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ABSTRACT

In a paper of 2000, Kaas, Dhaene and Goovaerts investigate the present value of
a rather general cash flow as a special case of sums of dependent risks. Making
use of comonotonic risks, they derive upper and lower bounds for the distribution
of the present value, in the sense of convex ordering. These bounds are very close
to the real distribution in case all payments have the same sign; however, if there
are both positive and negative payments, the upper bounds perform rather badly.
In the present contribution we show what happens when solving this problem by
means of copulas. The idea consists of splitting up the total present value in the
difference of two present values with positive payments. Making use of a copula
as an approximation for the joint distribution of the two sums, an approximation
for the distribution of the original present value can be derived.
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I. DESCRIPTION OF THE PROBLEM

Consider a general series of deterministic payments �1, �2, …, �n due
at times 1, 2, …, n, which can be positive as well as negative. The pre-
sent value for this cash flow can be written as
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where the stochastic variables Y (i) are defined as Y (i) = Y1 + Y2 + …
+ Yi and where the variables Yi represent the stochastic continuous
compounded rate of return over the period [i – 1, i].

Following the classical assumption, the random variables Yi are
independent and normally distributed and hence the prices are log-
normally distributed. For the parameters of the distributions, we use
the notations
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In contrast to the risks Yi, the variables Y(i) and thus also the discounted
payments �ie–Y(i) in the cash flow are mutually dependent. Therefore, it
is nearly impossible to derive the exact distribution of the sum S. 

In order to solve this problem, Kaas, Dhaene and Goovaerts [9] pre-
sent bounds in convexity order that make use of the concept of como-
notonic risks. This means that they replace the original sum S by a new
sum, for which the components have the same marginal distributions
as the components in the original sum, but with the most “dangerous”
dependence structure (see Section II for details about these concepts).
The advantage of working with a sum of comonotonic variables has
to be found in the fact that the calculation of the distribution of such
a sum is quite easy.

It is shown in [9] that the convex upper bound equals
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where U is a Uniform(0,1) random variable and where F is the stan-
dard normal cumulative distribution function.

If desirable and if more detailed information about the components
in the sum is available, this upper bound can be improved by condi-
tioning on a random variable Z that is defined as
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for which it is necessary to know the correlation with each risk Y(i), 

ri = Corr[Y (i), Z ]. (6)

Kaas, Dhaene and Goovaerts [9] show that by conditioning on this Z,
the upper bound in (4) can be improved to the closer bound
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where U and V are two mutually independent Uniform(0,1) random
variables, independent of the variable Z.

Since successive variables Y(i) represent sums that only differ in
one term, they are rather strongly (and positively) dependent, explain-
ing the good performance of both bounds. Indeed, the bounds make
use of the “strongest possible” dependence between the discount fac-
tors. However, this strong affinity between exact and approximate dis-
tributions only holds in case all payments �i have the same sign. When
both positive and negative payments occur, the performance of the
upper bound and of the improved upper bound is much worse. This
is completely due to the negative dependence structure between terms
with different signs.

The conditioning on a random variable Z as in (5) can also be used
to construct a lower bound for the original present value, correspond-
ing to a sum that is less “dangerous” than the original sum. This lower
bound equals
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with U a Uniform(0,1) distributed random variable. In contrast with
the upper bounds, this lower bound seems to perform much better for
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cash flows with payments with mixed signs. However, due to these
mixed signs, the lower bound no longer consists of a sum of como-
notonic risks. As a consequence, its distribution is more difficult to
obtain.

In this paper we aim at deriving a new accurate and efficient
approximation which can be used in case the payments do have such
mixed signs. We will show how such an approximation can be con-
structed by the introduction of copulas within the framework of
comonotonicity. The paper is organized as follows. First, the con-
cepts of convex ordering and of copulas are explained in Section II.
Afterwards in Section III, we introduce our methodology and we
derive the approximation. Numerical illustrations are presented in
Section IV.

II. MORE ABOUT THE CONCEPTS

A. Convex order and comonotonic risks

Many financial and actuarial applications are faced with the difficulty
or impossibility of finding an analytic expression for the distribution
of a stochastic quantity. In many cases, this difficulty arises from the
presence of dependent components in this quantity. Also in the current
case, the stochastic variables Y(i) in (1) and thus the discounted pay-
ments �ie –Y(i) are dependent, since they are constructed as successive
series of the same sequence of independent variables.

The method of convex upper bounds is extremely helpful to deal
with this kind of problems. As explained in the introduction, we
replace the exact but incalculable distribution by an approximate and
simpler distribution associated with a variable that is more dangerous
than the original one. For details, see [2, 3, 7, 8, 15].

In order to illustrate the fact that convex order nicely suites the
notion of dangerousness, we mention three equivalent characteriza-
tions of this concept where all the expectations are assumed to exist.

A variable W is said to be an upper bound for V in convexity order,
notation V ≤cx W, if

a) E[u (V)] ≤ E[u (W)] for each convex function u : � → �;
since convex functions take on their largest values in the tails, the
variable W is more likely to take on extreme values than the vari-
able V and thus W is more dangerous.
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b) E[u (–V)] ≥ E [u (– W)] for each concave function u : � → �;
each risk averse decision maker prefers a loss V over a loss W and
thus the variable W is more dangerous.

c) E[V] = E[W] and E[(V – k)+] ≤ E[(W – k)+] for each value of k;
the financial loss of realizations exceeding a retention k, or stop-
loss premium, is always larger for W than for V and thus the vari-
able W is more dangerous.

The equivalence of conditions a) - c) is discussed in e.g. [2]. As a
consequence, replacing a variable V with unknown distribution by a
variable W with known distribution but larger in convex ordering can
be seen as a prudent strategy.

If in addition to this upper bound W a lower bound can be found as well,
this provides us with a measure for the reliability of the upper bound.

Returning to the cash flow problem, the following theorem sum-
marizes an important result regarding this idea, in that it shows how
to construct such convex larger sums. A proof can be found in [7].

Proposition 2.1. Consider a sum of functions of random variables

V = ƒ1(X1) + ƒ2(X2) + ··· + ƒn(Xn), (9)

where the functions ƒt : � → � : x → ƒt(x) are all increasing or all
decreasing. The variable 
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with U an arbitrary random variable that is uniformly distributed on
[0,1] then defines an upper bound in convexity order, i.e. V ≤cx W.

The notation FXj is used for the distribution function of Xj, or

FXj(x) = Prob (Xj ≤ x),  x ∈ � (11)

and the inverse function is defined as
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One of the advantages of this method is the fact that, due to the con-
struction of the variable W, the distribution of the bound can be deter-
mined rather easily by means of

FW(s) = ps (13)

73



with ps defined implicitly by
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B. Copulas

A copula C is a function that maps the marginals F1 and F2 of a bivari-
ate distribution F to the joint distribution in a unique way:

C (u, v) : [0,1] × [0,1] → [0,1] : (u, v) → F(F1
–1(u), F2

–1(v)) (15)

such that

C (F1(x), F2(y)) = F(x, y). (16)

One of the most important examples of copulas is the Gaussian copula.
In the bivariate case it can be parameterized by a single parameter r
as follows:

C (u, v; r) = Hr(F–1(u), F–1(v)), (17)

where Hr (s1, s2) is a bivariate normal distribution function with mean
0 and covariance matrix

.r
r1
1

=! d n
This family arises naturally in the case of multivariate normal distri-
butions. However they may also appear in many situations where the
corresponding marginal distributions are not normal. Consider for exam-
ple a multivariate normal vector Y = (Y1, Y2, …, Yn). Then the vector

exp(Y) = (exp(Y1), exp(Y2), …, exp(Yn)) (18)

will still have a Gaussian copula although the corresponding marginal
distributions are now lognormal.

The family of Archimedean copulas is another very important class
of copulas widely used in statistical applications. An Archimedean
copula is given by the formula

C (u, v) = c–1[c(u) + c(v)] (19)
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where the copula generator c : [0,1] → [0, + ∞] is continuous, strictly
decreasing and convex. Archimedean copulas are always symmetric
(i.e. C(u, v) = C(v, u)), associative (i.e.C(C(u, v), w) = C(u, C(v, w)))
and their diagonal section is always smaller than the identity func-
tions (i.e. C(u, u) ≤ u). It can be proved that the last two properties
characterize the family of Archimedean copulas (see [11]).

Three special copulas are very illustrative:

• C1(u, v) = uv
represents the case of independent underlying variables;

• C2(u, v) = min(u, v)
is an upper bound, representing the case of most related pair of
variables with given marginals;

• C3(u, v) = max(0, u + v – 1)
is a lower bound, representing the case of most antithetic pair of
variables.

If (X, Y) has the bivariate distribution function F, with marginals F1

and F2, and if C is a copula as in (16), then Spearman’s rho is given
by

2
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The relation between Spearman’s rho and Pearson correlation is given
by

rs(X, Y) = rp(F1(X), F2(Y)), (21)

see e.g. [4].
Note that also Kendall’s t can be expressed in terms of the copulas.

The appropriate formula is given below:

2
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There are several possibilities to generate copulas that correspond to
couples of variables with given correlation rs.

The first method is based on deriving the copula as a convex com-
bination combination of the three copulas mentioned above,

C(u, v ; rs, t) = p1C1(u, v) + p2C2(u, v) + p3C3(u, v) (23)
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One can try to solve the following system of equations derived explic-
itly from the definitions of the three copulas and formula (22):
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Unfortunately the unique solution (in the case rs ≠ 0) of the last three
equations:
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may not fall into the set F = {(x, y, z) | x, y, z ≥ 0}. In such a case, as
well as in the case when rs = 0, one may consider the following min-
imization problem. Define the set

S = {(x, y, z) | x, y, z ≥ 0 and x + y + z = 1}. (26)

Then the weights (p1, p2, p3) can be chosen as

arg min y z x y xy xz yzr t2 3
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A second natural approach is to fit an appropriate Gaussian copula
(17). The most natural choice of Gaussian copula is based on fitting
the Pearson’s correlation coefficient rp. However it is also possible to
fit on the basis of Spearman’s rs or Kendall’s t because of the 1-1
correspondence with r given by the formulae:

arcsinr p
r6
2s

p
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and

arcsint p r2
p= _ i (29)

(see e.g. [10]).
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A third approach generates an Archimedean copula called the Gum-
bel copula

, ; exp log logC u v u vr / /
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with b ≥ 0 being the unique solution of the equation

.e du dv r
12
1

3log log v
s

0

1

0

1 / /b b b1 1

= +- - + -## ] ]] ^g g g h (31)

Note that a positive correlation corresponds to a value of b smaller
than one, a negative correlation to a value larger than one. More details
about copulas can be found in [4, 5, 6, 13, 14].

III. CONSTRUCTION OF THE DISTRIBUTION FUNCTION

A. Summary of the method

Since the approximation described in Section I performs excellent in
case all payments are equally signed, it seems very reasonable to split
up the total present value
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into two separate parts, representing the positive and negative pay-
ments respectively. This means that we write the sum S as

S = S+ – S– (33)

where the terms are defined as
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The expression (x)+ is used as a short-hand notation for max(x, 0).
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Since each of the sums S+ and S– refers to a situation with exclu-
sively positive cash flow payments, the results of [9] can be used to
find an adequate approximation for the distribution function of both
sums.

Starting from these two approximate distribution functions, the
idea then consists of constructing an adequate approximation for the
joint distribution function of S+ and S–, for which we will use the nota-
tion H:

H(s+, s–) = Prob[S+ ≤ s+, S– ≤ s–]. (36)

If this approximation is available, an integration leads to an (approxi-
mate) distribution for the difference of both sums. 

B. Upper bounds for S+ and S–

As explained before, very close upper bounds for S+ and S– can be
found by applying the method of [9]. This results in (see (4))

exp�S Um s F( ) ( )u i
i

n

i i
1

1
1= - +

+
=

-+ !^ ^_h hi (37)

and

exp�S Um s F( ) ( )u i
i

n

i i
1

1
2= - - +

+
=

-- !^ ^_h hi (38)

with U1 and U2 Uniform (0,1) random variables. Note that

Su
+ – Su

– ≤cx Su. (39)

Due to the construction of these sums (see Section II) their distribu-
tion can be derived rather easily. Indeed, we have

S uu
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with vs and ws defined implicitly by
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C. Joint distribution of S+ and S–

The following step consists of mapping the two approximate distri-
butions for the sums into an approximation for their joint distribution.
This approach is very reasonable: the distributions of Su

+ and Su
– are

both very close to the distributions of S+ and S– and in addition they
are very well calculable in contrast with the exact distributions.

This mapping can be done by means of a copula if next to the
approximate distributions the correlation of S+ and S–, or a good esti-
mate, is known. We then get a bivariate distribution for which the
marginals are equal to the approximate distributions of the two terms
in the difference and for which the underlying variables have approx-
imately the correct correlation.

In other words, we construct a copula C(u, v; r̂S) with r̂S the esti-
mated correlation between S+ and S–, or

S Su u
, , ; .rH s s C F s F s S.+ - + -

-+^ ^ ^`h h h j (44)

The copula can be approximated by one of the methods described in
Section II.B, i.e. by fitting a Gaussian copula (17), by means of a suit-
able combination of the special copulas (23) and (24) or by means of
a Gumbel copula (30). In the latter case, the value of b has to be deter-
mined as the unique solution of (31). In Section III.D we discuss how
to choose the appropriate method.

The question still remaining is how to find an estimation r̂S of the
correlation rs. We propose three alternatives.

1. Since Su
+ and Su

– are very close to the original sums S+ and S–, an
obvious option is the use of the correlation rs(Su

+, Su
–), for which we

know that
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Since both (approximate) distributions are known, a suitable value
for this correlation can be found by simulation.

2. As this simulation can be rather time consuming, a better solution
consists of an estimation by means of the correlation between the
first order approximations of S+ and S–.

This can be done by defining the random variables
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with parameters 

j

j .

�

�

e

e

b

b

kk j

n

kk j

n

m

m

( )

( )

k

k

=

=

+

-
=

-

-

-
=

+ !
!

^
^

h
h (47)

In that case, L+ and L– are linear transformations of the first order
approximations to S+ and S– respectively. Indeed, the sum S+ e.g.
can be written as
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and thus the first order approximation equals
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with C chosen appropriately (see e.g. [16]). Note that this approxi-
mation is only accurate if the differences Yj – mj, or equivalently the
volatilities sj , are sufficiently small. 
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The Pearson correlation of the couple (L+, L–) can be calculated
easily as
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Since (L+,L–) has a bivariate normal distribution, the Spearman
correlation can then be found from formula (28).
As the numerical illustrations will indicate (see Section IV), this
second estimate seems to perform excellent, in that it is just as
accurate as the simulated value, but much more easy to calculate.
This result should not surprise, because we expect that a sample of
the variables distributed as (S+, S–) will have ranks very close to
the corresponding sample of variables of the form (L+, L–). It is
well known that empirical versions of rs and t depend only on the
sample ranks.

3. Finally, one can simply use the Gaussian copula with the Pearson’s
correlation coefficient rp(L+, L–) (see (50)). This choice can be
motivated as follows. As mentioned before the dependency structure
of the bivariate distribution (S+, S–) is similar to the dependency
structure of its first order approximation (L+, L–). Therefore, it
looks reasonable to use the copula of (L+, L–) to approximate the
joint distribution of discounted cash flows, which is precisely the
Gaussian copula with parameter rp(L+, L–).

D. A choice of the fitting method – a simulation study

In this section we perform a simulation study of a simple cash flow
of future payments of the form:

S = exp(–Y1)–exp(–Y1–Y2) + exp(–Y1–Y2–Y3) – exp(–Y1–Y2–Y3–Y4), (51)

where Yi are independent, normally distributed, with the mean m =
0.07 and the standard deviation s = 0.1. It is a special case of our sit-
uation of interest, however it is representative in this sense that some
features of the copula (like the tail behavior) observed in this simpli-
fied situation will be expected to hold true in general.
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We consider the joint distribution (S+, S–), where

S+ = exp(–Y1) + exp(–Y1 – Y2 – Y3), (52)

S– = exp(–Y1 – Y2) + exp(–Y1 – Y2 – Y3 – Y4). (53)

We have simulated 10.000.000 random pairs (S+, S–). In our simula-
tion study we perform the analysis on the basis of so-called depen-
dence measures x and x̄ (see [1]) for the empirical copula and theo-
retical copulas considered in the paper.

1. The dependence measure x

A definition of the measure x arises naturally from the concept of tail
independence. Consider any bivariate random vector (X,Y). One says
that (X,Y) is tail independent if

> > ,lim Pr V u U ux 0
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= =
"
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where U = FX (X) and V=FY(Y). One can easily verify that Pr(V > u |
U > u) ∼ 2 – ( ( , ))

log
log

u
C u u] g , where C (·,·) denotes an appropriate copula. In

practice it is often convenient to study a function:

,
log

log
u u

C u u
x 2= -] ]]^g g gh

(55)

(obviously limu→1 x(u) = x). Note that the values of function x(u)
belong to the interval (–∞, 1).

It is straightforward to show that for the Gumbel (extreme value)
copula x(u) is constant. Thus studying empirical estimates of the func-
tion x(u) provides an excellent diagnostic check about the adequacy
of fitting Gumbel copula.

2. The dependence measure x̄

The function x(u) is not a sufficient tool to study the tail dependence
of an underlying bivariate distribution. The most difficult problem to
overcome is the estimation of very high quantiles (our simulation
allows for reliable estimates up to the 99.999% quantile and it does
not seem to suffice). To get some complementary information it is use-
ful to study a dual function x̄(u) defined as follows:
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x̂(u) =
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where C(u, v) = 1–u–v+C(u, v). Some properties of the function x̄ are
given below:

• – 1 ≤ x̄ ≤ 1

• For tail dependent r.v.’s limu→1 x̄(u) = 1

• For tail independent r.v.’s limsupu→1 x̄(u) < 1.

Thus the tail independence can be characterized by the following equi-
valent conditions:

(X, Y) is tail independent ⇔ lim x(u) = 0 ⇔ limsup x̄(u) < 1. (57)
u→1 u→1

E. An analysis of measures x(u) and x̄(u) for (S+, S–)

On Figure 1 the graphs of x and x̄ of the empirical copula of the pair
(S+, S–) are compared to the copulas fitted on the basis of Spearman’s
(rs = 0.88998) and/or Kendall’s (t = 0.71312) coefficients, as described
in Section 2.2. The graphs were obtained on the basis of arguments
up to 0.99999 which has significant influence on the obtained picture –
it is well-known that x for the Gaussian copula converges to 0 (the
Gaussian copula is tail independent) while x̄ for the Gumbel copula
and the mix of copulas has to converge to 1 – thus the final values vis-
ible on the graphs are still quite far from the limits.

The picture is very suggestive: the fits provided by a mix of copu-
las and Gumbel copula is in this case very bad. In particular the
hypothesis of x being constant for the pair (S+, S –) (what is true for
Gumbel copula) has to be rejected. On the other hand the fit provided
by a Gaussian copula is excellent.

However one thing requires a further investigation. In general it is
not clear whether the pair (S+, S–) is tail independent or not. For higher
quantiles one of two things given below must happen:

• if (S+, S–) is tail independent then x converges to 0 while x̄ con-
verges to b < 1;

• if (S+, S–) is tail dependent then x converges to a > 0 while x̄ con-
verges to 1.
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FIGURE 1
Functions x and x̄ for the empirical copula of (S+, S–)
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From the picture there are no clear premises which of the two possi-
bilities holds true. It is well known that the Gaussian copula itself is tail
independent, see e.g. [1]. In Table 1 some empirical results for higher
quantiles are provided. One can observe that the results are not so smooth
anymore. While the sample size seems to be large enough to estimate
with a reasonable precision univariate higher quantiles, an estimation of
the bivariate cumulative distribution function becomes very inadequate.

The results contained in Table 1 suggest that for the pair (S+, S–) it
is more likely that x converges to 0 than x̄ converges to 1. The val-
ues of the function x̄ also vary significantly, however they do not have
any tendency to increase any more while the values of x apparently
decrease. The last increase seems to result from estimation inadequacies.
One has to note that a pace of convergence of x for the Gaussian cop-
ula is very slow. We can expect that the copula of (S+, S–) will behave
similarly.

There are other heuristic arguments supporting the Gaussian copula.

a) The copula of the random vector 

(exp(–Y1), exp(–Y1–Y2), exp(–Y1–Y2–Y3), exp(–Y1–Y2–Y3–Y4)) (58)

is Gaussian itself (compare to (18)). So the couple (S+, S–) is cre-
ated as a linear transformation of a random vector with the depen-
dence structure given by a Gaussian copula. One can expect that the
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TABLE 1
Estimates of x and x̄ for high quantiles

Empirical Gaussian

u x(u) x̄(u) x(u) x̄(u)

0.9999900 0.3599948 0.8369867 0.3012353 0.8112380
0.9999925 0.3733295 0.8458796 0.2946738 0.8123443
0.9999950 0.3799975 0.8531032 0.2857220 0.8138429
0.9999965 0.2857121 0.8186440 0.2781215 0.8151063
0.9999975 0.2799985 0.8203572 0.2711759 0.8162541
0.9999980 0.1499984 0.7473788 0.2666854 0.8169930
0.9999985 0.0666653 0.6639739 0.2610278 0.8179206
0.9999990 0.0999991 0.7142857 0.2532967 0.8191825
0.9999993 0.1428566 0.7585434 0.2467212 0.8202513
0.9999995 0.1999996 0.8002943 0.2407034 0.8212261



copula of (S+, S–) should inherit some properties of the Gaussian
copula, especially the tail behavior.

b) Recall that the estimated values of Spearman’s and Kendall’s cor-
relations for (S+, S–) are given by rs = 0.88998 and t = 0.71312.
Suppose that we treat rs as fixed. We compute tGauss from the for-
mulae (28) and (29) as follows:

. ,arcsin sint p
pr2

2
6

0 71085s
Gauss = =dd nn (59)

which is surprisingly close to the estimated value of t.

In this analysis we have used the values of rs and t estimated from
the simulated sample. However very close results can be obtained by
approximations derived from a first order approximation described in
Section III.C Indeed, using the formula (50) one obtains rp

L = 0.90067,
which gives consequently rs

L = 0.89218 and tL = 0.71385, which are
very close to the simulated values. Thanks to this approximation the
whole methodology does not depend on simulation.

F. Distribution of the present value

Suppose that the exact bivariate distribution of S+ and S– is expressed
by means of a copula as
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Then, starting from this joint distribution, the cumulative distribution
function of the difference S = S+ – S– can be written as
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where U(x) denotes the Heaviside function, or

< .
x

x
x

if
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0 0
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=] g ) (62)

Splitting up the integration over u, and carrying through the integra-
tion over v, this results in
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Substituting Su
+ and Su

– for S+ and S– in (63) respectively provides us
with a appropriate approximation FScop for the distribution of the pre-
sent value (1):

S S S S r, ; .F s dF k u C F k F k s1
s

Scop u u u2
2
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3

+ + -# t] ] ] ]`g g g g j (64)

Note that in case we use a Gaussian parameterized by rp = r, the par-
tial derivative of (17) can be written in a very simple form
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The derivatives of the other copulas considered can also be expressed
easily. For the mix of special copulas, we have 
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and for the Gumbel copula we find
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IV. NUMERICAL ILLUSTRATION

In this last section, we examine the accuracy and efficiency of our
approximation, compared to the exact distribution of the present value
obtained by Monte-Carlo simulation and also compared to the como-
notonic bounds in [9]. We show results for the cumulative distribution
function of the present value in two examples with different cash flow
structures:
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The parameters of the lognormal distributions are chosen as in [9],
i.e. mi = m = 0.07 and si = s = 0.1. For the construction of the copula,
we decided to use a Gaussian copula (see Subsection III.D). Follow-
ing the methods of Subsection III.C, for the first cash flow, the esti-
mated values for the correlation and for the corresponding parameters
r computed from (28) are

• rs(Su
+, Su

–) = 0.6391160 and rp(Su
+, Su

–) = 0.656859;
• rs(L+, L–) = 0.6344521 and rp(L+, L–) = 0.6522439.

Due to the specific structure of the second cash flow, the correlation
is much higher:

• rs(Su
+, Su

–) = 0.9929377 and rp(Su
+, Su

–) = 0.9935884;
• rs(L+, L–) = 0.9928121 and rp(L+, L–) = 0.9934742.

For both examples, we first computed the quantiles of the variables Su
+

and Su
–. Afterwards, a simulation provided us with the first estimator

rs(Su
+, Su

–), while the second estimator rs(L+, L–) obviously followed
from (28) and (50). Note that the estimates rs(Su

+, Su
–) and rs(L+, L–)

are very similar.
Figure 2 shows the quantiles for the present value of the cash flow

with negative payments in the beginning and positive payments after-
wards. One can see that the convex upper bound Su performs very
badly. On the other hand, our copula approximations Scop (we have
calculated the approximation only for rs(L+, L–)) seem to be very
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FIGURE 2
Cumulative distribution for the present value of the first cash flow,

with and without the convex upper bound

accurate in approximating the exact distribution. The convex lower
bound Sl performs best.

The same and more pronounced observations can be made for the
cash flow with payments with alternating signs for which graphs are
shown in Figure 3.
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FIGURE 3
Cumulative distribution for the present value of the second cash flow,

with and without the convex upper bound

In Table 2 and 3 the numerical values for some upper quantiles are
provided. In general they confirm the observations made on the basis
of graphical illustrations.



V. SOME COMMENTS ON THE CONVEX ORDER AND CON-
CLUSIONS

In Kaas, Dhaene and Goovaerts [9] both convex upper and lower
bounds have been derived for a present value of future cash flow with
stochastic interest rates, i.e. one has

Sl ≤cx S ≤cx Su. (68)

There are several benefits of their approach. As mentioned before,
the random distribution of S is mathematically not easy tractable. One
possibility to solve this problem is to substitute the distribution of S
by a handy distribution of its lower bound Sl, which provides an excel-
lent approximation. In actuarial applications however the upper bound
Su should draw even more attention, because it is more consistent with
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TABLE 2
Upper quantiles of the approximations derived for the first cashflow

q LowB MCSim CopAppr ComUpB

0.750 3.5159 3.5136 3.5843 4.2861 
0.900 4.9045 4.8963 5.1536 6.4487 
0.950 5.8851 5.8847 6.2964 7.9282 
0.975 6.8406 6.8500 7.3559 9.3450 
0.990 8.0885 8.0885 8.8204 11.1716 
0.995 9.0300 9.0902 9.9422 12.5400 
0.999 11.2519 11.3996 12.6233 15.7310

TABLE 3
Upper quantiles of the approximations derived for the second cashflow

q LowB MCSim CopAppr ComUpB

0.750 -0.2585 -0.2610 -0.2494 1.5399 
0.900 -0.1640 -0.1638 -0.1350 3.3359 
0.950 -0.1100 -0.0983 -0.0534 4.4781 
0.975 -0.0523 -0.0365 0.0278 5.5249 
0.990 0.0108 0.0442 0.1365 6.8233 
0.995 0.0551 0.1036 0.2207 7.7667 
0.999 0.1498 0.2441 0.4241 9.8955



the principle of “actuarial prudence”. In the case of annuities with sto-
chastic interest rates the analysis relies for example on the assumption
that the interest rates follow a Black-Scholes model, i.e. the volatility
is constant and that the logreturns are normally distributed. These
assumptions have been questioned in the financial literature. Also the
estimates of m and s are burdened with an error. For these reasons it
is recommended to use the upper bound Su as an approximation of the
real distribution, because it allows to take possible additional negative
discrepancies into account.

In this contribution we have considered cashflows with payments
of mixed signs for which the comonotonic upper bound Su performs
rather poorly. We propose to substitute this upper bound by a new
approximation Scop ≤cx Su. This approach allows for significant improve-
ment of the fit to the original distribution. Although one cannot prove
that S ≤cx Scop, it is intuitively clear that Scop is more risky than the orig-
inal distribution and that it can play a role of an upper bound. Indeed,
if the pairs (X, Y) and (Xu, Yu), with X ≤cx Xu and Y ≤cx Yu, have iden-
tical conditional increasing copulas then X + Y ≤cx Xu + Yu, see [12].
In this setting X and Y play the role of S+ and –S– respectively. The
Gaussian copula is conditional increasing if r ≥ 0. For both cashflows
given, the convex ordering can be easily verified from the graphs as the
distribution function of Scop crosses the distribution of S only once.
According to [2] this condition is sufficient to have convex ordering. An
overview of stop-loss premiums for both cases provided in Tables 4 and
5 also suggests that the idea of substituting S by Scop is reasonable. 
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