the huge reductions in computing time using the adaptive al-
gorithm. Particularly important are the reductions in computing time for the GB- and
VB-optimality criteria. With the adaptive algorithm the construction of the GB- and
VB-optimal designs has become practically feasible. Even the four-alternative GB- and
VB-optimal designs were generated quickly, while their computation was not doable with
MCMF. Notice also the faster running time for the VB-optimality criterion compared with
the GB-optimality criterion. This is due to a computational short cut in the calculation
of the VB-optimality criterion which we lay out in Section 4.2.

Table 2: Computing times for one try of the adaptive algorithm and the Monte Carlo
modified Fedorov algorithm to generate the Bayesian optimal designs for the comparison
example 32 × 2/24. The times are expressed in hours:minutes:seconds.

a) Adaptive algorithm
Design # Alternatives

criterion 2 3 4
DB 00:00:03 00:00:04 00:00:05
AB 00:00:03 00:00:04 00:00:05
GB 00:00:07 00:00:32 00:04:23
VB 00:00:03 00:00:05 00:00:08

b) Monte Carlo modified Fedorov
Design # Alternatives

criterion 2 3 4
DB 00:08:00 00:08:00 —
AB 00:08:00 00:08:00 —
GB 03:00:00 12:00:00 —
VB 03:00:00 12:00:00 —

Note that the adaptive algorithm is computationally less effective per number of tries
than MCMF. This can be seen from the plots in Figure 1 in which we compare the
estimated expected efficiencies against various numbers of tries of the adaptive algorithm
and MCMF for computing the two-alternative DB- and VB-optimal designs. These are
the efficiencies to expect if a number of tries are performed with each of the algorithms.
Details on the calculation of the expected efficiency from a number of tries can be found
in the work of Kessels et al. (2006).
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The plots for the two-alternative DB- and VB-optimal designs in Figure 1 are also
representative of the two-alternative AB- and GB-optimal designs, respectively. The plots
for the three-alternative designs exhibit a similar pattern. From the plots, we observe
that the differences in efficiency in favor of MCMF are smaller when a prediction-based
design criterion is used instead of an estimation-based design criterion. This might be due
to the fact that design optimization with the GB- and VB-optimality criteria is generally
more difficult than with the DB- and AB-optimality criteria.
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Figure 1: Estimated expected efficiencies against various numbers of tries of the adap-
tive algorithm and the Monte Carlo modified Fedorov algorithm for computing the two-
alternative DB- and VB-optimal designs.
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Figure 2: Estimated expected efficiencies against various numbers of seconds of the adap-
tive algorithm and the Monte Carlo modified Fedorov algorithm for computing the two-
alternative DB- and VB-optimal designs.
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A more realistic comparison of the effectiveness of the adaptive algorithm versus
MCMF appears in the plots of Figure 2. In these graphs, we plotted the estimated
expected efficiencies of the two-alternative DB- and VB-optimal designs against the num-
ber of seconds of computing time. We expressed the number of seconds on a log-scale.
These plots provide compelling evidence of the practical value of the adaptive algorithm.
The huge increase in speed created by the adaptive algorithm overtly leads to more ef-
ficient designs in a given amount of computing time. This is especially the case for the
prediction-based design criteria as illustrated by the plot for the VB-efficiencies. Note
however, that the bend in the plot for the DB-efficiencies reveals that the adaptive algo-
rithm has a little difficulty making the final jump from 99% efficiency to 100% or global
efficiency.

4 Features of the adaptive algorithm

There are four features of the adaptive algorithm that result in increased speed compared
with MCMF. They are:

1. updating the Cholesky decomposition of the information matrix,

2. an efficient computation of the VB-optimality criterion,

3. a coordinate-exchange algorithm,

4. a small designed sample of prior parameters.

The next sections discuss each of these in succession.

4.1 Updating the Cholesky decomposition of the information
matrix

Updating the Cholesky decomposition of the information matrix is an economical way
to compute the DB-, AB-, GB- and VB-criterion values of designs that differ only in one
profile from another design. The Cholesky decomposition forms a symmetric positive
definite matrix as an upper triangular matrix multiplied on the left by its transpose. The
information matrix M is symmetric because the information matrices of the S choice sets
Ms are symmetric. They are of the form X′

sCsXs, where Cs = Ps − psp
′
s is symmetric.

If M is positive definite, then its Cholesky decomposition is defined as

M = L′L, (7)

where L is an upper triangular matrix named the Cholesky factor.

In the adaptive algorithm, different designs are generated by changing only one at-
tribute level of a single profile at a time (see Section 4.3). The starting design is denoted
by Xs. We compute the DB-, AB-, GB- and VB-criterion values of each of the designs
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as follows. For each prior parameter vector, we compute the information matrix Ms

through (1) and derive its Cholesky factor Ls. We then update the Cholesky factor after
every profile change with low rank updates based on the work of Bennett (1965). Using
the Cholesky factors the four criterion values for each design can be obtained as shown
below. In this way, we avoid re-computation of the information matrix through (1). For
the comparison example 32×2/24, this procedure reduced the computing times by roughly
a factor of three.

We now illustrate how the different design criteria rely on the Cholesky factor L of the
information matrix M. For any vector of coefficients, the D-optimality criterion becomes

D = (det(M−1))1/k = 1/(det(M))1/k = 1/(det(L′)det(L))1/k = 1
/

(
k∏

i=1

lii

)2/k

, (8)

where lii is the ith diagonal element of L. Thus, to obtain the DB-criterion value of a
design in which a profile has been changed, we do not need to re-compute the information
matrix for every prior parameter vector. Only an update of the Cholesky factor is required.

To show the dependency of the AB-, GB- and VB-optimality criteria on the Cholesky
factor L, the Cholesky decomposition (7) has to be inverted. Denoting L−1 by Linv, the
inverse is given by

M−1 = (L′L)−1 = LinvL
′
inv. (9)

Because the Cholesky factor, L, is triangular, inverting it is easier than inverting M.
Then, for any prior parameter vector, the A-optimality criterion is

A = tr(M−1) = tr(LinvL
′
inv) =

k∑
i=1

k∑
j=i

m2
ij, (10)

where mij is the ijth element in Linv. So to obtain the AB-criterion value of a design in
which a profile has been changed, we need to derive the new Cholesky factor for every
prior parameter vector and take its inverse. This goes much faster than computing the
new information matrix and inverting it.

In a similar manner, the GB- and VB-criterion values are obtained. The prediction
variance of profile xjq ∈ χ is expressed as

c′(xjq)M
−1c(xjq) = c′(xjq)LinvL

′
invc(xjq). (11)

Here, c(xjq) does not depend on the design X and therefore only needs to be computed
once for each prior parameter vector. The GB-criterion value is obtained by inserting (11)
in (4). For the VB-optimality criterion, we performed some initial calculations that make
its computation even more efficient. We describe these calculations in the next section.
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4.2 Efficient computation of the VB-optimality criterion

In the adaptive algorithm, the VB-optimality criterion is implemented in an efficient way.
For each prior vector of coefficients, it is possible to compute the average prediction vari-
ance without first computing the prediction variances for each profile xjq ∈ χ separately.
A similar approach does not apply to the GB-optimality criterion since finding the worst
prediction variance requires the computation of all variances.

To explain our method, we start from the prediction variance (11), but for the sake of
clarity, we leave the implementation of the inverse of the Cholesky decomposition for the
end. The prediction variance is naturally a scalar since c(xjq) is a k × 1 vector and M−1

a k × k matrix. The trace of a scalar is the scalar itself so that

c′(xjq)M
−1c(xjq) = tr(c′(xjq)M

−1c(xjq)). (12)

Now, tr(ABC) = tr(CAB) if A, B, C are matrices such that ABC is a square matrix
and the matrix product CAB exists. This equality is known as the cyclic property of the
trace. Since the prediction variance is a scalar and c(xjq)c

′(xjq) is a k × k matrix that
conforms with M−1,

tr(c′(xjq)M
−1c(xjq)) = tr(c(xjq)c

′(xjq)M
−1). (13)

Let Wjq = c(xjq)c
′(xjq). Because c(xjq) does not depend on the design X, Wjq is not

a function of X either so that it only has to be computed once for each prior parameter
vector. We now average the individual matrices Wjq over all profiles xjq ∈ χ and denote
the subsequent matrix by W:

W =
1

JQ

J∑
j=1

Q∑
q=1

Wjq. (14)

The average prediction variance across all profiles xjq ∈ χ for a given prior parameter
vector is then ∫

χ

c′(xjq)M
−1c(xjq)dxjq = tr(WM−1) (15)

We refer to the work of Meyer and Nachtsheim (1995) for a similar expression of the
V-optimality criterion in the linear design setting. Finally, in terms of the inverse of the
Cholesky decomposition of the information matrix (9), the average prediction variance is

tr(WM−1) = tr(WLinvL
′
inv). (16)

So, to obtain the VB-optimality criterion, we have to compute W for each prior parameter
vector only once. The set of W matrices can be re-used from one random start to the
next.
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4.3 Coordinate-exchange algorithm

The adaptive algorithm uses Meyer and Nachtsheim’s (1995) coordinate-exchange algo-
rithm to generate Bayesian optimal designs. As opposed to the modified Fedorov algo-
rithm employed in Kessels et al. (2006), it allows the computation of choice designs with
a large number of profiles, attributes and/or attribute levels in a reasonable amount of
time. The coordinate-exchange algorithm can be seen as a greedy profile exchange al-
gorithm. Whereas the modified Fedorov algorithm possibly changes every ”coordinate”
or attribute level of a profile, the coordinate-exchange algorithm only changes one coor-
dinate. For each attribute level in the design, the coordinate-exchange algorithm tries
all possible levels and chooses the level corresponding to the best value of the optimality
criterion under consideration.

In contrast with the modified Fedorov algorithm, the coordinate-exchange algorithm
is a candidate-set-free algorithm. That is, it does not require the specification of a set of
candidate profiles. This aspect becomes more important when the candidate set is very
large because of a large number of attributes and/or attribute levels. The coordinate-
exchange algorithm is also substantially faster than the modified Fedorov algorithm. It
runs in polynomial time, while the modified Fedorov algorithm runs in exponential time.
For the comparison example, this leads to roughly a factor of three speed increase of the
coordinate-exchange algorithm over the modified Fedorov algorithm. For designs with
more profiles, attributes and/or attribute levels, this increase in speed becomes more pro-
nounced.

A small disadvantage of the coordinate-exchange algorithm compared with the mod-
ified Fedorov algorithm is that it generally takes more random starts to find a globally
optimal design, especially when the DB- and AB-optimality criteria are utilized. The
plots in Figure 1 with estimated expected DB- and VB-efficiencies for various numbers
of tries illustrate this (see also Section 3). Nevertheless, if the global optimum is not
reached, the coordinate-exchange algorithm still finds a very efficient design. Also, in
terms of computing time, the coordinate-exchange algorithm may be more effective than
the modified Fedorov algorithm. This is certainly the case for large, realistic design prob-
lems. Therefore, the lesser performance of the coordinate-exchange algorithm per number
of tries can be disregarded.

The coordinate-exchange algorithm has also been applied by Kuhfeld and Tobias
(2005) to generate D-efficient factorial designs for large choice experiments based on a
linear model. In their SAS %MktEx macro, the coordinate-exchange algorithm is incor-
porated together with the modified Fedorov algorithm and a large catalog of orthogonal
arrays. If no orthogonal design meets the design problem and the modified Fedorov algo-
rithm is impractical to use, then the coordinate-exchange algorithm is addressed. It may
also be combined with simulated annealing.
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4.4 Small designed sample of prior parameters

In this section, we present a new method to approximate the integral related to a mul-
tivariate normal prior π(β) = N (β|β0,Σ0) in the definitions of the Bayesian optimality
criteria. The solution of the integral with respect to a multivariate normal prior for
the various criteria has not been accomplished analytically. In general for models that
are nonlinear in the parameters some numeric approximation to the integral is necessary
(Chaloner and Verdinelli 1995).

Sándor and Wedel (2001) and Kessels et al. (2006) used a Monte Carlo estimate of
the integral from 1, 000 random draws of the prior. Such estimates are known to converge
to the true value of the integral at a rate proportional to the square root of the number
of draws. This necessitates a large number of draws to reduce the sample-to-sample vari-
ability to the point where different samples do not lead to different design choices. This
approach is costly because the computing time for the Bayesian design is then roughly
1, 000 times longer than the computing time for the local design, that is, the design for
one prior parameter vector.

To solve integrals related to a multivariate normal distribution for the construction
of choice designs, Sándor and Wedel (2002) utilized samples based on orthogonal arrays
(Tang 1993) and Sándor and Wedel (2005) constructed quasi-Monte Carlo samples (Hick-
ernell et al. 2000). In several cases, estimates using these methods are more efficient than
Monte Carlo estimates so that it is possible to employ smaller samples to obtain the same
accuracy (Sándor and András 2004; Sándor and Train 2004). There is also an extensive
literature on quadrature, which is another approach to numerical integration. However,
for integrals of functions in more than four dimensions, Monte Carlo estimates tend to
outperform quadrature estimates (Geweke 1996; Monahan and Genz 1997).

4.4.1 A 20-point set

We propose to approximate the integrals in (2), (3), (4) and (6) with a designed sample
of only 20 parameters. Assuming that the prior variance-covariance matrix Σ0 is the
identity matrix, the multivariate normal distribution is spherically symmetric around the
prior mean. As a result, every parameter has the same density on a k-dimensional hy-
persphere of a given radius. The 20 prior parameters are uniformally distributed on such
a sphere. In this way, they sample the different directions away from the prior mean fairly.

For the comparison example, the designed sample of 20 parameters yields an approx-
imation that is worse than the Monte Carlo sample of 1, 000 draws. However, in the
computation of Bayesian optimal designs, it is not necessary for the approximation of
the integral to be accurate. All that is required is that the sign of the difference from
a rough approximation corresponding to two slightly different designs matches the sign
of the difference from a better approximation. With the plot in Figure 3 we illustrate
that the systematic 20-point sample and the Monte Carlo sample largely agree on design
improvements in a random start.
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Figure 3: VB-criterion values according to the 1, 000-point Monte Carlo sample versus
the systematic 20-point sample and correlation between them. The points represent the
course of one try of the coordinate-exchange algorithm for the two-alternative designs
using the 20-point sample.

The plot compares the VB-criterion value for the Monte Carlo sample with the VB-
criterion value for the systematic 20-point sample. It depicts the course of one random
start of the coordinate-exchange algorithm for the two-alternative designs. A random
starting design is thereby monotonically improved by making a sequence of changes, each
of which improves the VB-criterion value for the systematic 20-point sample. By re-
evaluating each of these changes with the VB-criterion value for the Monte Carlo sample,
we find out whether every change also leads to an improvement using the better approx-
imation.

The starting design is represented by the point at the top right of the plot, which of
all points has the highest or worst VB-criterion value according to the 20-point sample
as well as the Monte Carlo sample. After making one change in the original design, the
second point from the top right shows an improvement in the VB-criterion value for both
samples. The points proceed from the top right to the bottom left of the plot. The point
at the bottom left denotes the final and best design produced in the random start. Note
that this point has the lowest or best VB-criterion value as approximated by both samples.
Also note that the drop in the VB-criterion value is not monotonic, indicating that the
two approximations are not in complete agreement about the VB-criterion value of each
change in the sequence.

Still, the agreement between the VB-criterion value for the Monte Carlo sample and
the VB-criterion value for the systematic 20-point sample is clear from a correlation of
99%. Similar correlations are obtained using the coordinate-exchange algorithm with ev-
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ery other design criterion and for a larger choice set size. However, this does not imply
that designs that are optimal using the systematic 20-point sample are also optimal with
respect to the Monte Carlo sample. The plot in Figure 4 demonstrates this.
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Figure 4: VB-criterion values according to the 1, 000-point Monte Carlo sample versus
the systematic 20-point sample and correlation between them. The points correspond to
two-alternative designs produced by different tries of the coordinate-exchange algorithm
using the 20-point sample.

Like the plot in Figure 3, the plot in Figure 4 displays the VB-criterion value for the
Monte Carlo sample versus the VB-criterion value for the systematic 20-point sample. Now
each point in the plot represents the best two-alternative design found in a single random
start of the coordinate-exchange algorithm. Again, the algorithm used the VB-criterion
value for the 20-point sample to generate the designs and the VB-criterion value for the
Monte Carlo sample to re-evaluate them. From the plot, we see that the worst design by
both VB-criterion values is the same. On the other hand, the best design according to the
VB-criterion value for the 20-point sample differs from the best design indicated by the
VB-criterion value for the Monte Carlo sample.

In this case, the correlation between the VB-criterion values for the Monte Carlo sample
and the VB-criterion values for the 20-point sample from the different tries is only 66%.
This result also applies to the other design criteria and larger choice set sizes. The fact
that the correlation is not close to 100% means that it is important to check each random
start using the 20-point sample with one calculation of the objective function using the
Monte Carlo sample. Therefore, our approach is an adaptive one in which we re-evaluate
the Bayesian designs from the 20-point sample after each try using the Monte Carlo
sample. The design with the best criterion value in terms of the 1, 000 draws is then
selected.
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Note that, if the correlation were near 100%, it would not be necessary to check the
designs. On the other hand, if the correlation were not fairly large, then the adaptive
approach would not work because designs using the 20-point sample would not be sub-
stantially better than random designs. Also, observe that thanks to the decrease in the
number of prior parameters from 1, 000 to 20 during a try we save up to 98% of the
computational work!

4.4.2 Constructing a small sample of prior parameters

For any choice design problem, we can construct a small set of prior parameters based
on minimum potential designs or space filling designs created in JMP 6. The points of
these designs are uniformally distributed on a k-dimensional hypersphere at a radius of
one away from the zero vector. So on the sphere, the minimum distance to a neighboring
point from any of the design points is roughly the same for all the points.

To understand how minimum potential designs are created, consider n points on a
k-dimensional sphere around the zero vector. Each point, p, has levels between [−1, 1] for
k continuous factors and is denoted as (zp1, ..., zpk). Let def be the distance between the
eth and fth points. That is,

def =

√√√√
k∑

i=1

(zei − zfi)2. (17)

The optimization problem is to find the n×k values of zpi that minimize Epot, the potential
energy of the system:

Epot =
n−1∑
e=1

n∑

f=e+1

(
d2

ef +
1

def

)
. (18)

Here, d2
ef is proportional to the energy stored in a spring when you pull it and 1/def is

the potential energy between two like charged particles. When the distance between two
points increases, d2

ef increases. When the distance between two points decreases, 1/def

increases. To visualize this, Figure 5 shows a plane with 3 design points. Each point has
springs attached to the other two points. The springs pull the points together. However,
each point is also positively charged and the charges repel to push the points apart. The
result is that the points end up forming an equilateral triangle.

For the comparison example, the minimum potential design with 20 points in a 5-
dimensional space appears in Table 3. These points lie on a sphere of a radius of one
around [0, 0, 0, 0, 0]′. The minimum distance for each point to the nearest point is 1.171.
If this interpoint distance seems too large, then it can be reduced by increasing the num-
ber of points.

To properly approximate the prior distribution with a 20-point sample from the points
of a minimum potential design, it is necessary to rescale these points for the prior variance-
covariance matrix and the prior mean. If there is no correlation between the prior co-
efficients or Σ0 = σ2

0Ik, then the 20-point sample lies on a sphere with a radius that is
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Figure 5: Three equally spaced points on the circumference of a circle.

Table 3: Minimum potential design of 20 points in 5 continuous factors for the comparison
example.

Design Minimum Nearest
point

z1 z2 z3 z4 z5 distance point
Radius

1 −0.17642 −0.57290 −0.19875 0.74536 −0.19600 1.17076 15 0.99281
2 −0.21775 0.81588 0.32619 −0.30104 −0.28759 1.17075 19 0.99281
3 −0.54891 −0.28739 −0.29445 0.17376 0.70655 1.17076 8 1.00000
4 −0.57116 0.06703 −0.27064 −0.77093 0.04122 1.17074 8 1.00000
5 −0.20011 −0.19572 −0.17339 −0.25973 −0.90384 1.17074 20 0.99281
6 0.00117 0.10528 0.59690 0.49371 −0.62360 1.17075 5 1.00000
7 −0.01228 0.13614 0.39319 −0.47950 0.76785 1.17076 13 0.99280
8 0.00528 −0.87552 −0.10638 −0.43810 0.15165 1.17074 4 0.99281
9 0.75353 −0.47946 −0.01214 0.10921 −0.43617 1.17076 16 1.00000
10 0.58274 0.19380 −0.32178 −0.71016 −0.08827 1.17075 20 0.99281
11 0.73699 0.47141 0.45742 0.07033 0.14296 1.17075 10 1.00000
12 −0.79511 −0.25333 0.54158 −0.02905 −0.04767 1.17077 13 0.99281
13 0.19427 −0.53359 0.65989 0.32602 0.36850 1.17075 17 1.00000
14 −0.00619 0.71761 −0.49688 −0.08192 0.48104 1.17075 2 1.00000
15 0.01039 −0.23327 −0.96643 −0.04302 −0.09815 1.17075 16 1.00000
16 0.60646 −0.18338 −0.34715 0.29484 0.61963 1.17075 15 0.99281
17 −0.19392 0.43870 0.30072 0.70409 0.42020 1.17075 13 0.99281
18 0.40102 0.49636 −0.41417 0.47335 −0.43591 1.17075 15 0.99281
19 −0.74200 0.35148 −0.35744 0.34145 −0.28555 1.17075 2 1.00000
20 0.17200 −0.17915 0.68369 −0.61868 −0.29685 1.17074 5 1.00000
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proportional to the standard deviation σ0. Now, the effectiveness of the 20-point sample
in the adaptive algorithm depends on the radius specified, or the number of standard
deviations away from the prior mean. That is to say, a well-chosen radius requires fewer
random starts to reach the global optimum. To find the best radius for a spherical 20-point
sample for any choice design problem, one could proceed as follows:

1. Do a number of random starts of the adaptive algorithm for each of three radii,

2. Fit a quadratic function to the minimum criterion value found at each radius,

3. Choose the radius that is the minimum of the quadratic function.

For the comparison example, we performed 10 random starts for a radius of 1, 2
and 3. Recall that σ0 = 1 for this example. The result for the VB-optimality criterion
connected with two-alternative designs appears in Figure 6. Fitting a quadratic model to
the minima results in a radius slightly larger than 2. We chose however a radius of 2 for
simplicity. To illustrate the value of selecting a good radius, we compared the estimated
expected efficiencies per number of tries of the two-alternative VB-optimal designs using
the 20-point samples for the radii 1 and 2, respectively. The plots based on 250 tries
appear in Figure 7. We clearly observe the higher expected efficiencies in case a radius
of 2 is utilized as opposed to a radius of 1. We obtained similar results for any other
optimality criterion in combination with any choice set size.

However, computing the ”best” radius is not absolutely necessary. The heuristic of
choosing a sphere radius that is twice the prior standard deviation worked well in all the
examples we tried. The critical part of the adaptive algorithm is that for each random
start using the 20-point sample, one checks the resulting design with the larger Monte
Carlo sample. So, no matter what radius one chooses, one will have a monotonically
improving set of designs as the number of random starts increases. Still, choosing a good
radius increases the speed of the improvement over the random starts.
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Figure 6: VB-criterion values of two-alternative designs from 10 random starts of the
adaptive algorithm using the 20-point samples for the radii 1, 2 and 3.
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Figure 7: Estimated expected efficiencies per number of tries of the two-alternative VB-
optimal designs computed using the adaptive algorithm with the 20-point samples for the
radii 1 and 2.
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5 Computation of large choice designs

The speed of the adaptive algorithm makes the computation of Bayesian optimal designs
feasible for more challenging problems of larger dimensions than the rather small compar-
ison example 32× 2/24. We illustrate this with the construction of designs of two classes:
5×3×23/2/15 and 5×3×23/3/10, jointly referred to as 5×3×23/30. The designs consist
of 30 profiles, grouped in 15 choice sets of size two for the first class and 10 choice sets
of size three for the second class. The profiles are configured from five attributes, one of
which has five levels, another of which has three levels and the three others of which have
two levels. So in total, there are 5 × 3× 23 = 120 candidate profiles. This candidate set
is much larger than the candidate set of 18 profiles employed in the comparison example.

For the two classes, we constructed designs using the DB- and VB-optimality criteria.
The DB-optimality criterion is the most popular criterion of the estimation-based design
criteria. For the prediction-based design criteria, we prefer the VB-optimality criterion
since it seeks to minimize the average prediction variance over the design region χ and,
as we showed in Section 4.2, its criterion value can be computed more efficiently than the
GB-criterion value. For the two-alternative design class, χ consists of Q =

(
120
2

)
= 7, 140

choice sets or 14, 280 profiles, whereas for the three-alternative design class, it comprises
Q =

(
120
3

)
= 280, 840 choice sets or 842, 520 profiles. Compare these numbers with the 306

profiles and 2, 448 profiles for the two- and three-alternative designs of the comparison
example.

The number of parameter values, k, using effects-type coding is nine. As prior
parameter distribution, we implemented the multivariate normal distribution π(β) =
N (β|β0,Σ0), with β0 = [−1,−0.5, 0, 0.5,−1, 0,−1,−1,−1]′ and Σ0 = I9. To obtain the
designs for the DB- and VB-optimality criteria, we performed 1, 000 tries of the adaptive
algorithm for each criterion. We therefore utilized a constructed 20-point sample for the
design generation and a random 1, 000-point sample for the design evaluation. Again, we
carried out all computations in MATLAB 7 by means of a Dell personal computer with
a 1.60 GHz Intel Processor and 2 GB RAM.

The DB- and VB-optimal designs for the 5× 3× 23/30 example appear in Tables A.4
and A.5 of the Appendix. Their criterion values appear in Table 4. For both optimality
criteria, we notice a decrease or an improvement in the values as the choice set size goes
from 2 to 3. The result that the performance in terms of prediction improves with the
choice set size was also noted by Sándor and Wedel (2002) and Kessels et al. (2006). The
VB-criterion values for the comparison example in Table 1 further confirm this. However,
we remain undecided as to the efficiency of the DB-optimal designs with respect to the
choice set size. In contrast with Table 4 where the DB-criterion values decrease with
larger choice sets, the DB-criterion values in Table 1 for the comparison example increase
with larger choice sets.

The computing times for one try of the adaptive algorithm to generate the two- and
three-alternative DB- and VB-optimal designs for the 5 × 3 × 23/30 example appear in
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Table 4: DB- and VB-criterion values of the two- and three-alternativeDB- and VB-optimal
designs for the 5× 3× 23/30 design example.

Optimal # Alternatives
design 2 3
DB 1.18591 1.13639
VB 0.23901 0.21065

Table 5. The huge design region for the three-alternative designs results in a running
time of several minutes per try for the VB-optimality criterion. The computation of the
VB-optimal designs for this large example would have taken months using MCMF.

Table 5: Computing times for one try of the adaptive algorithm to generate the two- and
three-alternative DB- and VB-optimal designs for the 5× 3× 23/30 design example. The
times are expressed in hours:minutes:seconds.

Design # Alternatives
criterion 2 3
DB 00:00:08 00:00:14
VB 00:00:15 00:04:05

6 Conclusion

In this paper, we propose an adaptive algorithm for producing DB-, AB-, GB- and VB-
optimal choice designs as an alternative to the Monte Carlo modified Fedorov algorithm
(MCMF) employed by Kessels et al. (2006). Kessels et al. (2006) had shown that GB-
and VB-optimal designs outperform DB- and AB-optimal designs for response prediction,
which is central in choice experiments. However, using MCMF computing GB- and VB-
optimal designs is even more cumbersome than searching for DB- and AB-optimal designs
so that they suggested implementing the DB-optimality criterion in practice.

Unlike MCMF, the new adaptive algorithm makes the construction of GB- and VB-
optimal designs practical and it allows the DB-, AB-, GB- and VB-optimal designs to
be embedded in web-based conjoint choice studies with individualized designs for the
respondents. We prefer using VB-optimal designs since they minimize the average predic-
tion variance and can be computed faster than GB-optimal designs. In general, the main
improvement of the adaptive algorithm over MCMF is the approximation of the normal
prior distribution by a designed sample of 20 parameter vectors instead of a Monte Carlo
sample of 1, 000 random draws. This saves up to 98% of the computational work within
each try of the algorithm. Nevertheless, we re-evaluate the designs produced by each try
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using the Monte Carlo sample and adapt the design selection accordingly. This led us to
call our method the adaptive algorithm.

To further speed up the design generation, the adaptive algorithm also uses a coordin-
ate-exchange algorithm rather than a modified Fedorov algorithm. A coordinate-exchange
approach saves time by avoiding the creation and use of a candidate set that grows expo-
nentially with the number of attributes and attribute levels studied. Thus, the time sav-
ings of the coordinate-exchange algorithm increase with the number of profiles, attributes
and attribute levels. As a last way to accelerate the computations for any optimality cri-
terion, the adaptive algorithm incorporates an update formula to economically calculate
the optimality criterion values of designs.

The computational speed of the adaptive algorithm makes the use of individualized
Bayesian optimal designs in web-based surveys possible. To examine what is the best
way to do this, is beyond the scope of this paper. We expect, however, that such an
approach would allow an efficient estimation of mixed logit (Sándor and Wedel 2002) and
latent class models (Andrews et al. 2002; Train 2003) that aim at modelling consumer
heterogeneity. Another topic for further research is the construction of designs for choice
experiments in which one suspects correlation between parameter coefficients. In that
case, the multivariate normal prior distribution is elliptically symmetric around the prior
mean. The small designed sample of parameters from a minimum potential design should
then be rescaled to lie on a k-dimensional ellipsoid. Lastly, the efficiency of optimal de-
signs with respect to the choice set size might be further investigated.
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Appendix. Choice design tables

Table A.1: Two-alternative Bayesian optimal designs for the 32 × 2/24 example.

DB AB GB VB

Choice Alt Attr Attr Attr Attr
set 1 2 3 1 2 3 1 2 3 1 2 3
1 I 1 2 2 2 1 2 1 2 2 1 3 2

II 2 1 1 1 2 1 3 1 2 2 1 2
2 I 3 1 1 1 2 2 1 2 1 1 2 2

II 2 3 2 2 1 1 2 3 1 2 3 2
3 I 2 3 2 2 2 2 2 1 1 2 2 2

II 1 2 2 1 1 1 3 2 2 1 1 2
4 I 3 3 2 2 2 1 2 2 1 2 2 1

II 2 2 1 3 1 1 1 3 1 1 3 2
5 I 2 2 2 2 1 1 1 2 1 1 1 1

II 1 3 2 1 2 1 2 1 2 2 2 2
6 I 1 2 2 2 3 2 3 3 1 2 1 1

II 3 1 2 3 2 1 2 1 1 3 1 2
7 I 3 1 2 1 2 2 2 3 2 1 2 2

II 1 3 1 2 3 2 3 1 1 3 1 2
8 I 1 2 1 1 3 1 3 2 1 1 1 1

II 2 1 2 3 1 2 1 1 1 3 3 2
9 I 2 2 2 1 1 1 3 1 2 1 2 1

II 1 1 1 3 1 1 1 3 1 2 1 2
10 I 2 2 1 3 3 2 2 2 1 2 3 2

II 1 1 1 2 1 1 3 3 2 3 1 1
11 I 3 2 1 2 2 2 2 2 2 3 2 2

II 2 1 1 1 3 2 1 1 1 2 1 2
12 I 2 1 1 2 2 1 1 1 2 1 2 2

II 3 2 2 1 1 1 2 1 1 1 3 1
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Table A.2: Three-alternative Bayesian optimal designs for the 32 × 2/24 example.

DB AB GB VB

Choice Alt Attr Attr Attr Attr
set 1 2 3 1 2 3 1 2 3 1 2 3
1 I 2 1 1 1 2 1 2 1 1 3 1 1

II 1 3 1 2 1 2 1 2 2 1 3 2
III 1 2 2 1 3 2 1 3 1 2 2 1

2 I 2 3 2 1 1 1 2 2 1 3 1 1
II 1 2 1 1 2 2 1 3 2 2 2 2
III 3 1 2 2 2 1 3 2 2 3 2 2

3 I 1 2 1 2 2 2 2 3 1 3 1 2
II 2 3 1 1 2 2 2 1 2 2 3 2
III 1 3 2 1 1 1 3 3 1 2 2 1

4 I 3 2 2 1 2 1 1 1 1 1 3 1
II 2 1 1 1 1 1 3 1 2 2 1 1
III 1 3 2 2 1 1 2 3 2 1 2 2

5 I 2 1 2 2 2 1 3 2 1 1 1 1
II 2 2 2 3 1 1 3 3 1 2 3 2
III 1 1 1 1 3 1 1 3 1 3 2 2

6 I 3 3 2 1 2 1 1 2 1 3 3 2
II 2 2 1 2 3 1 2 3 2 1 3 1
III 1 1 1 3 3 2 2 3 1 2 1 2

7 I 3 1 2 2 3 2 1 1 1 1 3 2
II 2 1 1 3 1 1 1 2 2 2 3 2
III 3 2 1 3 3 1 2 1 2 1 2 2

8 I 1 2 1 2 1 1 2 1 1 3 2 1
II 3 1 1 3 2 1 1 1 2 3 1 2
III 2 2 2 1 2 1 2 2 1 1 1 1

23



Table A.3: Four-alternative Bayesian optimal designs for the 32 × 2/24 example.

DB AB GB VB

Choice Alt Attr Attr Attr Attr
set 1 2 3 1 2 3 1 2 3 1 2 3
1 I 2 2 2 2 3 2 2 3 1 3 1 1

II 2 1 1 3 2 2 2 2 1 1 2 1
III 3 1 2 2 2 2 1 3 1 2 1 1
IV 3 2 1 1 1 1 1 2 2 3 2 2

2 I 2 1 2 1 3 1 3 2 1 3 2 2
II 3 1 1 2 3 2 2 1 2 1 1 1
III 3 2 2 1 3 2 1 1 1 2 3 2
IV 1 2 1 2 1 1 3 1 1 2 2 2

3 I 2 2 1 3 1 1 1 3 2 2 3 1
II 1 1 1 3 2 1 1 1 2 1 3 2
III 1 3 2 1 2 2 1 2 1 2 1 2
IV 3 1 2 2 1 1 2 2 2 1 2 1

4 I 1 2 1 2 2 1 2 1 1 3 3 1
II 2 1 1 1 1 1 3 1 2 3 1 1
III 1 3 1 3 1 2 1 2 2 1 3 1
IV 2 3 2 1 3 2 2 3 2 2 2 2

5 I 3 2 2 3 2 2 2 3 1 2 2 1
II 2 2 2 1 2 1 3 3 1 2 1 1
III 2 3 2 3 1 1 3 1 1 1 3 2
IV 1 1 1 1 1 1 3 3 2 3 1 2

6 I 1 2 2 1 3 1 3 1 2 2 3 2
II 2 3 1 2 1 2 1 2 2 2 2 1
III 1 3 1 2 3 1 2 1 2 1 2 2
IV 2 1 1 1 2 1 1 1 1 1 3 1
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Table A.4: Two-alternative DB- and VB-optimal designs for the 5× 3× 23/30 example.

DB VB

Choice Alt Attr Attr
set 1 2 3 4 5 1 2 3 4 5
1 I 5 2 1 2 2 4 1 1 2 2

II 4 3 2 1 2 5 1 2 2 1
2 I 3 2 2 1 1 2 1 1 1 2

II 2 3 1 2 1 4 2 2 1 2
3 I 5 1 2 1 1 3 3 1 2 1

II 1 2 1 2 1 5 2 1 2 1
4 I 4 1 1 1 1 4 3 1 1 2

II 2 2 1 1 1 3 2 1 1 2
5 I 3 1 1 2 1 5 3 2 2 1

II 4 2 2 1 2 2 2 2 1 1
6 I 1 2 2 1 1 2 1 2 2 1

II 2 1 2 1 1 3 2 2 2 2
7 I 2 2 2 2 1 3 1 2 2 1

II 3 1 1 2 2 2 3 2 1 2
8 I 1 1 1 1 1 1 3 1 2 2

II 4 3 1 2 2 3 3 1 2 2
9 I 2 1 1 1 2 2 3 2 2 1

II 5 2 2 2 1 1 1 2 1 1
10 I 5 3 1 1 2 4 3 2 2 2

II 4 2 2 1 1 3 3 2 1 2
11 I 1 1 2 2 2 2 2 2 1 1

II 3 2 2 2 2 5 1 1 1 2
12 I 3 1 2 1 1 1 2 2 1 1

II 5 1 2 1 2 2 2 2 1 2
13 I 1 3 2 1 1 4 1 2 2 1

II 3 2 1 2 1 1 2 1 2 1
14 I 4 1 2 2 1 4 1 2 1 1

II 3 3 2 2 2 1 3 2 2 1
15 I 3 3 2 2 1 5 3 2 1 2

II 4 2 1 1 2 4 2 1 2 1
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Table A.5: Three-alternative DB- and VB-optimal designs for the 5× 3× 23/30 example.

DB VB

Choice Alt Attr Attr
set 1 2 3 4 5 1 2 3 4 5
1 I 4 3 1 2 2 5 1 2 1 1

II 1 1 1 1 1 4 3 2 1 2
III 2 2 2 1 1 3 2 2 1 2

2 I 2 3 2 1 2 1 1 1 2 1
II 1 3 1 2 1 5 2 2 1 2
III 5 2 2 1 2 3 3 2 1 2

3 I 4 3 2 1 1 1 2 2 1 2
II 3 3 1 1 2 3 2 2 2 1
III 2 2 1 1 1 4 1 2 2 1

4 I 2 3 1 1 1 4 2 1 1 1
II 1 2 1 1 1 2 3 1 2 1
III 5 3 1 2 2 1 1 1 1 1

5 I 3 1 2 2 1 5 3 2 1 2
II 1 2 2 2 1 1 3 1 1 1
III 2 2 2 2 2 4 2 1 2 1

6 I 2 1 2 2 1 3 3 2 1 1
II 3 2 2 1 2 2 2 1 1 2
III 4 1 2 1 2 5 3 1 1 2

7 I 4 2 1 2 2 2 2 1 1 2
II 3 1 2 1 1 5 3 2 2 1
III 5 3 2 2 1 4 2 2 1 2

8 I 4 1 1 2 1 1 2 1 2 1
II 2 3 1 1 2 3 1 1 1 2
III 3 3 2 2 1 2 1 2 1 1

9 I 4 2 2 2 1 5 1 2 2 1
II 1 3 2 2 1 2 3 2 1 1
III 5 1 1 2 2 3 3 1 2 2

10 I 3 2 1 2 1 1 3 2 1 2
II 5 1 2 1 1 2 3 1 2 2
III 1 3 1 1 2 3 1 1 1 2
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