
AN APPROXIMATION ALGORITHM FOR A GENERALIZED
ASSIGNMENT PROBLEM WITH SMALL RESOURCE REQUIREMENTS

JOEP AERTS· JAN KORST • FRITS C.R. SPIEKSMA

OR 0363

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An approximation algorithm for a generalized
assignment problem with small resource

req uirements*

Joep Aerts! Jan Karst:\: and Frits C.R. Spieksma§

October 8, 2003

Abstract

We investigate a generalized assignment problem where the resource
requirements are either 1 or 2. This problem is motivated by a question
that arises when data blocks are to be retrieved from parallel disks as
efficiently as possible. The resulting problem is to assign jobs to ma
chines with a given capacity, where each job takes either one or two
units of machine capacity, and must satisfy certain assignment restric
tions, such that total weight of the assigned jobs is maximized. We derive
a ~-approximation result for this problem based on relaxing a formulation
of the problem so that the resulting constraint matrix is totally unimod
ular. Further, we prove that the LP-relaxation of a special case of the
problem is half-integral, and we derive a weak persistency property.

Key words: parallel disks, generalized assignment problem, retrieval
problem, half-integrality, persistency

1 Introduction

We consider the following problem. Given is a set of jobs J = {l, 2, ... ,n} and
a set of machines fYI = {l, 2, ... , m}. Each machine has capacity bi , i E fYI.
Each job j can be assigned to a job-specific subset of the machines denoted
by M(j) ~ M. Each M(j) is partitioned into two subsets, M1(j) and fYh(j),
such that assigning job j to machine i in fYh (j) takes one unit of capacity and
to a machine in M2 (j) two units. Assigning job j to machine i results in a
given profit of Wij' The problem is to assign jobs to machines such that total

* A preliminary version of this work appeared as [3].
t Centre of Quantitative Methods, P.O. Box 414, NL-5600 AK Eindhoven, The Netherlands.

aerts~cqm.nl

:j:Philips Research Labs, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
jan.korst~philips.com

§Department of Applied Economics, Katholieke Universiteit Leuven, Naamsestraat 69, B-
3000, Leuven, Belgium. fri ts. spieksma~econ. kuleuven. ac. be

1

weight of assigned jobs is maximized while respecting the capacities and the
assignment restrictions induced by the sets]o.1(j). We will refer to this problem
as problem P. A straightforward formulation of P is as follows. For each j E J
and i E lvI(j) we introduce a decision variable

The model now is:
(M1) Maximize

subject to:

if job j is assigned to machine i

otherwise.

L L WjiXji

jEJ iEM(j)

L Xji:S: 1,
iEM(j)

L Xji + 2 L Xji:S: bi ,

jEh(i) jEh(i)

Xji E {a, I},

(1)

(2)

(3)

with J 1 (i) and J2 (i) being the sets of jobs that take one, respectively two, units
of capacity when assigned to machine i. Constraints (1) express that each job
can be assigned at most once, (2) state that the capacity of each machine should
not be violated, and (3) are the integrality constraints.

Problem P is intimately related to the so-called Generalized Assignment
Problem (GAP). In the literature (see Section 1.1) different variations of formu
lations of the GAP exist: maximization versions versus minimization versions,
and equality constraints versus the current inequality constraints (1). Suggested
by the application that motivated our work (see Section 2), we have opted in
our formulation for maximization under inequality constraints; notice however
that the results also apply in case equality constraints are used, assuming a
feasible solution exists. Of course, a crucial property of problem P is that the
resource requirements, usually denoted by aji, are equal to 1 or 2: in that sense
P is a special case of GAP. Another property of P is that it takes explicitly into
account, using the sets lvI(j) , that a job cannot go to an arbitrary machine: in
that sense P is more general than GAP.

A special case of problem P arises when the resource requirement of a job
j is independent of the machine i, i.e., aji = aj. In this case, we refer to the
resource requirement of job j as its size. Thus, in such a setting, job j either
has size 1 on all machines in M(j), i.e., M(j) = M1 (j), or it has size 2 on all
machines in M(j), i.e., M(j) = M2(j). The resulting problem, denoted by P12,
is a special case of the so-called multiple knapsack problem with assignment
restrictions, as in our setting the size of each job is 1 or 2. This special case is
motivated in Section 2.

In the next section we describe related literature, our results and the setup
of this paper.

2

1.1 Related literature and our results

The generalized assignment problem is a basic problem in operations research.
An exact algorithm has been described by Savelsbergh [18]. Polyhedral aspects
of the GAP have been studied as well, see De Farias and Nemhauser [9] for a
recent reference. Often, the GAP is stated as a minimization problem with the
restriction that each job has to be assigned; by scaling the resource requirements
one may then assume that in the GAP all machine capacities are equal, i.e.,
b1 = b2 = ... = bm = b. A seminal work on approximating the GAP is Shmoys
and Tardos [19]. Given a value C and a value b, they show how to compute
in polynomial time an assignment with cost at most C (if such an assignment
exists), needing machine capacities at most 2b.

As far as we are aware, the special cases described here, i.e., P and P12,
have not been investigated before. We describe in Section 2 our motivation for
investigating this special case. In Section 3 we state the complexity of our prob
lem and provide an integer programming formulation of P as an alternative to
Ml. We show how this formulation can be relaxed such that the resulting con
straint matrix is totally unimodular (TUM). Based on this relaxation we sketch
a ~-approximation algorithm whose complexity is determined by solving a trans
portation problem. Another setting where an integer program is transformed
to an integer program with a TUM constraint matrix appears is described in
Hochbaum [11]. In particular, her framework focuses on formulations where
there is a unique variable for each constraint in the formulation.

In Section 4 we investigate P12. A problem related to P12 is discussed by
Dawande et al. [8]: their setting differs from P12 in the sense that the size
of a job aj is not restricted to {1,2}; they assume however, that the profit of
a job equals its size, i.e., Wji = aj for all j E J, i E M. They describe two
approaches that each lead to a ~-approximation algorithm. For P12 we show
that the LP-relaxation and the TUM-relaxation coincide. Moreover, it turns out
that the LP-relaxation of Ml for this special case is half-integral. This property
has been studied by Hochbaum [11] and Appa and Kotnyek [6]. Hochbaum
describes a technique that, based on first finding a half-integral superoptimal
solution, delivers 2-approximations for a large class of minimization problems.
Appa and Kotnyek [6] investigate a class of matrices for which the associated
polytope has half-integral vertices only. Other occurrences of half-integrality
are described in Chudak and Hochbaum [7] and Ralphs [14]. We also show that
in the case of unit weights, i.e., Wji = 1 for all j E J, i E NI, a weak persistency
property holds. More specifically, it turns out that there exists an optimal
solution to P12 such that jobs of size 1 not assigned in the LP-relaxation are
also not assigned in that optimal solution and vice versa.

2 The application

Storage and retrieval problems for parallel disks have been studied extensively
in the area of video on demand, see e.g. Aerts [2], and external memory al-

3

gorithms, see e.g. Vitter [20]. When handling large collections of data, the
communication between fast internal memory and slow external memory, e.g.
disks, can be a major performance bottleneck. Several disk storage strategies
have been proposed that use redundancy to balance the load on parallel disks,
see e.g. Aerts, Korst and Verhaegh [5] or Sanders, Egner and Korst [17]. Storing
multiple copies of each data block on different disks allows one to dynamically
determine from which disk to retrieve a requested block. This improves the
throughput, Le., the number of requests served per time unit.

The retrieval of data from parallel disks can be modeled as follows. Given
is a set of identical disks on which equal-sized blocks are stored redundantly.
Requests for blocks arrive over time and repeatedly a batch of blocks is retrieved.
Under the assumption that a disk can only retrieve one block per cycle, the
problem of maximizing the number of blocks retrieved in a cycle can be modeled
as a maximum flow problem [2].

In reality, however, this assumption is not fulfilled. In fact, the disks can be
used more efficiently if we exploit the multi-zone character of hard disks (see
Ruemmler and Wilkes [15]). Hard disks rotate at a constant angular velocity,
while outer tracks contain more data than inner tracks. Hence, one can retrieve
data at a higher rate from the outside than form the inside. One can partition
a disk's storage space into two halves, an inner half and an outer half. Given
this partition, it is reasonable to assume that the worst-case retrieval rate at
the outer half is approximately twice the worst-case retrieval rate achievable at
the inner half.

Using the above, we consider the following improvement. Instead of retriev
ing at most one block per disk per cycle, each disk can now either retrieve two
blocks from its outer half or one block from its inner half. In this way, we can
considerably increase the average number of blocks read per cycle, with little or
no increase in the average cycle duration. Given that blocks are stored redun
dantly, the problem of maximizing the number of retrieved blocks is no longer
polynomially solvable, provided P =I- Np.

Alternative ways to improve the throughput of parallel disks are (i) further
increasing the batch sizes to decrease seek overhead (see e.g. Gemmell [10]), and
(ii) handling the disks in an asynchronous fashion (see e.g. Sanders [16]). These
alternatives fall outside the scope of this paper.

If we refer to block requests as jobs and to disks as machines, the retrieval
problem can be considered as nonpreemptively assigning jobs to machines, with
jobs having a size one or two and machines having capacity two, where each job
can only be assigned to a subset of the machines. The objective is to maximize
the number of assigned jobs. This gives rise to instances of problem P with unit
weights, and bi = 2 for all i E /vI. Notice that although this may look easier
than problem P itself, Theorem 1 implies that this special case of P is already
difficult to approximate arbitrary closely in polynomial time.

4

3 A pproximation of P

Recall problem P as introduced in Section 1: given is a set J of jobs, and a set
IvI = {I, ... , m} of machines, with machine i E M having capacity bi . Each
job j can only be assigned to a machine i from a given set M(j). Moreover, for
each machine i in M (j) it is known whether job j takes one unit of capacity or
two units of capacity. Finally, there is a given weight Wij for assigning job j to
machine i. All data are positive integral numbers. We assume that no machine
with capacity 1 is in M 2 (j) for some j E M. This assumption is quite reasonable
since in no feasible solution a machine with capacity 1 can process a size 2 job.
The problem is to find an assignment of jobs to machines that maximizes the
weighted number of jobs that are assigned.

Let us first phrase a result from Aerts et al. [4] in terms of our problem P.

Theorem 1 (Aerts et al. [4]) P12 is APX-hard, even if each machine has
capacity 2, each job is connected to exactly 2 machines, and all weights are 1,
i.e., if bi = 2 for all i E M and IM(j)1 = 2 and Wj = 1 for all j E J.

Notice that this result for P12 applies a fortiori to problem P.

3.1 A formulation of P and its relaxations

We now present an alternative model for problem P. This alternative formulation
allows us to investigate two relaxations of the formulation. Instead of jobs that
need either one or two units of capacity of a particular machine, we introduce
for each job j a regular job r(j) and a dummy job d(j). A regular job, as well
as a dummy job has size 1. Job r(j) is connected to each machine i that is in
M(j), i.e., M(r(j)) = M(j), whereas job d(j) is connected to each machine i
that is in M2(j), i.e., M(d(j)) = M2(j). In case M2 (j) = 0, we do not create job
d(j). We choose the weights for the jobs r(j) and d(j) as follows: the weight for
assigning job r(j) to a machine i in M1(j) is Wij; the weight for assigning job
r(j) to a machine i in M2 (j) is ~Wij; and the weight for assigning job d(j) to
a machine i in IvI2 (j) is ~Wij. This gives the following, alternative, formulation
for P.

(M2) Maximize

subject to:

L Xr(j),i:::: 1,
iEM(j)

L Xd(j),i:::: 1,
iEM2(j)

L Xr(j),i + L Xd(j),i:::: bi ,

jEJ,(i) jEJd(i)

5

'V jEJ 'ViEM2 (j)

'VjEJ 'ViEM(j)

Xr(j),i - Xd(j),i = 0,

Xr(j),i, Xd(j),i E {O, I},

(4)

(5)

with Jr(i) and Jd(i) being the sets of regular and dummy jobs that can be
assigned to machine i respectively.

Note that constraints (4) and (5) imply that either both jobs r(j) and d(j)
are assigned to machine i E lVh (j) or both jobs are not assigned to machine i.
Thus, model M2 is a valid formulation of P.

A traditional way of finding a solution to an integer programming model is
to first solve the LP-relaxation, and next apply a rounding procedure. Here,
we opt for a different strategy: we investigate the relaxation of model M2 in
duced by deleting constraints (4). We refer to this relaxed problem as the
TUM-relaxation. There are two reasons that motivate the choice to drop the
constraints (4). First of all, the resulting model has a constraint matrix that is
totally unimodular. Even more, we argue below that this relaxation can be com
puted by solving a transportation problem on a network consisting of O(n + m)
nodes. This is not so obvious for the LP-relaxation; indeed we do not know how
to compute the LP-relaxation of a generalized assignment problem using min
cost flow even when the resource requirements are in {I, 2}. Secondly, although
we show below that the bound resulting from the LP-relaxation is stronger than
the bound resulting from the TUM-relaxation, the integrality gap of the LP
relaxation suggests that an algorithm based on the LP-relaxation will not im
prove the ~-performance guarantee that arises from the TUM-relaxation. Sum
marizing, the TUM-relaxation seems easier to compute than the LP-relaxation,
and does not deliver worse results in terms of approximation factor.

We use the following terminology to describe our results.

- Let LPMl and LPM2 denote the linear programming relaxation of formu
lation Ml and M2, respectively, i.e., the model that results when replacing
constraints (3) or (5) by the nonnegativity constraints.

- As stated before we refer to the problem that arises when omitting con
straints (4) from formulation M2 as the TUM-relaxation of M2.

- Let I denote an instance of P, and let VLPM1(I), VLPM2 (I) , VTUM(I) and
o PT(I) denote the corresponding values of the respective relaxations and
the optimal solution. For notational convenience, we will often suppress
the '(I)' part.

- Let xTUM denote an optimal solution to the TUM-relaxation, and let x LP

denote an optimal solution to the LP-relaxation of M2.

Let us first establish that the LP-relaxations of models Ml and M2 coincide.

Lemma 2 VLPM1(I) = VLPM2(I) jar all instances I.

Proof: Take a solution, say y, that is feasible for the LP-relaxation of Ml. We
set

6

• for all j E J, i E Nh (j): Xr(j),i = Yji,

• for all j E J, i E M 2 (j): Xr(j),i = Yji and Xd(j),i = Yji.

Notice that the solution constructed is feasible for LPM2 (by the feasibility of
Y for LPM1) and has the same value.

For the converse, assume that we are given a solution Y that is feasible for
LPM2. We simply set: Xji = Yr(j),i for all j E J, i E M(j). It is not hard to
verify that the resulting x-solution is feasible for LPM1 and has the same value.

D

In the sequel, we use VLP to refer to VLPM1 and VLPM2. Let us now explain
how the TUM-relaxation of M2 can be computed efficiently.

Theorem 3 VTU M can be computed by solving a transportation problem.

Proof: Let the network of a transportation problem be denoted by G = (V1 U

V2 , A). For each job r(j) and for each job d(j) there is a so-called job-node in
V1 . Also, there is a single additional node d E V1 . The supply of each job-node
equals 1, the supply of node d equals 2::::1 bi . For each machine i, there is a so
called machine node in V2, and V2 also contains a node e. For each machine i,
the demand of the corresponding machine-node equals bi and the demand of
node e equals 1V11 - 1. Notice that total supply equals total demand. There
is an arc from each job-node r(j) to each machine-node i E Nh (j) with cost
-Wji; there is an arc from each job-node r(j) to each machine-node i E M 2(j)
with cost -~Wji; there is an arc from each job-node d(j) to each machine-node
i E M 2 (j) with cost -~Wji' Finally, there are arcs from node d to each machine
node i with cost 0, and there is an arc from each job-node to node e with cost
0, and there is an arc (d, e) with cost 0. This completes the description of the
network. The objective of the transportation problem is to minimize cost.

We now argue that a feasible flow in this network corresponds to a feasible
solution to the TUM-relaxation of M2 with the same value and vice versa. Let
x be a solution to the TUM-relaxation of M2. We associate the following flow
with this solution. Each variable Xr(j),i and Xd(j),i corresponds directly to an
arc between a job-node and a machine-node. We set the flow on this arc equal
to the x-variable. Given these flows, we use the arcs that go to node e and
that emanate from node d to satisfy the supply and demand conditions. This is
always possible since each job-node is connected to e, and d is connected to each
machine node. Observe that the value of the resulting flow equals the value of
the solution x.

Consider now any feasible flow. Since each arc between a job-node and
a machine-node corresponds to a variable in the TUM-relaxation of M2, we
simply set the value of this variable equal to the flow on this arc. Notice that
the constructed x-vector satisfies all constraints in M2 and has the same value.
Observe finally that, due to the integrality of an optimal solution to the trans
portation problem, a solution of the TUM-relaxation of M2 exists that satisfies
the integrality constraints (5). D

7

Corollary 4 VTUM can be computed in O(nmlogn + n2Ioln).

This time bound follows from Orlin [13].

Lemma 5 VLP ::::; VTUM.

Proof: We show that a solution that is feasible for the LP-relaxation can be
seen as a flow in the network described in Theorem 3. Then it follows that VTU M

cannot be less than VLp. Consider an LP-solution of M2. Simply copy the value
of each Xr(j),i and Xd(j),i variable as a flow in this network on the appropriate
arc. Observe that the value of this flow equals the value of the LP-solution. D

The following example shows that the LP-relaxation can produce a strictly
better upper bound than the TUM-relaxation. Consider two machines with
b1 = b2 = 2 and two jobs, job 1 with an = 1, a12 = 2, and job 2 with a21 =

2, a22 = 1. We have Wji = 1 for all j E J, i E M. One can easily verify that
OPT = VLP = 2, whereas VTUM = 3. Figure 1 depicts the solution of the
TUM-relaxation.

Figure 1: Example that shows that TUM-relaxation can be worse than LP
relaxation.

Notice however that the gap between VTUM and VLP cannot exceed l This
follows from Theorem 7.

Let us now formulate a lemma that reveals some of the structure that is
present in xTU M. Informally, it shows that xTU M is not only an optimal solution
for instance I, but also for an instance I' that consists of a subset of the jobs
of I and uses machines with a specific fraction of the capacity of the machines
in I. An instance of problem P can be described by its job set J, the machine
subsets M 1 (j) and M2 (j), j E J, the machine capacities bi,i E M, and the
weights Wji. Succinctly put: I = (J, {Mp(j) I j E J,p = 1, 2}, b, w).

To build a new instance I', we consider now a set of jobs J' <;;; J, and we
define, for each i E M, the capacity of machine i as:

b' = '" xTUM , L J' .

JEJ'

Thus the capacity of machine i equals the number of jobs in J' assigned to
machine i in the TUM-relaxation of instance I. Let w' refer to the weight
vector W restricted to jobset J'.

Lemma 6 For any J' <;;; J it is true that x ~u M ,j E J', i E M is an optimal
solution for the TUM-relaxation of I' = (J', {Mp(j)1 j E J',p = 1, 2}, b',w').

Proof: Obviously x~u M, j E J', i E IvI is a feasible solution for the TUM
relaxation of I' since it does not exceed the capacities b' by its construction.

8

Also, if a solution y to the TUM-relaxation of I' existed with a higher value, this
would contradict the optimality of x TU M for I: indeed the solution x];U M, j E

J \ J', i EM, together with y would be feasible to the TUM-relaxation of I.and
would attain a higher value. 0

We need Lemma 6 in the proof of the main result of this section:

Theorem 7 VTUM ::; ~OPT.

Proof: The idea of the proof is to show that a solution to the TUM-relaxation
of M2 can be modified into a feasible solution to M2 without losing too much
weight. Our approach will consist in constructing three feasible solutions to M2,
and we argue that the best of these three solutions has a weight of at least ~
times the weight of the solution to the TUM-relaxation of M2.
Definition: A job j is called split when

• there exist machines h E M1 (j) and i2 E M2 (j) such that X~~{11
xTd(U)M = 1, in case we say that job j is of type 1, or

J ,1,2

• there exist machines i1 E M 2 (j) and i2 E M2(j), i1 of. i2 such that
xT(UJ.)M = xTd(U)M = 1, than we say that job j is of type 2, or r ,1,1 J ,1..2

• there exists a machine i1 E M2 (j) such that x~g{11 = 1, which makes job
j of type 3.

We assume that the solution of the TUM-relaxation has the property that
if d(j) is assigned, then r(j) is assigned as well. Notice that a solution violat
ing this property is easily modified into a solution satisfying this property by
interchanging r(j) and d(j).

Also notice that a job j that is not split satisfies constraints (4); hence,
a solution x TU M featuring no split jobs is a feasible and necessarily optimal
solution to the instance of problem P.
Definition: A machine i is called fractional when there exists a split job j for

h· h TUM 1 TU MI· M w 1C X (0) 0 = or xd(0) 0 = ,z E . r J ;1, J ,1..

Definition: A machine i has a free unit with respect to x when L,jEJ(xr(j),i +
Xd(j),i) ::; bi - 1, i E M.

Consider now the following claim:

Claim: There exist three feasible solutions to M2, denoted by 51,52,53 with
values v(5d, v(52), v(53) respectively, such that

• max{v(51),v(52),v(53)} ~ ~VTUM'

• each fractional machine has a free unit in at least one solution from
{51,52,53}, and

• if all split jobs are of type 2, each fractional machine has a free unit in at
least two solutions from {51, 52, 53}.

9

To prove the claim, we use induction on the number of split jobs. Let k be
the number of split jobs. Consider the case k = 1, and let us refer to the split
job as job s. We use the following definition.
Definition: For each machine i EM, we define

'"' TUM '"' 1 (TUM TUM) W(i) = ~ WjiXr(j),i + ~ "2Wji Xr(j),i + Xd(j),i .

jEh(i)\s jEJ,(i)\s

Thus W(i) represents the weight of the jobs assigned to machine i in the TUM
relaxation, excluding job s, i E M. We distinguish three cases. For each of the
three cases, we construct three, not necessarily different, solutions 51, 52, and
53, that satisfy the above claim.

Case 1: The split job, i.e., job s, is of type 1. We now construct the three
solutions 5 1,52,53, Obviously, for each machine i tt {i1,i2} we simply
copy the assignment of jobs assigned to machine i in the TUM-relaxation
to each of the three solutions. Let us now deal with machines i1 and i 2.
Consider 51: for machines i1 and i2, we copy the assignment of each job to
the machine as suggested by the TUM-relaxation, except that we assign
job s to machine i1' Solution 52 is identical to solution 51. We have:

m

v(51) = v(52) = L W(i) + WS,i 1 '

i=l

Notice that 51 and 52 are feasible solutions since job s takes one unit on
machine i1. For 53, we again copy the assignment of jobs to machine i1
as suggested by the TUM-relaxation, except that we do not assign job s
to machine i1. Consider now machine i2' It must have capacity at least
2, i.e., bi2 ;::: 2, by assumption. Thus, there are two possibilities: i) there
is a free unit of capacity in the TUM-relaxation. Then we simply put job
s on machine i 2 , and copy all other assignments. ii) there is no free unit.
That means there is another (non-split) job present on machine i2, say r.
We assign job s to machine i2 and do not assign job r to machine i2, and
copy all other assignments. In either case we have:

m

v(53) ;::: L W(i) + W S ,i2 - W r ,i2'

i=l

Let us now verify whether the claim is true. First, observe that

1
max{ v(51), v(52), v(53)} ;::: 3 [v(51) + v(52) + v(53)] =

1 m

3[3 L W(i) + 2Ws ,il - Wrh + W S ,i2] =
i=l

10

2 m 1 2
"3[L W(i) + WS,i , + 2"Ws,i2 l = "3 VrUM '

i=l

Notice that the term 2:;:1 W(i) contains W r,i2'

Second, since machine i1 has a free unit with respect to S3, and machine
i2 has a free unit with respect to Sl and S3, it follows that each fractional
machine has a free unit in at least one solution from Sl, S2, S3. Thus the
claim is valid in case job s is of type l.

Case 2: Job s is of type 2. We now construct the three solutions Sl, S2, S3.
Obviously, for each machine i ~ {iI, i2} we simply copy the assignment
of jobs assigned to machine i in the TUM-relaxation to each of the three
solutions. Let us now deal with machines i1 and i2' Observe that we have
bi1 ?: 2 and bi2 ?: 2. For solution Sl, consider first machine i 1 . There
are two possibilities: i) there is a free unit. Then we simply put job s
on machine iI, and copy all other assignments of jobs to machines i1 and
i2 in the TUM-relaxation. ii) there is no free unit. That means there is
another (non-split) job present on machine iI, say r. We assign job s to
machine i1 and do not assign job r to machine iI, while copying all other
assignments. We have:

m

V(Sl) ?: L W(i) + WS,il - Wr,i"
i=l

A similar strategy (leading to the assignment of job s on machine i2) is
employed to construct S2, possibly deleting a non-split job p, arriving at

m

V(S2)?: LW(i) +WS,i2 - wph'
i=l

S3 is constructed by not assigning job s, while copying all the assignments
of other jobs to machines:

m

V(S3) = L W(i).
i=l

Let us now verify whether the claim is true. First, observe that

1
max{v(Sl),V(S2), V (S3)} ?: "3 [V(Sl) + V(S2) + v(S3)l =

1 m

"3 [3 L W(i) + WS,i , + wsh - Wr,il - Wp,i2l =
i=l

m 111 1
L W(i) + "3Ws,i1 + "3 ws .i2 - "3Wr,i1 - "3Wp,i2 ?:
i=l

2 m 1 1 2
"3[LW(i) + "2Ws,i1 + 2"Ws,i2l = "3 VTUM .

i=l

11

Notice that the term 2:::1 W(i) contains Wr,i, and Wp ,i2'

Second, since machine i1 has a free unit with respect to 52 and 53, and
machine i2 has a free unit with respect to 51 and 53, it follows that each
fractional machine has a free unit in at least two solutions from 5 1,52 ,53,
Thus the claim is valid in case job s is of type 2.

Case 3: Job s is of type 3. We now construct the three solutions 5 1,52,53.
Obviously, for each machine i E M \ i1 we simply copy the assignment
of jobs assigned to machine i in the TUM-relaxation to each of the three
solutions. Let us now deal with machine i 1 . Observe that we have bi1 ~ 2.
Let us first construct 51. There are two possibilities for machine i 1: i)
there is a free unit. Then we simply put job s on machine i1, and copy all
other assignments of jobs to machine i1 in the TUM-relaxation. ii) there
is no free unit. That means there is another (non-split) job present on
machine i1, say r. We assign job s to machine i1 and do not assign job r
to machine i1, while copying all other assignments. We have:

m

v(51) ~ L W(i) + WS,il - Wr,i"
i=l

52 is constructed by simply disregarding job s and copying the assignment
of all other jobs assigned to machine i1 in the TUM-relaxation. 53 is
identical to 52. We arrive at:

m

v(52) = v(53) = L W(i).
i=l

Let us now verify whether the claim is true. First, observe that

1
max{ v(51), v(52), v(53)} ~ '3 [v(51) + v(52) + v(53)] =

1 m mIl
'3[3 L W(i) + WS,i, - Wr,i,] = L W(i) + '3 WS ,i, - '3Wr,i, ~

i=l i=l

2 m 1 2
'3[L W(i) + '2Ws,i1] = '3 VTUM .

i=l

Notice that the term 2:::1 W (i) contains Wr,il'

Second, since machine i1 has a free unit with respect two 52 and 53, it
follows that each fractional machine has a free unit in at least one solution
from 5 1,52,53. Thus the claim is valid in case job s is of type 3.

This shows that the claim is true when the solution to the TUM-relaxation
features a single split job. Assuming now (by the induction hypothesis) that
the claim is true when there are k split jobs, let us proceed to argue that the
claim is true for k + 1 split jobs.

Consider a solution that features k + 1 split jobs.

12

Case 1: Suppose that there is a job of type 1, say job s present. Consider
now the instance I' that arises when we delete job s from J and we set
b~l = bi1 - 1, b~2 = bi2 - 1 and b~ = bi for all other i E M \ {iI, i2}. Thus,
I' = (J\s,{M(j)1j E J\s},b'). By Lemma 6, an optimal solution to
the TUM-relaxation of I' is given by x~u M for j E J \ s, i E lVI. Hence,
this solution features k split jobs and hence the claim is valid for instance
I'. Consider machine i2, and let us assume that machine i2 is fractional;
if not, then the arguments from the k = 1 case can be used. From the
claim it follows that in one of the three solutions for I' there is one with
a free unit, say Sp, p E {I, 2, 3}. So, we schedule job s in Sp on machine
i 2 , where it takes two units, which is possible by using the free unit. For
the other two solutions we schedule job s on machine i l . This is possible
since job s takes only one unit on machine i l .

Let us now verify whether the claim is true. First, observe that

1
max{v(Sl(I)),V(S2(I)),V(S3(I))}:::: 3 [v(Sl(I)) +v(S2(I)) +v(S3(I))] =

~[V(Sl(II)) + v(S2(I')) + v(S3(I')) + 2Ws,i1 + ws,i21 =

2 (') 2 1 3VTUM I + 3wsh + 3wsh =

~[VTUM(II) + WS,il + ~WS'i2] = ~VTUM(I).

Second, observe that machine i l now has a free unit with respect to Sp and
machine i2 has a free unit with respect to to the other two solutions. It
follows that each fractional machine has a free unit in at least one solution
from Sl,S2,S3' Thus the claim is valid in case job s is of type 1.

Case 2: Suppose that there is a job of type 3, say job s present. Consider now
the instance I' that arises when we delete job s from J and we set b~l =
bi1 -1, and b~ = bi for all i -=I- il' Thus, I' = (J \ s, {M(j)lj E J \ s}, b').
By Lemma 6, an optimal solution to the TUM-relaxation of I' is given
by x~u M for j E J \ s, i EM. Hence, this solution features k split jobs
and hence the claim is valid for instance I'. Consider machine iI, and let
us assume that machine i l is fractional; if not, then the arguments from
the k = 1 case can be used. From the claim it follows that in one of the
three solutions for I' there is one with a free unit, say Sp, p E {I, 2, 3}.
So, we schedule job s in Sp on machine iI, where it takes two units, which
is possible by using the free unit. For the other two solutions we do not
schedule job s.

Let us now verifY whether the claim is true. First, observe that

1
max{v(Sl(I)),V(S2(I)),V(S3(I))}:::: 3 [V(SI (I)) +v(S2(I)) +v(S3(I))] =

1
3 [v(Sl(I')) + v(S2(I')) + v(S3(I')) + Ws,iJ =

13

2 (') 1 -VTUM I + -w . = 3 3 S,t1

~[VTUM(II) + ~WS'i1] = ~VTUJ\.dI).

Second, observe that machine i1 has a free unit in at least one solution
from 5 1,52 , 5 s . Thus the claim is valid in case job s is of type 1.

Case 3: Suppose that there is no job of type 1 and no job of type 3. Thus
all split jobs are of type 2. Take some split job, say job s. Consider
now the instance I' that arises when we delete job s from J and we set
b~, = bi1 -1, b~2 = bi2 -1 and b~ = bi for all other i E M \ h,i2}' Thus,
I' = (J \ s, {M (j) Ij E J \ s}, b'). By Lemma 6, an optimal solution to
the TUM-relaxation of I' is given by xJ;UM for j E J \ s, i E M. Hence,
this solution features k split jobs and hence the claim is valid for instance
I'. Consider now machines i1 and i2; from the claim it follows that in
two of the three solutions for these machines, there is a free unit. So,
when considering job s, which takes two units on machine i1 as well as on
machine i2, we schedule it in some solution on machine i1 and we schedule
it in another solution on machine i2' Since there are two solutions with a
free unit for i1 and i2, this is always possible. For the remaining solution
we simply do not schedule job s.

Let us now verify whether the claim is true. First, observe that

1
max{v(51(I)),v(52(I)),v(5s(I))} ~ 3[v(51 (I)) + V(52 (I)) +v(5s(I))] =

~[v(51(II)) + v(52(I')) + v(5s(I')) + WS,i1 + WS,i2] =

2 (') 1 1 3VTUM I + 3Ws,i, + 3Ws,i2 =

2 I 1 1 2
3 [VTUM(I) + 2Ws,i, + 2Ws,i2] = 3VTUM(I).

Second, observe that machine i1 as well as machine i2 each have a free
unit in at least two solution from 5 1,52 , 5s . Thus the claim is valid in
case all split jobs are of type 2.

This completes the proof. o

Although the proof above does not contain an explicit description of an
algorithm, it is straightforward to build, given a solution to the TUM-relaxation,
the three solutions as described, and to obtain a solution with a weight not less
than ~ times VTU M .

The following instance shows that the result is tight, even for P12: we have
3 jobs with a1 = a2 = 1 and as=2, and we have two machines with b1 = b2 = 2
and M (j) = M for all j. An optimal solution to the relaxation is as follows:
Xr(l),l = X r (2),2 = Xr(S),l = Xd(S),2 = 1 with a value of 3. When we follow the

14

construction from the proof of Theorem 7 we build three solutions such that in
each solution exactly two jobs are assigned.

Finally, for completeness we state the following corollary:

Corollary 8 OPT::; VLP ::; VTUM ::; ~OPT.

Moreover, each of these inequalities can be tight as well as strict as witnessed
by the examples throughout the paper.

4 The special case P12: half-integrality and weak
persistency

In this section we concentrate on the special case where the resource requirement
of a job is independent of the machine. Thus, a job has size 1 or it has size 2
no matter to what machine the job is assigned. In Section 4.1 we show that the
LP-formulations M1 and M2 yield half-integral solutions for this special case.
Section 4.2 shows the following persistency property for the unweighted version
of P12: when a job of size 1 is assigned in the LP-relaxation, it is also assigned
in an optimal solution, but not necessarily on the same machine.

We use the following terminology:

- let J = J 1 U h such that J 1 is the set of jobs of size 1, referred to as the
small jobs, and J2 the set of jobs of size 2, referred to as the large jobs.

- a vertex or a vector x is called half-integral if and only if the value of each
of its component Xi is in {D,~, I}.

- a polyhedron Q is called half-integral when each extreme vertex of Q is
half-integral.

4.1 Half-integrality of P12

First, we show that for P12 the LP-relaxation and the TUM-relaxation of M2
coincide.

Lemma 9 For P12 we have VLP = VTUM.

Proof: We show that for P12 a solution to the TUM-relaxation can be modified
into a feasible solution to the LP-relaxation with the same weight, implying
VTUM ::; VLp· Together with Lemma 5 the lemma then follows.

Consider the network constructed in the proof of Theorem 3. In the case of
P12, either job j has size 1 which implies that d(j) is not created, or job j has
size 2 which implies that M(j) = lVh(j). In the former case, constraints (4)
are fulfilled for this job, in the latter case, consider a machine i E M2 (j) with

TUM TUM - 1 UT t LP - LP - 1 th b t' fy' t' t Xr(j),i + Xd(j),i - . vve se Xr(j),i - Xd(j),i - 2' ere y sa IS mg cons ram s
(4). Notice that this solution has the same weight. 0

This leads to an interesting corollary, namely that LPM2, and by the proof
of Lemma 2, LPMl as well, is half-integral for the special case of P12.

15

Corollary 10 LPMl as well as LPM2 are half-integral.

Notice further that the proof of Lemma 9 implies that in the LP-relaxation
of P12, as constructed as given above, the jobs of size 1 are either assigned to
some machine with value 1, or they are not assigned at all. We will use this
property in the next section.

Finally, although one could envision that the property of half-integrality
holds even for problem P, the following example shows that this is not true.
Consider eight machines with capacity two and thirteen jobs j1,' .. , j13. The
first eight jobs ji, i = 1, ... ,8 can only be scheduled on machine mi and have
a resource requirement of one. Jobs j9,'" ,j12 can each be scheduled on two
machines; job j9 has resource requirement two on machine m1 and one on ma
chine m2; the jobs jlO, ... ,h2 have the same structure on machines Tn3 and m4,
m5 and m6, and m7 and mg, respectively. Finally job j13 can be scheduled on
m2, m4, m6, and mg and has a resource requirement of two on each machine.
Figure 2 shows the only way to schedule all jobs in time which leads to splitting
job j13 into four parts.

Figure 2: Counterexample that shows that half-integrality does not hold for P.

Corollary 11 For P12: x LP can be found by solving a transportation problem.

Proof: This follows from Lemma 9 and Theorem 3. D

The following instance shows that there exists an instance of P12 that satisfies
the requirements of Theorem 1, i.e., unit weights, exactly two machines per job
and machines with capacity 2, for which the value of the relaxation is arbitrarily
close to ~ times the value of an optimal solution.

Figure 3: Example of tightness of Theorem 7

Instance. We have an instance with k machines, k + 2 small jobs and k - 2
large jobs. We number the small jobs from 1 to k + 2 and the large jobs from
k + 3 to 2k. We have M(j) = {1,2} for j = 1,2,3,4, M(j) = {2,j - 2} for
j = 5, ... ,k + 2, M(j) = {j - k,j - k + I} for j = k + 3, ... ,2k -1, and
M(2k) = {k,3}. An example for k = 5 is given in Figure 3. The value of an
optimal solution is k + 2, since machines 3, ... , k each cannot give more than 1,
whereas the value of the relaxation equals ~ . (k - 2) + 4 = ~k + 1.

4.2 Persistency

The phenomenon that variables having integral values in a relaxation of the
problem attain this same integral value in an optimal solution is called persis
tency. It is a relatively rare phenomenon in integer programming; a well-known

16

example of it is the vertex-packing polytope (Nemhauser and 'ITotter [12]; see
also Adams et al. [1] and the references therein). We show here that the un
weighted version of P12, i.e., with Wji = 1 for all j E J, i E M, satisfies an
interesting form of weak persistency. We first prove the following two lemmas.

Lemma 12 FaT" each optimal solution to the LP-T"elaxation, theT"e is an optimal
solution to P12 such that each job j E J1 that is assigned in the optimal solution
to the LP-T"elaxation, i.e., faT" which xff{ = 1 faT" some i E M(j), is also assigned
in that optimal solution.

Proof: By contradiction. Suppose that no optimal solution assigns all small
jobs that are assigned in x LP . Consider now an optimal solution to P12 that
has the following property: it has a maximum number of small jobs on the same
machines as in x LP . By assumption, there exists a small job, say job j E J1,

that is assigned in x LP and not present in this optimal solution. Let i be the
machine to which j is assigned in x LP . Obviously, machine i has no free capacity
in the optimal solution, otherwise we could have improved that solution. Also,
at least one of the jobs that are assigned to machine i in the optimal solution,
say job j', was not present at that machine in x LP . Thus, replacing j' by j
increases the number of small jobs that have the same machine both in the
optimal solution and in x LP , thereby violating the property. It follows that
there exists an optimal solution that assigns each small job that is assigned in
x LP . 0

Lemma 13 FaT" each optimal solution to the LP-T"elaxation, theT"e is an optimal
solution to P12 such that each job j E h that is not assigned in the optimal
solution to the LP-T"elaxation, i.e., faT" which Xji = 0 faT" each i E M(j), is also
not assigned in that optimal solution.

Proof: By contradiction. Suppose that in each optimal solution to P12 a
nonempty set of small jobs is assigned that is not assigned in x LP . Let SOPT

be an optimal solution to P12 with a minimal number of such jobs. Let j E J1

be a small job that is assigned in SOPT, and is not assigned in x LP . It follows
that the IM(j)1 machines it is connected to, each have bi small jobs in x LP ,

otherwise we can improve the relaxation. Moreover, these EiEM(j) bi small jobs

are connected to machines that each must have bi small jobs in x LP , otherwise
we can improve the relaxation. Proceeding along these lines it follows that we
can identifY in x LP a set of small jobs, say J', that are connected to a set of
machines, say NI'. The sets J' and M' have the following properties:

- each machine in M' has bi small jobs from J',

- all jobs from J' are assigned in x LP ,

- all connections of jobs in J' are to machines in M', i.e., UjEJIM(j) = M'.

Now, consider SOPT. By assumption, in SOPT job j is assigned to a machine in
M'. But that implies that some small job from J' that was assigned in x LP has

17

not been assigned in this optimal solution. Let us now construct an alternative
optimal solution to P12. This solution is identical to SOPT, except for each
machine i E NI', it uses x LP . Note that this is possible since no job from J'
is connected to a machine outside M'. As the constructed solution violates the
minimality assumption of SOPT, we arrive at a contradiction. 0

Now we are ready to formulate the persistency property that is valid for the
unweighted case of P12.

Theorem 14 For each solution x LP there exists a unique solution xOPT , such
that for each j E J 1 ,'

xyt = 0 ViEM(j) ¢=} x~PT = 0 ViEM(j).

Proof: This can be shown using the arguments from Lemmas 12 and 13. 0

Note that Theorem 14 has the potential to reduce the size of the instances that
we need to solve. Indeed, any small job that was not assigned in the relaxation
can be discarded from consideration.

Finally, we state the following property of problem P12.

Lemma 15 There exists an optimal solution to P12 that assigns a maximum
number of small jobs.

Proof: The proof runs along the same lines as the proofs of Lemmas 12 and 13.
The idea is to assume that no solution exists in which the maximum number of
small jobs is assigned. Then, compare an optimal solution 7f* with a solution
with a maximum number of small jobs 7f', and take a small job that is assigned in
7f' and not in 7f*. Then, using the same ideas as used in the proofs of Lemmas 12
and 13, one can show that this job can be assigned in the optimal solution
without decreasing the total number of jobs assigned. By doing this iteratively,
7f* finally contains the same number of small jobs as 7f', which contradicts the
assumption and proves the lemma. 0

5 Conclusion

This paper shows some properties of a generalized assignment problem where the
resource requirements are either 1 or 2. We gave two formulations ofthe problem
and showed that the LP-relaxations of the models coincide. Furthermore, we
showed that for one of the models there exists a relaxation that leads to an
integer program with a totally unimodular constraint matrix, and we show that
this relaxation can be solved by a solving transportation problem. This approach
leads to a ~-approximation algorithm. For a special case, we showed that the
LP-relaxation is half-integral and we derived a weak persistency property.

18

References

[1] Adams, W.P., J. Bowers Lassiter, and H.D. Sherali (1998), Persistency in 0-1
polynomial programming, Mathematics of Operations Research 23, 359-389.

[2] Aerts, J. (2002), Random redundant storage for video on demand, Ph.D. thesis of
Eindhoven University of Technology, the Netherlands.

[3] Aerts, J., J. Korst, F. Spieksma (2003), Approximation of a retrieval problem for
parallel disks, in: Proceedings of the 5th Conference on Algorithms and Complex
ity (CIAC 2003), Lecture Notes in Computer Science 2653, 178-188.

[4] Aerts, J., J. Korst, F. Spieksma, W. Verhaegh, and G. Woeginger (2002), Load
balancing in disk arrays: complexity of retrieval problems, IEEE Transactions on
Computers 52, 1210-1214.

[5] Aerts, J., J. Karst, and W. Verhaegh (2001), Load balancing for redundant storage
strategies: Multiprocessor scheduling with machine eligibility, Journal of Schedul
ing 4, 245-257.

[6] Appa, G. and B. Kotnyek (2002), A bidirected generalisation of network matrices,
Manuscript.

[7] Chudak, F. and D.S. Hochbaum, (1999), A half-integral linear programming relax
ation for scheduling precedence-constrained jobs on a single machine, Operations
Research Letters 25, 199-204.

[8] Dawande, M., J. Kalagnanam, P. Keskinocak, F.S. Salman, and R. Ravi (2000),
Approximation algorithms for the multiple knapsack problem with assignment re
strictions, Journal of Combinatorial Optimization 4, 171-186.

[9] De Farias, I.R. and G.L. Nemhauser (2001), A family of inequalities for the gen
eralized assignment polytope, Operations Research Letters 29, 49-55.

[10] Gemmell, D.J. (1993), Multimedia network file servers: Multi-channel delay sen
sitive data retrieval, Proceedings ACM Multimedia, 243-250.

[11] Hochbaum, D.S. (2002), Solving integer programs over monotone inequalities in
three variables: A framework for half integrality and good approximations, Euro
pean Journal of Operational Research 140, 291-321.

[12] Nemhauser, G.L. and L.E. Trotter, Jr. (1975), Vertex packings: structural prop
erties and algorithms, Mathematical Programming 8, 232-248.

[13] Orlin, J.B. (1993), A faster strongly polynomial algorithm for the minimum cost
flow problem, Operations Research 41, 338-350.

[14] Ralphs, T.K. (1993), On the mixed chinese postman problem, Operations Research
Letters 14, 123-127.

[15] Ruemmler, C. and J. Wilkes (1994), An introduction to disk drive modeling, IEEE
Computer 27, 17-28.

[16] Sanders, P. (2003), Asynchronous scheduling for redundant disk arrays, IEEE
Transactions on Computers 52, pp. 1170-1184.

[17] Sanders, P., S. Egner and J. Korst (2003), Fast concurrent access to parallel disks,
Algoritmica 35, 21-55.

[18] Savelsbergh, M.W.P. (1997), A branch-and-price algorithm for the generalized
assignment problem, Operations Research 45, 831-841.

19

[19] Shmoys, D.B. and E. Tardos (1993), An approximation algorithm for the gener
alized assignment problem, Mathematical Programming 62, 461-474.

[20] Vitter, J.S. (2001), External memory algorithms and data structures: Dealing
with massive data, ACM Computing Surveys 33, 1-75.

20

