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Abstract 

The correlation order, which is defined as a partial order between 

bivariate distributions with equal marginals, is shown to be a help­

full tool for deriving results concerning the riskiness of portfolios with 

pairwise dependencies. Given the distribution functions of the individ­

ual risks, it is investigated how changing the dependency assumption 

influences the stop-loss premiums of such portfolios. 

Keywords: dependent risks, bivariate distributions, correlation order, 

stop-loss order. 

1 Introduction 

Consider the individual risk theory model with the total claims of the port­

folio during some reference period (e.g. one year) given by 

n 

S = LXi 
i:=:l 
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where Xi is the claim amount caused by policy i (i = 1, 2, ... , n) . In 

the sequel we will always assume that the individual claim amounts Xi are 

nonnegative random variables and that the distribution functions Fi of Xi 

are gIven. 

Usually, it is assumed that the risks Xi are mutually independent be­

cause models without this restriction turn out to be less manageable. In 

this paper we will derive results concerning the aggregate claims 5 if the 

assumption of mutually independence is relaxed. More precisely, we will as­

sume that the portfolio contains a number of couples (e.g. wife and husband) 

with non-independent risks. Therefore, we will rearrange and rewrite (1) as 

m n 

L X· , (2) 
i=l i=2m+l 

with m the number of coupled risks. For any and J (i,j = 
1, 2, ... ,n; i =I j) we assume that Xi and Xj are independent risks, ex­

cept if they are members ofthe same couple (X2k- b X 2k ), (k = 1,2, ... , m). 
The class of all multivariate random variables (Xl, ... ,Xn) with given 

marginals Fi of Xi and with the pairwise dependency structure as ex­

plained above, will be denoted by R(Fl , ... , Fn) . 

It is clear that for any (Xl' ... ' Xn) belonging to R(FI, ... , Fn) , the 

riskiness of the aggregate claims 5 = Xl + ... + Xn will be strongly 

dependent on the way of dependency between the members of couples. 

In order to compare the riskiness of the aggregate claims of different 

elements of R(Fl , ... , Fn) , we will use the stop-loss order. 

Definition 1 A risk 51 is said to precede a risk 52 in stop-loss order, 

written 51 <5.s1 52 , if their stop-loss premiums are ordered uniformly: 

for all retentions d > 0 . 
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Let (Xl"'" Xn) and (Yl , ... , Yn) be two elements of R(Fl , ... , Fn) 
and denote their respective sums by 

m n 

X· t 
i=l i=2m+l 

and 
m n 

52 = L (1'2i-l + Y2;) + L 
i=l i=2m+l 

We want to find ordering relations between the corresponding couples of 51 

and 52 which imply a stop-loss order for 51 and 52. More precisely, we 

are looking for a partial order -::;'ord between bivariate distributed random 

variables which has the following property: 

(k 1,2, ... ,m) (3) 

implies 

(4) 

A well-known property of stop-loss ordering is that it is preserved under 

convolution of independent risks, see e.g. Goovaerts et al.(1990). Hence, a 

sufficient condition for (4) to be true is 

(k = 1,2, ... ,m) (5) 

So it follows immediately that we can restrict ourselves to the following 

problem: Find a partial order -::;'ord between bivariate distributed random 

variables (Xl, X 2 ) and (Yl , Y2 ) with the same marginal distributions, for 

which the following property holds: 

(6) 

implies 

(7) 

It is clear that an ordering -::;'ord for which (6) implies (7) will immediately 

lead to a solution of the problem described by (3) and (4). 
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2 A partial order for bivariate distributions 

2.1 Correlation order 

Let R( Fl j F 2 ) be the class of all bivariate distri bu ted random variables with 

given marginals FI and F 2 . For any (Xl, X 2 ) C R(FI' F 2 ) we have 

We also introduce the following notation for the bivariate distribution func­

tion: 

In the sequel we will always restrict ourselves to the case of non-negative 

risks. Further, if we use stop-loss premiums or covariances, we will always 

silently assume that they are well-defined. 

Now let (Xl, X 2 ) and (Yl, Y;) be two elements of R(FI' F2). In order 

to investigate an order between these bivariate distributed random variables 

which implies stop-loss order for Xl + X 2 and Yl + Y2, we could start by 

comparing COV(Xl' X 2) and COV(YI' Y;). At first sight, one could consider 

the following inequality 

(8) 

and investigate wether this implies 

(9) 

Although it is customary to compute covariances in relation with dependency 

considerations, one number alone cannot reveal the nature of dependency 

adequately, and hence (8) will not imply (9) in general, a counterexample is 

given in Dhaene et al.(1995). However, in the special case that FI and F2 

are two-point distributions with zero and some positive value as mass points, 

(8) and (9) are equivalent, see also Dhaene et al.(1995). 
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Instead of comparing Cov(XI, X 2) and Cov(Yi, Y2) one could compare 

Cov(f(Xl ), g(X2)) with Cov(f(Yd, g(Y2)) for all non-decreasing functions 

f and g, see e.g. Barlow et al.(1975). 

Definition 2 Let (Xl, X 2) and (Yi, Y2) be elements of R(F1' F2). Then 

we say that (Xl, X 2) is less correlated than (Yi, Y2) , written (Xl, X 2) ~c 

(Yi, Y2 ) , if 

(10) 

for all non-decreasing functions f and 9 for which the co variances exist. 

The correlation-order is a partial order over joint distributions in R(Fl' F2) 

and expresses the idea that two random variables with given marginals are 

more 'positively dependent' or 'positively correlated' when they have some 

joint distribution than some other one. 

2.2 An alternative definition 

In this subsection we will derive an alternative definition for the correlation 

order introduced above. First, we will recall and prove a lemma contained 

in Hoeffding(1940), which we will need for the derivation of the alternative 

definition. The proof will be repeated here because it is instructive for what 

follows. 

Lemma 1 For any (Xl, X 2) E R(Fl' F2) we have 

COV(Xl' X 2) = 10= 1o=(Fx1 ,X2(U, v) - Fl (u)F2(v))dudv (11) 

Proof: Let 1 denote the indicator function, then we have 

x - Z = 10= {1(z ~ u) - 1(x ~ u)}du 

Hence, for Xl, X2, Zl, Z2 :2: 0 we find 

(Xl - Zl)(X2 - Z2) = 

(X, Z > 0) 

10= 10= {I(ZI ~ U)1(Z2 ~ v) + 1(Xl ~ U)1(X2 ~ v) 

(12) 

- 1(Zl ~ U)1(X2 ~ v) - 1(Xl ~ U)1(Z2 ~ v)} dudv (13) 
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Now let (Xl, X 2) and (Zl' Z2) be independent identically distributed pairs, 

then we have 

so that we find (11) from (13). o 

Now we are able to state an equivalent definition for the correlation order 

considered in definition 2. 

Theorem 1 Let (Xl, X 2) and (Yl, Y2) be elements of R(Fl' F2) . Then 

the following statments are equivalent: 

Proof: Assume that (a) holds and choose f(u) = I(u > Xl) and g(u) 
I( u > X2)' Then we find from (10) that 

or equivalently 

from which (b) can easily be derived. 

Now, suppose that (b) holds. It follows immediately that, for non­

decreasing functions f and g, 

for all Xl, X2 2: 0, so that (a) follows as an immediate consequence of Lemma 

1 and Definition 1. 0 

Statement (b) in Theorem 1 asserts roughly that the probability that 

Xl and X 2 both realize 'small' values is not greater than the probability 
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that Y'i and Y2 both realize 'equally small' values, suggesting that Y'i and 

1'; are more positively interdependent than Xl and X 2. The statement (b) 

is equivalent with each of the following statements, each understood to be 

valid for all Xl and X2: 

(c) Prob (Xl < Xl, X 2 > X2) 2 Prob (Y'i ::; Xl, Y2 > X2) 

(d) Prob (Xl > Xl, X 2 ::; X2) > Prob (Y'i > Xl, Y2 < X2) 

(e) Prob (Xl > Xl, X 2 > X2) < Prob (YI > Xl, Y2 > X2) 

Each of these statements can be interpreted similarly in terms of 'more pos­

itively interdependence' of Y'i and Y2 . Hence, the equivalence of (a) and 

(b) in Theorem 1 has some intuitive interpretation. 

The partial order between bivariate random variables which is defined 

by requiring equal marginals and by requiring statement (b) in Theorem 1 

to be true, was introduced by Cambanis et al.(1976), and in the economic 

literature by Epstein et al.(1980). For economic applications, see also Aboudi 

et al.(1993) and Aboudi et al.(1995). 

2.3 Correlation order and stop-loss order 

In this subsection we will prove that the correlation order between bivariate 

distributions implies stop-loss order between the distributions of their sums. 

Lemma 2 For any (Xl, X 2) E R(FI' F2) we have 

E(XI + X 2 - d)+ = E(XI) + E(X2) - d + fad FX1 ,X2 (X, d - x)dx 

Proof: We have that 

For non-negative real numbers Xl and X2 the following equality holds 

(d - Xl - X2)+ = fad I(xI ::; X, X2 ::; d - X) dx 

7 



so that 

which proves the lemma. o 

Now we are able to state the following result. 
, 

Theorem 2 Let (Xl, X 2) and (Yi, Y2) be two elements of R(FI' F2)' Then 

implies 

Proof: The proof follows immediately from Theorem 1 and Lemma 2. 0 

From Theorem 2 we conclude that the correlation order is a usefull tool 

for comparing the stop-loss premiums of sums of two non-independent risks 

with equal marginals. 

3 Riskiest and safest dependency between 

two risks 

Consider again the class R( FI , F2 ) of all bivariate distributed random vari­

ables with given marginals FI and F2 respectively. For every (Xl, X 2) and 

(Yi, Y2 ) E R( F I , F2 ) we will compare their respective riskiness by comparing 

the stop-loss premiums of Xl + X 2 and Yi + Y2 . More precisely, we will say 

that (X I, X 2) is less risky than (Yi, Y2 ) if 

In this section we will look for the riskiest and the safest elements of R(FI' F2)' 

Use will be made of the following well-known result which is due to Frechet(1951). 
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max [FI(XI) + F2(X2) - 1; 0] :::; FX1 ,X2(XI 1 X2) :::; min [FI(xd, F2(X2)] 
(14) 

The upper and lower bounds are themselves bivariate distributions with marginals 

FI and F2 respectively. 

Now we can state the following result concerning the riskiest and the safest 

element of R(FIl F2). 

Theorem 3 Let (YI1 1';) and (Zll Z2) be the elements of R(FIl F2) with 

distribution functions given by 

and 

FZ1 ,Z2(XI, X2) = min [FI(XI), F2(X2)] 

respectively. Then for any (Xl, X 2) E R(FI' F2) we have that 

Proof: The inequalities follow immediately from Theorems 1 and 2 and from 

Lemma 3. o 

From Theorem 3 we can conclude that the random variables (Yi, Y2 ) and 

(Zl' Z2) are the safest and the riskiest element of R( Fll F2) respectively. 

Let us now look at the special case that the two marginal distributions 

are equal. From Theorem 3, we find that the most risky element in R(F, F) 

is (Zl' Z2) with 

which leads to 

{ 
F(x) if X < d/2 
F (d - x) if x > d / 2 

9 
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From Lemma 2 we find 

E(ZI + Z2 - d)+ = E(ZI) + E(Z2) - d + rd
/
2 F(x)dx + rd F(d - x)dx 

Jo Jd/2 

rd/ 2 
E(Zd + E(Z2) - 2 Jo (1 - F(x))dx 

2 E(ZI - d/2)+ 

so that we find the following corollary to Theorem 3. 

Corrolary 1 For any (Xl, X 2 ) E R(F, F) we have that 

Furthermore) the upperbound is the stop-loss premium of Zl + Z2 with re­

tention d where (Zl' Z2) E R(F, F) with distribution function (15). 

Now assume that F is an exponential distribution with parameter a > 0, 

1.e. 

F(x) = 1 - e-ax x > 0 

Then we obtain from Corollary 1 that for any (Xl, X 2 ) E R(F, F), we have 

100 2 
E (Xl + X 2 - d)+::; 2 (1 - F(x)) dx = - e- ad/ 2 

d/2 a 
(16) 

This upperbound for the exponential case can be found in Heilmann(19S6). 

He derived this result by using some techniques described in Meilijson et 

al.(1979). Heilmann also considers the riskiest element in R(FI' F2 ) where 

FI and F2 are exponential distributions with different parameters. This result 

can also be found from our Lemma 2 and Theorem 3. 

4 Positive dependency between risks 

In a great many situation, certain insured risks tend to act similarly. For 

instance, in group life insurance the remaining life-times of a husband and his 
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wife can be shown to possess some "positive dependency". Several concepts of 

bivariate positive dependency have appeared in the mathematical literature, 

see Tong(1980) for a review, for actuarial applications see Norberg(1989) and 

Kling(1993). We will restrict ourselves to positive quadrant dependency. 

Definition 3 The random variables Xl and X 2 are said to be positively 

quadrant dependent, written PQD(XI' X 2 ), if 

It is clear that PQD(X1 , "'Y2) is equivalent VJith saying that "-Y1 and 1Y2 are 

more correlated (in the sense of Definition 2) than if they were independent. 

Positive quadrant dependency can be defined in terms of covariances, as 

is shown in the following lemma, see also Epstein et al. (1980). 

Lemma 4 Let Xl and X 2 be two random variables. Then the following 

statements are equivalent: 

(b) Cov(J(XI ), g(X2 )) ~ 0 for all non-decreasing real functions f and g 

for which the covariance exists 

Proof: The result follows immediately from Theorem 1 with (Y1 , Y2 ) a bi­

variate random variable with the same marginals as (Xl, X 2 ) and where YI 

and Y2 are mutually independent. o 

Remark that PQD(XI' X 2 ) implies that COV(XI' X 2 ) ~ O. Equality 

only holds if Xl and X 2 are independent. 

As is shown in the following theorem, the notion of positive quadrant 

dependency can be used for considering the effect of the independence as­

sumption, when the risks are positively dependent actually. 
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Theorem 4 Let (Xl, X 2 ) and (Yrd , Y2ind) be two elements of R(Fl' F2 ) 

with PQD(X1 , X 2 ) and where y1ind and Y2ind are mutually independent. 

Then 

Proof: The result follows immediately from Theorems 1 and 2. o 
Theorem 4 states that when the marginal distributions are given, and 

when PQD(X1 , X 2 ), then the independence assumption will always under­

estimate the actual stop-loss premiums. 

Let us now consider the special case that Fi is a two-point distribu­

tion in 0 and Qi > 0 (i = 1, 2). For any (Xl, X 2 ) E R(Fl' F2 ) with 

This inequality can be transformed into 

0) Pr(X2 0) 

from which we find 

We can conclude that in this special case PQD(Xl' X 2 ) is equivalent with 

COV(Xl' X 2 ) ::::: o. 
From Theorem 4 we find that when the marginal distributions Fi are given 

two-point distributions in 0 and Qi > 0 (i = 1, 2) and when COV(Xl' X 2 ) ::::: 

0, making the independence assumption will underestimate the actual stop­

loss premiums. This result can also be found in Dhaene et al.(1995). 

5 Concluding remarks 

As stipulated in Section 1 the results that we have derived for two risks can 

also be used for considering the riskiness of portfolios where the only non­

independent risks can be classified into couples. Several theorems, together 
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with the stop-loss preservation property for convolutions of independent risks, 

immediately lead to statements about the stop-loss premiums of such port­

folios. 

Take Theorem 5 as an example. Consider a portfolio with given distribu­

tion functions of the individual risks where the only non-independent risks 

appear in couples and where the risks of each couple are positive quadrant 

dependent. Then we find from Theorem 5 that taking the independence 

assumption will always lead to underestimated values for the stop-loss pre­

miums of the portfolio under consideration. 

Finally, we remark that we have only considered bivariate dependencies in 

this paper. The special, but important bivariate case will often be sufficient to 

describe dependencies in portfolios but it also provides a theoretical stepping 

stone towards the concept of dependence in the multivariate case. Some 

notions of dependence in the multivariate case can be found in Barlow et 

al.(1975). One of the notions of multivariate dependency which is often used 

in actuarial science is the exchangeability of risks, see e.g. Jewell(1984). It is 

remarkable that the usefulness of other notions of multivariate dependency 

has hardly been considered in the actuarial literature. 
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