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Abstract

In this paper it is studied how observations in the training sample affect the misclas-

sification probability of a quadratic discriminant rule. An approach based on partial

influence functions is followed. It allows to quantify the effect of observations in the

training sample on the performance of the associated classification rule. Focus is on

the effect of outliers on the misclassification rate, merely than on the estimates of

the parameters of the quadratic discriminant rule. The expression for the partial in-

fluence function is then used to construct a diagnostic tool for detecting influential

observations. Applications on real data sets are provided.
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1 Introduction

In discriminant analysis one observes two groups of multivariate observations, forming to-

gether the training sample. For the data in this training sample, it is known to which group

they belong. On the basis of the training sample a discriminant function Q will be con-

structed. Such a rule is used afterwards to classify new observations, for which the group

membership is unknown, into one of the two groups. Data are generated by two different

distributions, having densities f1(x) and f2(x). The higher the value of Q the more likely

the new observation has been generated by the first distribution. Taking the log-ratio of the

densities yields

Q(x) = log
f1(x)

f2(x)
.

For f1 a normal density with mean µ1 and covariance matrix Σ2, and for f2 another normal

density with parameters µ2 and Σ2, one gets

Q(x) =
1

2

{
(x − µ2)

tΣ−1
2 (x − µ2) − (x − µ1)

tΣ−1
1 (x − µ1)

}
+

1

2
log

( |Σ2|
|Σ1|

)
. (1.1)

Here, |Σ| stands for the determinant of a square matrix Σ. The above equation can be

written as a quadratic form

Q(x) = xtAx + btx + c, (1.2)

where

A =
1

2
(Σ−1

2 − Σ−1
1 ) (1.3)

b = Σ−1
1 µ1 − Σ−1

2 µ2 (1.4)

c =
1

2
log

( |Σ2|
|Σ1|

)
+

1

2
(µt

2Σ
−1
2 µ2 − µt

1Σ
−1
1 µ1). (1.5)

The function Q(x) is called the quadratic discriminant function. Although it has been

derived from normal densities it can also be applied as such without making distributional

assumptions.

Future observations will now be classified according to the following discriminant rule: if

Q(x) > τ , where τ is a selected cut-off value, then assign x to the first group. On the other

hand if Q(x) < τ , then assign x to the second group. Now let π1 be the prior probability

that an observation to classify will be generated by the first distribution, and set π2 = 1−π2.

For normal source distributions it is known that the optimal discriminant rule, in the sense

1



of minimizing the expected probability of misclassification, is given by the above quadratic

rule with τ = log(π2/π1), e.g. Johnson and Wichern (2002, Chapter 11). In practice, the

prior probabilities π1 and π2 are often unknown and one uses τ = 0.

The discriminant function (1.1) still depends on the unknown population quantities

µ1, µ2, Σ1 and Σ2, and needs to be estimated from the training sample. So let x1, . . . , xn1 be

a sample of p-variate observations coming from the first distribution H0
1 and xn1+1, . . . , xn

a second sample drawn from H0
2 . These samples together constitute the training sample.

An observation in the training sample will influence the sample estimates of location and

covariance, and hence the discriminant rule. In Quadratic Discriminant Analysis (QDA) the

primary interest is not in knowing or interpreting the parameter values in (1.2). The aim is

to use QDA for classification purposes. Focus in this paper is on how observations belonging

to the training sample affect the total probability of misclassification, and this effect will be

quantified by the influence function. Influence functions in the multi-sample setting were

already considered by several authors, e.g. Fung (1992,1996b). In this paper, the formalism

of partial influence functions (Pires and Branco, 2002) as an extension of the traditional

influence function concept to the multi-sample setting will be followed.

In the case of equal covariance matrices Σ1 = Σ2 = Σ the linear discriminant rule of

Fisher results as a special case of (1.1):

L(x) = (µ1 − µ2)
tΣ−1(x − µ1 + µ2

2
). (1.6)

Influence analysis for Linear Discriminant Analysis (LDA) has been studied by Campbell

(1978), Critchley and Vitiello (1991) and Fung (1992, 1995a). The quadratic case seems to

be much harder. Some numerical experiments have been conducted to assess the influence

of outliers in the training sample on QDA (e.g. Lachenbruch, 1979), while Fung (1996a)

proposes several influence measures based on the leave-one-out approach. A more formal

approach to influence analysis for quadratic discriminant analysis seems not to exist yet in

the literature.

In Section 2 of the paper, a population expression for the total probability of misclas-

sification is presented. The latter is then used as a starting point to compute the partial

influence functions for the classification errors in Section 3. The expressions obtained for

the partial influence function are not only valid when the classical sample averages µ̂1, µ̂2

and sample covariance matrices Σ̂1 and Σ̂2 are used to estimate the unknown population
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parameters in the discriminant function Q, but also when robust estimators are used. Com-

putations are tedious here and most details have been moved to the Appendix. Besides being

of theoretical interest, measuring the influence of an observation in the training sample on

the future classification error can be used as a diagnostic tool to detect influential observa-

tions. Section 4 presents such a diagnostic tool for diagnosing influential points in a classical

discriminant analysis, based on the usual sample averages and covariances. However, to

make this diagnostic measure robust, i.e. not suspect to masking effects, robust estimates of

the population parameters need to be plugged in the theoretical expressions of the influence

functions. Several examples in Section 4 illustrate the use of this diagnostic tool. Finally,

some conclusions are made in Section 5.

2 Total Probability of Misclassification

In this Section a population version of the Total Probability of Misclassification (TPM)

will be presented. Denote H0 = (H0
1 , H

0
2 ), where H0

1 and H0
2 are the distributions having

generated the training samples. The population version of the quadratic discriminant rule

is then, by analogy with (1.2),

Q(x; H0) = xtA(H0)x + b(H0)tx + c(H0), (2.1)

where the population values of the coefficient of the discriminant rule are

A(H0) =
1

2

{
C2(H

0)−1 − C1(H
0)−1

}
(2.2)

b(H0) = C1(H
0)−1T1(H

0) − C2(H
0)−1T2(H

0) (2.3)

c(H0) =
1

2
log

( |C2(H
0)|

|C1(H0)|
)

(2.4)

+
1

2

{
T2(H

0)tC2(H
0)−1T2(H

0) − T1(H
0)tC1(H

0)−1T1(H
0)

}
.

In the above formula T1(H
0) and T2(H

0) are the values of a location functional T at the

distributions H0
1 and H0

2 . When performing classical discriminant analysis one gets the

population averages, i.e. T1(H
0) = EH0

1
(X) and T2(H

0) = EH0
2
(X). Similarly, C1(H

0)

and C2(H
0) are the values of a scatter matrix functional C at the distributions H0

1 and

H0
2 . For classical discriminant analysis, C yields the population covariance matrix, i.e.

C1(H
0) = CovH0

1
(X) and C2(H

0) = CovH0
2
(X). In this paper, focus is on classical quadratic
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discriminant analysis, where one uses the conventional population averages and population

covariances, resulting in Q = QCl. However, it is also possible to use robust measures of

location for T and robust measures of scatter for C, yielding a different discriminant rule

denoted by QR. For information on robust estimators of location and scatter we refer to

Hampel et al. (1986) and Maronna and Yohai (1998).

The distribution generating the future data is supposed to be a normal mixture H =

π1H1 + π2H2, with H1 = Np(µ1, Σ1) and H2 = Np(µ2, Σ2). The probability of classifying

observations from the first group in the second is given by

Π2|1(H0, H) = P (Q(X; H0) < 0 | X ∼ H1), (2.5)

and the probability of misclassification for observations following H2 is

Π1|2(H0, H) = P (Q(X; H0) > 0 | X ∼ H2).

The total probability of misclassification, or the error rate for classifying observations from

H using a discriminant rule Q estimated from H0, is then defined as

TPM(H0, H) = π1Π2|1(H0, H) + π2Π1|2(H0, H). (2.6)

If we want to emphasize that we work with the classical discriminant rule QCl, we will use the

notation TPMCl. It is important to distinguish between H0 and H. In the above definitions,

no parametric assumptions are made on the distribution generating the training data. The

quadratic discriminant rule can be applied to any data set, although it might be expected

that the rule performs poor if the data are far from normally distributed. For example,

they might contain a few outliers. However, to compute a misclassification rate for future

data, a parametric assumption is needed to obtain computable expressions. The normality

assumption on H is taken here and the results obtained in this paper all make use of this

assumption. The next proposition gives an expression for the TPM.

Proposition 1. With the notations above, for H = π1Np(µ1, Σ1) + π2Np(µ2, Σ2), and for

the quadratic discriminant rule Q(X; H0) defined in (2.1),

Π2|1(H0, H) = P

(
p∑

j=1

λj(Wj − dt
2|1vj)

2 < k

)
(2.7)
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where W1, . . . ,Wp are i.i.d. univariate standard normal. Furthermore, d2|1 is a p-variate

vector given by

d2|1 = d2|1(H0, H) = Σ
−1/2
1

(
−1

2
A(H0)−1b(H0) − µ1

)
, (2.8)

k = k(H0) =
1

4
b(H0)tA(H0)−1b(H0) − c(H0), (2.9)

and λj = λj(H
0, H) and vj = vj(H

0, H) are the eigenvalues and eigenvectors of the matrix

Ā2|1(H0, H) = Σ
1/2
1 A(H0)Σ

1/2
1 . (2.10)

The expression for Π1|2(H0, H) is given by

Π1|2(H0, H) = P

(
p∑

j=1

λj(Wj − dt
1|2vj)

2 > k

)
(2.11)

with λj and vj now the eigenvalues and eigenvectors of Ā1|2(H0, H). Here, d1|2(H0, H) and

Ā1|2(H0, H) are given by replacing the index 1 by 2 in the definitions of d2|1(H0, H) and

Ā2|1(H0, H). The total probability of misclassification is then TPM(H0, H) = π1Π2|1(H0, H)+

π2Π1|2(H0, H).

When performing a discriminant analysis, one expects that the data to be classified come

from the same distribution as the training data, although the proportions of data coming from

the first or second group may be different. In this case, where H0 = (H1
0 , H

2
0 ) = (H1, H2),

we say that we the training data follow the model distribution (and in particular contain

no outliers). So at the model, the training data follow a normal distribution as well and

T1(H
0) = µ1, T2(H

0) = µ2, C1(H
0) = Σ1 and C2(H

0) = Σ2. (When we work with QR

instead of QCl, we require consistency of the robust location and covariance measures at

the normal distribution.) Hence at the model, the total probability of misclassification is a

function of the population parameters of location and covariance. Numerical computation of

this TPM requires evaluation of the cumulative distribution function of a linear combination

of p chi-squared distributions with one degree of freedom. Note that some of the weights λj

in this linear combination appearing in (2.7) may be negative, since they are eigenvalues of

the symmetric, but in general not positive definite matrix (2.10). Using modern computing

power, (2.7) can equally easy be computed with Monte-Carlo integration techniques. Indeed,

for a sufficiently high number of vectors (W1, . . . ,Wp) generated from a multivariate standard
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normal distribution, we check for every simulated vector whether the inequality in (2.7)

holds for the given value of k. The probability in (2.7) is then being approximated as the

corresponding empirical frequency.

For diagonal covariance matrices and H0 = H, an expression of the TPM for QDA was

presented by Houshmand (1993). Recently, McFarland and Richards (2002) considered the

problem of computing exact misclassification probabilities in the normal case for finite sam-

ples. The expression for TPM in the setting of Linear Discriminant Analysis is much better

known. In the normality case with equal covariances it is simply given TPMLDA = Φ(−∆
2

),

with ∆ =
√

(µ1 − µ2)tΣ−1(µ1 − µ2) the Mahalanobis distance between the populations and

Φ the c.d.f. of a standard normal. To study the effect of outliers on the total probability of

misclassification, partial influence functions will be computed in the next section.

3 Partial Influence Functions

Influence functions have already been used for estimators that depend on more than one

sample (e.g. Campbell, 1978; Fung, 1992, 1996b). We compute the influence of observations

in the training sample on the TPM by using the formalism of partial influence functions

(Pires and Branco, 2002). Partial influence functions (PIF) extend the traditional concept

of influence function to the multi-sample setting. The first PIF gives the influence on the

classification error of an observation x being allocated to the first group of training data.

The second PIF measures the influence on the TPM for training data being allocated to the

second group. Formally,

PIF1(x; TPM, H0, H) = lim
ε↓0

TPM ((1 − ε)H0
1 + ε∆x, H

0
2 ), H) − TPM(H0, H)

ε
, (3.1)

PIF2(x; TPM, H0, H) = lim
ε↓0

TPM ((H0
1 , (1 − ε)H0

2 + ε∆x), H) − TPM(H0, H)

ε
, (3.2)

where ∆x is a Dirac measure putting all its mass at x. One sees that for the first PIF

contamination is only induced for H0
1 , the distribution generating the first group of trai-

ning data, while the second distribution H0
2 remains unaltered. Only contamination in

the training sample is considered, the distribution H of the data to classify is not subject

to contamination. When actually computing influence functions, we work at the model

distribution H0 = (H1, H2). Indeed, when no contamination is present, one supposes that
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the data generating processes for the training data and for future data are the same. This

model condition is natural and implicitly made in the classification literature. At the model,

the notation PIFs(x; TPM, H) := PIFs(x; TPM, (H1, H2), H), for s = 1, 2, can be used.

For classical quadratic discriminant analysis the partial influence functions are written as

PIFs(x; TPMCl, H
0, H), for s = 1, 2. When using robust plug-in estimates in the definition

of Q, the notation PIFs(x; TPMR, H0, H) is used.

For linear discriminant analysis, the above influence functions have already been com-

puted (e.g. Croux and Dehon, 2001). The result, when using standard population averages

and covariances, is strikingly simple

PIFs(x; TPMLDA
Cl , H0, H) = (π1 − π2)

φ(∆/2)

2∆
(L(x) − L(µs)) (3.3)

for s = 1, 2. Here φ is the density of a standard normal distribution and ∆ as before the

Mahalanobis distance between the 2 source populations. As Critchley and Vitiello (1991)

noticed, the influence is determined by the factor L(x) − L(µs), which they consider as a

residual. For QDA it seems very difficult to come up with an easily interpretable expression.

The next proposition shows how the partial influence functions of the TPM using the

quadratic discriminant rule Q can be obtained.

Proposition 2. Let H0 be the distribution of the training data and H = π1Np(µ1, Σ1) +

π2Np(µ2, Σ2) the distribution of the data to classify. Suppose that

(i) All eigenvalues of the matrix Σ1Σ
−1
2 are distinct and different from one.

(ii) The partial influence function of the location functionals T1 and T2, and the scatter

functionals C1 and C2 exist at H0.

(iii) The model holds, i.e. H0 = (H1, H2).

The partial influence functions of the total probability of misclassification of a quadratic

discriminant rule Q based on the location measures T1(H
0) and T2(H

0) and the scatter

measures C1(H
0) and C2(H

0) is then given by

PIFs(x; TPM, H0, H) = π1PIFs(x; Π2|1, H0, H) + π2PIFs(x; Π1|2, H0, H), (3.4)

7



for s = 1, 2. Here

PIFs(x; Π2|1, H0, H) =

p∑
j=1

∂Π2|1(H0, H)

∂λj

· PIFs(x; λj, H
0, H)

+

p∑
j=1

∂Π2|1(H0, H)

∂d∗
j

· PIFs(x; d∗
j , H

0, H) (3.5)

+
∂Π2|1(H0, H)

∂k
· PIFs(x; k,H0, H),

where the notations of Proposition 1 are used and d∗
j(H

0, H) = vj(H
0, H)td2|1(H0, H). Fur-

thermore

PIFs(x; λj, H
0, H) = vt

jΣ
1/2
1 PIFs(x; A,H0)Σ

1/2
1 vj, (3.6)

PIFs(x; d∗
j , H

0, H) = PIFs(x; vj, H
0, H)td2|1(H0, H) + vt

jPIFs(x; d2|1, H0, H), (3.7)

PIFs(x; k,H0) = −1

4
btA−1PIFs(x; A,H0)A−1b +

1

2
btA−1PIFs(x; b,H0) − PIFs(x; c,H0),

(3.8)

while

PIFs(x; d2|1, H0, H) = −1

2
Σ

1/2
1

(
A−1PIFs(x; b,H0) − A−1PIFs(x; A,H0)A−1b

)
. (3.9)

PIFs(x; vj, H
0, H) =

p∑
k=1,k �=j

vt
kΣ

1/2
1 PIFs(x; A,H0)Σ

1/2
1 vj

λj − λk

vk, (3.10)

for j = 1, . . . , p. The shorthand notations A = A(H0), b = b(H0), λj = λj(H
0, H) and

vj = vj(H
0, H) for j = 1, ..., p, are used. Furthermore,

PIFs(x; A,H0) = (−1)s+1 1

2

{
Σ−1

s PIFs(x; Cs, H
0)Σ−1

s )
}

, (3.11)

PIFs(x; b,H0) = (−1)s+1
{
Σ−1

s PIFs(x; Ts, H
0) − Σ−1

s PIFs(x; Cs, H
0)Σ−1

s µs

}
, (3.12)

PIFs(x; c,H0) = (−1)s+1 1

2

{
µt

sΣ
−1
s PIFs(x; Cs, H

0)Σ−1
s µs (3.13)

−2µt
sΣ

−1
s PIFs(x; Ts, H

0) − trace
(
Σ−1

s PIFs(x; Cs, H
0)

)}
.

for s = 1, 2. The partial derivatives
∂Π2|1(H0,H)

∂λj
,

∂Π2|1(H0,H)

∂d∗j
and

∂Π2|1(H0,H)

∂k
, for j = 1, ..., p,

do not depend on the argument x, neither on location and covariance functionals. Expres-

sions for them are given in Lemma’s 1, 2 and 3 in the Appendix. In order to compute

PIFs(x; Π1|2, H0, H), it suffices to replace Σ1 by Σ2 in the expressions (3.6) up to (3.10) and

to interchange d2|1 with d1|2. The λj and vj are then the eigenvectors and eigenvalues of the

matrix Σ
1/2
2 A(H0)Σ

1/2
2 instead of of the matrix Σ

1/2
1 A(H0)Σ

1/2
1 .
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Computing the partial influence functions appearing in Proposition 2 is tedious, but

straightforward. Building bricks are the expressions for the partial influence functions of the

estimators of location and scatter. For the classical estimators it is immediate to check that

PIFs(x; Cs, H
0) = (x − µs)(x − µs)

t − Σs and PIFs(x; Ts, H
0) = x − µs, (3.14)

for s = 1, 2 while PIFs(x; Cs′ , H
0) = PIFs(x; Ts′ , H

0) = 0 for s′ �= s. From (3.14) all other

auxiliary partial influence function can be computed, resulting in PIF1(x; TPMCl, H
0, H)

and PIF2(x; TPMCl, H
0, H).

Computation of the partial derivatives of Π2|1(H0, H1), appearing in (3.5), requires some

care. These partial derivatives only depend on the population parameters, they do not

depend on x, neither on the estimators used. Lemmas 1, 2, and 3 formulated in the Appendix

express them in terms of integrals, which can be computed by numerical integration. Note

that numerical integration is much more stable than numerical differentiation. Although

the formulas for computing the PIF are cumbersome, there are no major computational

difficulties. A matlab program computing the partial influence functions is available from

www.econ.kuleuven.ac.be/christophe.croux.

When deriving the expression for the PIF, the assumption “ (i): All eigenvalues of the matrix

Σ1Σ
−1
2 are distinct and different from one” was needed. If the matrix Σ1Σ

−1
2 , or equivalently

Σ2Σ
−1
1 , has eigenvalues close to 1, or close to each other, then it can be seen from (3.10) and

Lemmas 1 and 2 in the Appendix that the influence function will tend to explode. If one is

close to a setting where condition (i) is not valid, then the discriminant rule is very sensitive

to single observations in the training data. One case where (i) is not valid is the equal

covariance matrix case, where all eigenvalues of Σ1Σ
−1
2 are equal to one. Hence, for reasons

of local robustness, it is advised to use LDA whenever one is close to the equal covariance

matrix case. Performing a test for equal covariance matrices before carrying out a QDA, as is

common in applied research, can prevent construction of an unstable quadratic discriminant

rule. However, there are other situations where condition (i) is not met, for example when

Σ1 and Σ2 are both proportional to the identity matrix. The latter corresponds with a

setting of two spherically symmetric data clouds. Here, alternative methods like regularized

Gaussian discriminant analysis (Bensmail and Celeux, 1996) are preferable to keep the local

sensitivity under control.
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The eigenvalues of Σ1Σ
−1
2 determine the nature of the quadratic form (1.2). For example,

in the bivariate setting the eigenvalues determine whether the classification regions associated

with the two groups are an ellipse and its complement or an hyperbola and its complement.

When an eigenvalue passes from below to above one, the nature of the classification regions

changes. Finally, note that interchanging two eigenvalues close to each other leads to a

change in orientation of the quadratic form, which explains why the equal eigenvalue case is

unstable as well (similar as in principal components analysis, see Critchley 1985).

Some pictures of partial influence functions in the univariate and bivariate case are re-

presented. Figure 1 gives the first PIF for H1 = N(0, 1) and H2 = N(1, σ2), for σ2 =

0.6, 0.8, 1.2 and 1.6, and equal prior probabilities for discriminant analysis based on QCl. It

is immediate to see that the influence functions have a quadratic shape and are unbounded.

When the value of σ2 approaches 1, the values for the PIF increase. For σ2 = 1.2 the shape

of the PIF is reversed: outliers for the first training data set tend to decrease the estimated

error rate.

−5 0 5
−5

0

5
σ2=0.6

x

PI
F

−5 0 5
−5

0

5
σ2=0.8

x

PI
F

−5 0 5
−5

0

5
σ2=1.2

x

PI
F

−5 0 5
−5

0

5
σ2=1.6

x

PI
F

Figure 1: First partial influence function PIF1(x; TPMCl, H) for

H = 0.5N(0, 1) + 0.5N(0, σ2) and for several values of σ2.

Of course, in practice one is interested in the higher dimensional case. The shape and

sign of the PIF depend heavily on the parameter values and are difficult to predict, in
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contrast with the linear case. In Figure 2 the first partial influence function is shown for a

bivariate distribution where H1 = N(0, I2) and H2 = N((1, 1)t, diag(0.3, 0.8)). Notice again

the quadratic shape of the influence surface, being quite flat in the central region here, but

unbounded in the tails of the distribution.

−4

−2

0

2

4

−4

−2

0

2

4
−2

0

2

4

6

8

10

12

x1x2

Figure 2: First partial influence function PIF1(x; TPMCl, H) for

H = 0.5N(0, I2) + 0.5N((1, 1)t, diag(0.3, 0.8)).

The expressions in Proposition 2 are not only valid for TPMCl, but they also apply when

robust estimators are used for the parameters µ1, µ2, Σ1 and Σ2 in the discriminant rule

Q. For example, Randles et al. (1978) proposed to use M-estimators. Since M-estimators

loose robustness when the dimension p increases, we will use the highly robust Minimum

Covariance Determinant (MCD) estimator (Rousseeuw and Van Driessen, 1999). The MCD-

estimator is obtained by selecting the subsample of size h (we selected h = 0.75n) for

which the determinant of the covariance matrix computed from that subsample is minimal,

and computing afterwards the mean and the sample covariance matrix solely from this

“optimal” subsample. The robustness of the MCD-estimator in the context of QDA has

recently been shown by means of simulation studies (Joossens and Croux 2004; Hubert

and Van Driessen, 2004). Now, using the results of Proposition 2, we are able to prove

local robustness by means of partial influence functions. It is indeed immediate to see

that PIFs(x; TPM, H0, H) is bounded as soon as PIFs(x; µs, H
0) and PIFs(x; Σs, H

0) are
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bounded. Influence functions for the MCD-estimator where computed by Butler, Davies and

Jhun (1993) and Croux and Haesbroeck (1999) and were shown to be bounded at elliptical

models.

Figure 3 shows the PIF for the same distributions as for Figure 1, but now using the

robust MCD estimator to estimate the discriminant rule. The same scaling of the axes

as in Figure 1 is used, and it is immediately observed how much lower the values for the

PIF become. In the central part of the data, the PIF behaves like the PIF of the classical

estimation procedure, but in the tails we observe a bounded influence. Hence far outliers

receive a bounded, but non-zero, influence. Notice that for σ2 close to 1, where condition C

is not valid, the influence function also gets blown up, but to a much lesser degree. For σ2

equal to one, the PIF will not exist either.
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Figure 3: First partial influence function PIF1(x; TPMR, H). As in

Figure 1, but now using the robust MCD-estimator for estimating

the parameters in the discriminant rule Q.

4 Robust Diagnostic Measures and Examples

The heuristic interpretation of (partial) influence functions is that the estimated difference

between the population TPM and its estimated value is approximatively given by the av-

12



erage of the values PIF(xi; TPM, H) for i = 1, . . . , n (cfr. Hampel et al., 1986; Pires and

Branco, 2002). Hence the partial influence functions evaluated at the sample points give

the contribution of every observation in the training set to the misclassification rate. Large

values for the PIF reveal points giving a large positive contribution to the TPM. We restrict

ourselves to the detection of influential points for classical discriminant analysis. When a

robust discriminant rule QR is used, it is less important to pinpoint the highly influential

points, since the robust procedure has a bounded influence and is resistant to these obser-

vations.

Diagnostic measures are then computed using the first, respectively second, PIF for

observations belonging to the first, respectively second, group of training data:

Di,Cl(µ1, µ2, Σ1, Σ2) = |PIF1(xi, TPMCl, H)| for i = 1, . . . , n1 (4.1)

Di,Cl(µ1, µ2, Σ1, Σ2) = |PIF2(xi, TPMCl, H)| for i = n1 + 1, . . . , n.

Plotting Di with respect to the index i, or alternatively with respect to the value of Q(xi),

then results in a diagnostic plot. The sign information in the PIF could be kept by dropping

the absolute values in (4.1). To compute the diagnostics Di, the parameters µ1, µ2, Σ1 and

Σ2 need to be estimated. The prior probability π1 can be estimated as the frequency of

observation from the training sample belonging to the first group, and similarly for π2.

The idea of using the influence function as a tool for sensitivity analysis has a long tradi-

tion in statistics. For applications in multivariate analysis see for example Critchley (1985),

and Tanaka (1994). In the construction of the Di the non-robust sample average and covari-

ance matrix estimators could be used for estimating the population parameters. Though it

is well-known that diagnostic measures based on non-robust estimators are subject to the

masking effect. Outliers and atypical observations might shift the estimated means and blow

up the dispersion matrices, resulting in a non reliable diagnostic measure. It might as well be

possible that influential observations will not be detected anymore. To prevent this masking

effect, it is proposed to estimate µ1, µ2, Σ1 and Σ2 using robust estimators, resulting in a

robust diagnostic measure. A similar approach to robust diagnostics was taken by (Tanaka

and Tarumi, 1996; Pison et al., 2003; and Boente et al., 2003) in different fields of multivari-

ate statistics. In the construction of the robust diagnostic tool, the robust estimators are

auxiliary and only serve to estimate the Di,Cl(µ1, µ2, Σ1, Σ2) in a reliable way, not suffering

from the masking effect. As such, the partial influence function of the non robust classical

13



estimator is estimated in a robust way. The aim is to detect influential points when using

QCl. When no highly influential points are detected by the robust diagnostic, one could pass

to a standard discriminant analysis, the latter one being more efficient at the normal model.

To illustrate the risk of masking when using non-robust diagnostics, consider the Skull’s

data, described in Flury and Riedwyl (1988, page 123-125). This well-known data set con-

tains skull measurements (6 variables) on two species of female voles: Microtus Californicus,

and Microtus Ochrogaster. The first group contains 41 observations, and the second 45. In

Figure 4 diagnostic plots are made, once using the classical estimators, and once using robust

plug-in estimators for Di,Cl(µ1, µ2, Σ1, Σ2). The robust diagnostic measures, immediately re-

veal that there is a huge influential observation: number 73. The non-robust diagnostic

measures suffer from the masking effect and cannot detect any influential observations any-

more.

0 20 40 60 80
0

2

4

6

8

10

12

14
x 10

4

index

RD

0 20 40 60 80
0

1

2

3

4

5

6
x 10

4

index

D

Figure 4: Diagnostic plot for the Skull data using robust plug-in esti-

mators (left figure) or using classical plug-in estimators (right figure)

for Di,Cl(µ1, µ2, Σ1, Σ2).

Several diagnostic measures for classical quadratic discriminant analysis have already

been introduced by Fung (1996a). Influence is measured by looking at the effect of deleting

an observation from the sample on the estimated probabilities of all other observations. Fung

(1996a) proposed different variants, all based on the leave-one-out principle. One of them is

14



the Relative Log-0dds SQuared influence for an observation i,

RLOSQi =
1

n

n∑
j=1

[
log

{
p̂1(xj)

1 − p̂1(xj)

}
− log

{
p̂1(i)(xj)

1 − p̂1(i)(xj)

}]2

,

where p̂1(x) is the estimated probability that an observation x belongs to the first group,

p̂1(x) = f̂1(x)/[f̂1(x) + f̂2(x)],

with f̂j the density of Np(µ̂j, Σ̂j), for j = 1, 2. On the other hand, p̂1(i)(x) estimates the

same probability, but now using the sample with observation i deleted.

Consider as a second example the Biting flies data, described in Johnson and Wichern

(2002, page 373). Two species of flies, Leptoconops cartei and Leptoconops torrens, were

thought for many years to be the same, because they are morphologically very similar. For

each group a sample of 35 observations was drawn and seven measurements where taken.

Figure 6 shows the comparison between the RLOSQ-diagnostic and the robust diagnostic

based on the partial influence functions for the TPMCl. The robust diagnostic indicates only

36 as highly influential. The leave-one-out method suggests as well 2, 15 and 23. Further

inspection of the data reveals that 2, 15 and 23 are outlying observations. Hence there is

a risk that due to the presence of multiple outliers, the leave-one-out procedure becomes

unreliable. Whether 2,3, and 15 are highly influential, or only outlying, is difficult to find

out using the RLOSQ indices.

5 Conclusions

This paper is about computing the influence of observations in the training sample on the

classification error of a discriminant rule. For linear discriminant analysis, answers have

been given more than a decade ago, but quadratic discriminant analysis is a harder problem

to tackle. Starting from an expression for the total probability of misclassification (Sec-

tion 2) and using the technology of Partial Influence Functions of Pires and Branco (2002),

a computable expression for the influence function was found.

Not surprisingly, this influence function was found to be quadratic and unbounded. Using

robust plug-in estimators in the discriminant rule Q, however, yields bounded influence

procedures. But it also turned out that whenever the matrix Σ1Σ
−1
2 has eigenvalues close to
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Figure 5: Diagnostic plot for the Biting Flies data using robust diagnostics

based on TPMCl (left figure) and using the leave-one out measure RLOSQ

(right figure).

each other or close to one, the QDA is unduly sensitive to small data perturbations. Focus

was on the influence on the TPM, and not on the influence on the estimates of the parameters

of the quadratic discriminant rule. The latter estimates are not of immediate interest in

QDA. In some sense, one could think of PIF(x; TPM, H) as an appropriate summary of the

influences on the estimates of the p(p + 3) components of µ1, µ2, Σ1 and Σ2. Besides of

theoretical interest, the PIF can also be used to construct a robust diagnostic tool for the

detection of influential points in classical QDA.

Influence diagnostics in discriminant analysis for LDA, QDA, and for the multiple group

case were proposed and studied in a sequence of papers by Fung (1995a, 1995b, 1996a,

1996b). In this paper, a theoretical expression of an influence function is used as basis

of the diagnostic measure being proposed, allowing to avoid case-wise deletion measures. A

completely different approach is taken by Riani and Atkinson (2001), who proposed a forward

search algorithm to avoid masking effects in detecting influential points. Their approach is

a useful data-analytic tool for a robust sensitivity analysis of a discriminant analysis, and

requires user-interactive analysis of the data.

Let us emphasize that we do not aim to develop a new kind of robust discriminant analy-

sis. This paper quantifies the influence of observations on the estimated error rate using plug-
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in estimates for the parameters of the quadratic discriminant rule. Robust high breakdown

linear and quadratic discriminant analysis has been discussed in several papers, such as

Hawkins and McLachen (1997), He and Fung (2000), Croux and Dehon (2001), Joossens and

Croux (2004) and Hubert and Van Driessen (2004). But most of them focus on computational

aspects and simulation comparison. Programs for computing robust linear and quadratic

discriminant analysis can be retrieved from www.econ.kuleuven.ac.be/christophe.croux.

6 Appendix

Proof of Proposition 1:

It is sufficient to prove (2.7). The quadratic discriminant function (2.1) can be rewritten as

written as

Q(x; H0) = (x − d̃(H0))tA(H0)(x − d̃(H0)) − k(H0), (6.1)

with k = k(H0) defined in (2.9), and d̃(H0) = −A(H0)−1b(H0)/2. Take now X ∼ H1, then

W = Σ
−1/2
1 (X − µ1) ∼ N(0, Ip), and definition (2.5) yields

Π2|1(H0, H) = PH1((X − d̃(H0)))tA(H0)(X − d̃(H0)) < k)

= PN(0,Ip)((W − d2|1)tĀ2|1(H0, H)(W − d2|1) < k),

where d2|1 = d2|1(H0, H) is defined in (2.8). Since Ā2|1(H0, H) is a symmetric matrix, its

eigenvalues λj are real and we can write

Ā2|1(H0, H) =

p∑
j=1

λjvjv
t
j,

where vj are the corresponding eigenvectors. Moreover, the eigenvectors of Ā2|1(H0, H) are

orthogonal implying that the variables Wj = W tvj, for j = 1, . . . , p, are components of a

multivariate standard normal distribution.

Proof of Proposition 2:

Equation (3.4) follows from the definition of TPM, and (3.5) results from a standard appli-

cation of the chain rule. As a first step, the PIF for the estimates of the parameters of the

quadratic discriminant rule Q are computed. The matrix derivation rules PIFs(x; Σ−1
s , H0) =
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−Σ−1
s PIFs(x; Σs, H

0)Σ−1
s and PIFs(x; log |Σs|, H0) = trace (Σ−1

s PIFs(x; Σs, H
0)) for s = 1, 2

are used, cfr. Magnus and Neudecker (1999). Straightforward derivation from definitions

(2.2), (2.3), (2.4) yields, then (3.11), (3.12), (3.13).

Since the functional k is a simple combination of the functionals A, b and c, equation

(3.8) follows. Lemma 2.1 in Sibson (1979) or Lemma 3 in Croux and Haesbroeck (2000) give

influence functions for the eigenvalues and eigenvectors of a symmetric matrix. Applying

this result to Ā2|1(H0, H) = Σ
1/2
1 A(H0)Σ

1/2
1 results in expressions (3.6) and (3.10). Note

that by conditions (i) and (iii), and the fact Σ
1/2
1 Σ−1

2 Σ
1/2
1 − Ip and Σ1Σ

−1
2 − Ip have the same

eigenvalues, division by zero in (3.10) is avoided. From (2.8), equation (3.9) follows and by

the definition of d∗
j , equation (3.7) holds for j = 1, . . . , p. Of course, similar arguments hold

for deriving PIFs(x; Π1|2, H0, H).

Computation of the partial derivatives of Π2|1(H0, H) w.r.t. λj, d∗
j and k:

According to Proposition 1 and with d∗
j = vt

jd2|1, write

Π2|1(H0, H) = P

(
p∑

j=1

sign(λj)X
2
j < k

)
where Xj ∼ Np(−d∗

j

√
|λj|, |λj|)

where the Xj are independent univariate normal variables, each having density

fXj
(xj) =

1√|λj|
ϕ

(
xj√|λj|

+ d∗
j

)
. (6.2)

Now (6.2) can be written as the integral∫
fX1(x1)...fXp(xp)I

(
n∑

j=1

sign(λj)x
2
j < k

)
dx1 . . . dxp.

By condition (iii) the eigenvalues λj of Ā2|1 are the same as those of Σ1Σ
−1
2 − 1 and by

condition (i) they are different from zero.

Using the above notations, we get the following three lemmas.

Lemma 1. The partial derivatives of Π2|1(H0, H) with respect to λj are given by

1

2λj

{
−P (Σisign(λi)X

2
i < k) + E

[
Xj(Xj + d∗

j

√|λj|)
|λj| I(Σisign(λi)X

2
i < k)

]}
,

for j = 1, . . . , p.
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Proof: For each 1 ≤ j ≤ p, it holds that ∂
∂λj

Π2|1(H0, H) equals

∫
∂

∂λj

fXj
(xj)

p∏
m=1,m�=j

fXi
(xi)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

=

∫
sign(λj)

∂

∂|λj|fXj
(xj)

p∏
m=1,m�=j

fXm(xm)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

(6.2)
=

∫
sign(λj)

[
− 1

2|λj|3/2
ϕ

(
xj√|λj|

+ d∗
j

)
+

(
xj

−2|λj|2
)

ϕ′
(

xj√|λj|
+ d∗

j

)]

p∏
m=1,m�=j

fXm(xm)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

ϕ′(u)=−uϕ(u)
=

∫
sign(λj)

1

2|λj|

[
−1 +

xj(xj + d∗
j

√|λj|)
|λj|

]

p∏
m=1

fXm(xm)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

=
1

2λj

{
−P (Σisign(λi)X

2
i < k) + E

[
Xj(Xj + d∗

j

√|λj|)
|λj| I(Σisign(λj)X

2
i < k)

]}
.

�

Lemma 2. The partial derivatives of Π2|1(H0, H) with respect to d∗
j are given by

−1√|λj|
E[XjI(Σisign(λi)X

2
i < k)] − d∗

jP (Σisign(λi)X
2
i < k),

for j = 1, . . . , p.
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Proof: For each 1 ≤ j ≤ p, it holds that ∂
∂d∗j

Π2|1(H0, H) equals

∫
∂

∂d∗
j

fXj
(xj)

p∏
m=1,m�=j

fXm(xm)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

(6.2)
=

∫
1√|λj|

ϕ′
(

xj√|λj|
+ d∗

j

)
p∏

m=1,m�=j

fXm(xm)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

ϕ′(u)=−uϕ(u)
=

∫ (
−xj + d∗

j

√|λj|
|λj|

)
ϕ

(
xj√|λj|

+ d∗
j

)

p∏
m=1,m�=j

fXm(xm)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

=

∫ (
− xj√|λj|

− d∗
j

)
p∏

m=1

fXm(xm)I

(
p∑

i=1

sign(λi)x
2
i < k

)
dx1 . . . dxp

= − 1√|λj|
E[XjI(Σisign(λi)X

2
i < k)] − d∗

jP (Σisign(λi)X
2
i < k).

�

For the partial derivative with respect to k, we will reorder the components of X such that

the corresponding eigenvalues satisfy

λ(1) ≥ . . . ≥ λ(q) > 0 > λ(q+1) ≥ . . . ≥ λ(p),

where q is the number of positive eigenvalues. Furthermore, let

S+ =

q∑
j=1

X2
(j) and S− =

p∑
j=q+1

X2
(j)

where empty sums are zero by convention. From (6.2) we have that Π2|1(H0, H) = P (S+ −
S− < k). Without loss of generality we will suppose that k > 0. For k < 0 one has

∂Π2|1(H0, H)

∂k
= −∂P (S− − S+ > |k|)

∂|k| =
∂P (S− − S+ ≤ |k|)

∂|k|
and it suffices to interchange the roles of S+ and S− in the lemma below.

Lemma 3. With this notations above, and for k > 0, the partial derivative of Π12 with

respect to k is given by

0 if q = 0

E
[{

fX(1)
(
√

k + S−) + fX(1)
(−√

k + S−)
}

/(2
√

k + S−)
]

if q = 1

E
[
πq−1(k + S−)

q−2
2 fq(U

√
k + S−)δ(θ(U))]

]
if q ≥ 2
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where fq is joint density of (X(1), . . . , X(q))
t in polar coordinates, U is uniformly distributed

on the periphery of the q dimensional unit sphere Sq−1, independently of S−. Here δ(θ(u)) =

sinq−2 θ1 sinq−3 θ2 . . . sin θq−2 for q ≥ 2, with θ(u) = (θ1, . . . , θq) the angles determining u.

Proof: The results is clear for q = 0 since it was supposed that k > 0. Now if q = 1 then

∂Π2|1(H0, H)

∂k
= E

[
∂

∂k
P (X2

(1) ≤ k + S−|S−)

]

= E

[
∂

∂k

∫ k+S−

0

fX2
(1)

(u)du

]

= E
[
fX2

(1)
(k + S−)

]
= E

[{
fX(1)

(
√

k + S−) + fX(1)
(−√

k + S−)
}

/(2
√

k + S−)
]
.

For q ≥ 2, a transformation fq(x(1), . . . , x(q)) := fq(x
q) → fq(r, θ) to polar coordinates will be

carried out, where r = ‖xq‖ and θ ≡ (θ1, . . . , θq−1), with θ1, . . . , θq−2 ∈ [0, π[, θq−1 ∈ [0, 2π[

contains the corresponding angles. Let Θ be the space where the angles vary in, and let θ(u)

be the set of angles associated with a unit vector. Then δ(θ) = sinq−2 θ1 sinq−3 θ2 . . . sin θq−2

is the absolute value of the determinant of the Jacobian of this transformation. For every

positive k one has

∂

∂k
P (S+ ≤ k) (6.3)

=
∂

∂k

∫
fq(x

q)I(‖xq‖2 < k)dxq

=
∂

∂k

∫ √
k

0

∫
Θ

fq(r, θ)r
q−1δ(θ) dθ dr

Fubini
=

∫
Θ

∂

∂k

∫ √
k

0

fq(r, θ)r
q−1δ(θ) dθ dr

Leibnitz
=

∫
Θ

1

2
√

k
k

q−1
2 fq(

√
k, θ)δ(θ)dθ

=
k

q−2
2

2

∫
Θ

f(
√

k, θ)δ(θ)dθ,

=
k

q−2
2

2
2πq−1 EU [fq(

√
k, U)δ(θ(U))], (6.4)

where U is uniformly distributed over the q-dimensional unit sphere Sq−1. Then

∂

∂k
Π2|1(H0, H) = E

[
∂

∂k
P (S+ ≤ k + S−|S−)

]

= E
[
πq−1k

q−2
2

q fq(U
√

k + S−)δ(θ(U))]
]
.
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Finally, it is easy to verify that the partial derivatives of Π1|2(H0, H) with respect to λj, d∗
j

and k are given by similar expressions as in Lemmas 1, 2 and 3. In Lemmas 1 and 2 the

inequalities need to inversed, while the sign of the formula of Lemma 3 needs to be changed.
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