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Abstract

The predictability of futures returns is investigated using a semiparametric approach where it
is assumed that the expected returns depend nonparametrically on a combination of predic-
tors. We first collapse the forecasting variables into a single-index variable where the weights
are identified up to scale, using the average derivative estimator proposed by Stoker (1986).
We then use the Nadaraya-Watson kernel estimator to calculate (and visually depict) the re-
lation between the estimated index and the expected futures returns. An application to four
agricultural commodity futures illustrates the technique. The results indicate that for each of
the commodities considered, the estimated index contains statistically significant information
regarding the expected futures returns. Economic implications for a non-infinitely risk averse
hedger are also discussed.

JEL classification: G11, G14, C14.
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1 Introduction

Under the assumptions that agents are risk neutral, have common and constant preferences,

and are rational, Samuelson (1965) proves that futures prices fluctuate randomly.1 To see the

consequence for the hedger, consider an agent with a long position in the spot market who

wishes to place a hedge using a futures contract. The relative size of the short position in the

futures market, also called the hedge ratio, has to be determined in some optimal way. The

conventional approach followed in much of the hedging literature is to fully hedge by solely

focusing on the risk associated with the random portfolio return. The optimal hedge ratio is

then chosen to minimize the variance of the portfolio return (see Johnson, 1960; Stein, 1961;

Ederington, 1979; or Baillie and Myers, 1991). Some authors, however, have incorporated both

risk and return in their hedging policy (see for example Hsin, Kuo and Lee, 1994). The optimal

hedge ratio consistent with the mean-variance framework then is the sum of two components.

The first component, a pure hedging term, is the conventional minimum-variance hedge ratio

and the second, the speculative part, is a function of the expected futures return, the risk

aversion parameter and the conditional variance of the futures return. If the hedger is infinitely

risk averse or if the futures prices fluctuate randomly, the speculative component disappears

and the mean-variance hedge ratio reduces to the minimum-variance hedge ratio. When the

agent’s degree of risk aversion is not too high and when the futures prices are predictable, the

agent may wish to exploit the bias in an attempt to trade-off risk against return. In other

words, rejection of Samuelson’s hypothesis indicates a possible risk/return tradeoff in hedging.

The purpose of this paper is to test empirically whether commodity futures prices fluctuate

randomly and discuss the implication of predictability for hedgers. Bessembinder and Chan

(1992) and Miffre (2002) report predictability in various futures markets. They use linear

models with macroeconomic predictors such as the term structure of interest rates, inflation,

the difference between low- and high-grade bond yields etc. McCurdy and Morgan (1988)

reject the martingale hypothesis for the Deutsche Mark futures. The approach adopted here

differs from previous research as it relies on a nonlinear model and basically uses the lagged

underlying spot return, basis and futures return as predictors. There is also more focus on

economic relevance besides statistical significance, in the sense that we measure the impact on

the hedge ratio.

1See also LeRoy (1989) or Campbell, Lo and MacKinley (1996, p 23-24) for a lucid review of the proof.
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To address the predictability issue, we use a semiparametric approach where the expected

return depends nonparametrically on a parametric index. More precisely, we optimally combine

several variables to predict the next period futures return. This enables us to judge the

importance of each individual variable in the index with minimal a priori restrictions on the

parametric functional form: it only requires expected futures returns to be weakly dependent

and to be functionally related, in a time invariant way, to a linear index of the conditioning

variables. The relation between the expected return and the index is left unspecified and may

well be highly nonlinear.

In terms of forecasting methodology, two steps are taken. We first collapse the forecasting

variables into a single-index variable where the optimal weights are identified up to scale, using

the average derivative estimator (ADE) proposed by Stoker (1986). Robust Wald and t-tests

are also performed on the estimated weights in order to analyze the impact of the predictors on

the expected futures returns. We then use the Nadaraya-Watson kernel estimator to calculate

and visually depict the relation between the estimated index and the expected futures returns.

For corn, wheat, soybeans and oats, our results show that the constructed index contains

information for predicting futures returns on a daily horizon. The paper closes by assessing the

relevance of this predictability for the hedger. Our conclusions indicate that, from the hedger’s

point of view, there is a risk/return tradeoff in hedging and that the mean-variance optimal

hedge ratio is substantially affected, even though there is a high uncertainty surrounding it.

The remainder of this paper is organized as follows. Section 2 deals with the methodology.

We motivate the use of the nonparametric Nadaraya-Watson kernel estimator to test the

predictability of futures returns and discuss its applicability when returns are related to several

predictors. The ADE is then used to collapse the many variables into a single index. We

end the section by indicating how to measure the economic relevance of the prediction for

hedgers. Section 3 applies the proposed methodology to real agricultural data. We first test

predictability of the futures returns and then discuss the practical implications for the hedger.

Section 4 concludes.
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2 Methodology

2.1 A nonparametric analysis of return predictability

Let st and ft denote the log price of the spot and the futures contract nearest to maturity,

respectively. We test the hypothesis that futures returns are conditionally unpredictable:

H0,x : E [∆ft|xt−1] = 0,

where xt−1 ≡ (x1,t−1, ..., xq,t−1)′ is a q×1 vector of explanatory variables, available to the agent

at time t − 1. We consider a nonparametric regression method to estimate E [∆ft|xt−1] ≡
m (xt−1), where m (·) is an unknown, possibly nonlinear, scalar-valued function, and we test

the hypothesis that m (·) is identically zero.

The idea behind the nonparametric technique is to replace the conditional expectation with

a local sample average of the futures returns. When x varies continuously, a general class of

nonparametric estimators of the conditional mean E [∆ft|xt−1 = x] can be written as

m̂ (x) ≡ T−1
T∑

t=1

ω

(
x− xt−1

h

)
∆ft, (2.1)

where ω (·) is a weight function, assigning weights to the observations, and h is a bandwidth

or smoothing parameter. The weight function is chosen such that it gives more importance to

observations where xt−1 is close to x. Following standard practice, we adopt the Nadaraya-

Watson kernel estimator by substituting

ω

(
x− xt−1

h

)
≡

K
(
x−xt−1

h

)

T−1
∑T

t=1K
(
x−xt−1

h

)

into (2.1), where K(·) is a q-variate kernel. In the application, we use the Gaussian kernel2

K(u1, ..., uq) =

q∏

i=1

1√
2π
e−

u2i
2 .

It is well known that, under general assumptions, m̂ (x) is a consistent estimate of the true

conditional expectation, m (x) = E [∆ft|xt−1 = x].

The choice of the bandwidth h is of great importance. It regulates the size of the neighbor-

hood around x: if h is very large, the estimate m̂ (x) is computed over a large neighborhood,

2The choice of a “best” kernel is less important than the choice of the “best” bandwidth (see, e.g., Pagan and
Ullah, 1999). What makes the Gaussian kernel attractive is its continuity and the amount of differentiability it
possesses.
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thus giving importance to observations where xt−1 is far away from x, inducing bias in the

estimator. In contrast, if h is very small, m̂ (x) is computed over a small neighborhood, which

increases the variance of the estimator. The optimal choice of h should balance bias against

variance. We use the leave-one-out cross-validation method to obtain h.3 Essentially, this is

a data-driven bandwidth selection procedure that minimizes the mean squared error of the

estimates computed in an out-of-sample setting (see Härdle (1990), Chapter 5).

Testing the null H0,x can be easily done by computing the 95% pointwise confidence bounds

around m̂ (x), for all x. The bounds are derived as follows: the stationary block-bootstrap

of Politis and Romano (1994) is applied to the vector of futures returns and predictors,

(∆ft,xt−1), jointly. Essentially, the block-bootstrap builds series from resampled blocks (of

random length) of the original data.4 This preserves serial correlation, GARCH effects and

non-normalities in the data. For each bootstrapped bivariate series, the Nadaraya-Watson

estimator m̂ (x) is computed, giving the bootstrap distribution of m̂ (x). The bounds follow as

the 2.5th and 97.5th percentiles of the bootstrap distribution.

In practice, we may wish to relate ∆ft to many predictors. As predictors we consider

xt−1 =
(
∆ft−1,∆st−1, (∆ft−1)

2 , (∆st−1)
2 ,∆ft−1∆st−1, ft−1 − st−1

)′
.

However, the nonparametric method applied to estimate conditional expectations may not be

able to handle a large number of conditioning variables, a problem known as “the curse of

dimensionality”. One technique for dimension reduction is to impose restrictions on the types

of nonlinearities one is dealing with. One may assume, for instance, that a linear combination

of the conditioning variables, a so-called index variable zt−1 ≡ x
′
t−1β, is nonparametrically

related to the futures returns. In this case, we get rid of the curse of dimensionality problem

(as the nonparametric estimator becomes a function of an univariate predictor, the linear index

itself) and still allow for important nonlinearities in the relations between x′t−1β and∆ft. This

enables us to track the predictors with the highest information content and to combine them in

an optimal way. The major issue then becomes the estimation of β since, on that assumption,

we can test the null H0,x conditional on the one-dimensional estimated index variable ẑt−1

by substituting xt−1 by ẑt−1 in (2.1). The estimation of β (up to scale) is the object of the

3Note that we select a unique bandwidth h for all q predictors. This is reasonable given that we standardize
all the predictors.

4The length of each block is drawn independently from a geometric distribution. Politis and Romano (1994)
further specify that the original data have to be “wrapped” to ensure that whenever a block goes past the last
observation, it can be filled with observations from the beginning of the original series.
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following section.

2.2 Semiparametric estimation of the index

In this section, we first discuss the estimation of the vector β in an i.i.d. context using the

average derivative technique. We end the section by indicating how it can be applied to times

series.

2.2.1 Average derivative estimators

Consider a model where the conditional expectation of futures returns may be written in the

single-index form

E [∆ft|xt−1] =m (zt−1) . (2.2)

Without specific assumptions on m, Ichimura (1993) searches over a large grid the β̂ that

minimizes the sum of the squares of the residuals ∆ft−m̂
(
x
′
t−1β

)
. This technique enjoys very

good asymptotic properties but is hard to implement because the objective function may not

be concave or unimodal. Alternatively, Stoker (1986) notes that the q×1 vector of coefficients

β can be estimated up to scale via the derivatives of m with respect to xt−1. This works as

follows.

Let δ be the vector of average derivatives of ∆ft on xt−1, i.e. the mean of the q × 1
vector of partial derivatives ∂m

∂xt−1
over the distribution of xt−1. By exploiting the chain-rule of

differentiation, Stoker (1986) observes that

δ ≡ E
[
∂m

∂xt−1

]
= E

[
dm

dzt−1

]
β = γβ, (2.3)

where γ ≡ E [dm/dzt−1] is a scalar, assumed different from zero. Equation (2.3) says that

δ, the vector of average derivatives, is proportional to β, the vector of the coefficients. The

scaling coefficient γ is not important here as it can be absorbed into m (·). Hence, a consistent

estimator of δ measures β up to a scale factor.

Let

ĝ (x) = T−1h−qRP

T∑

t=1

K

(
x− xt−1
hRP

)

and

ĝ′ (x) = T−1h−q−1RP

T∑

t=1

K ′

(
x− xt−1
hRP

)
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be the Rosenblatt-Parzen estimators5 of the marginal density of x and its derivative, respec-

tively. We focus on the estimated negative of the score vector, ŝ (x) ≡ −ĝ′ (x) /ĝ (x) =
−∂ ln ĝ (x) /∂x.

Several consistent ADEs are available in the literature. A simple direct estimator of δ is

given by the sample analog to (2.3):

δ̂
dir
= T−1

T∑

t=1

m̂′ (xt−1) , (2.4)

where m̂′ (xt−1) is an estimate of the q-vector of partial derivatives ∂m
∂xt−1

.

Two alternative estimators of interest follow from the formula in Stoker (1986, Theorem 1)

which connects the average derivative δ to the scores s (x):

δ = cov(s (x) ,∆f), (2.5)

= {cov(s (x) ,x)}−1 cov(s (x) ,∆f), (2.6)

where the second equality derives from the fact that cov(s (x) ,x) equals a q×q identity matrix.6

Each of these two equations provides an estimator for δ. The first equality (2.5) motivates the

indirect one. Following Härdle and Stoker (1989),

δ̂
ind
= T−1

T∑

t=1

ŝ (xt−1)∆ft1[ĝ(xt−1)>b], (2.7)

where 1[·] is the indicator function and b is chosen so that some chosen fraction (between 1%

and 5%) of the observations are dropped. This “trimming” procedure drops observations with

a very small estimated density ĝ (x), the reason being that ŝ (x) may not behave well when

ĝ′ (x) is divided by a very small ĝ (x). The second equality (2.6) points out that the ADE may

be viewed as the instrumental variable slope coefficient of a standard linear regression of ∆ft

on xt−1 with the trimmed scores as the instrumental variable, suggesting the estimator

δ̂
IV
=

(
T−1

T∑

t=1

ŝ (xt−1)x
′
t−11[ĝ(xt−1)>b]

)−1(
T−1

T∑

t=1

ŝ (xt−1)∆ft1[ĝ(xt−1)>b]

)
. (2.8)

5The bandwidth of the Rosenblatt-Parzen estimator hRP may be different from the bandwidth of the
Nadaraya-Watson estimator h. As the kernel is multivariate standard normal and as we standardized the predic-
tors beforehand in the application, we use the popular plug-in estimate of Silverman (1986): hRP = 1.06T

−1/5.
The same bandwidth is used for both estimators ĝ (x) and ĝ′ (x).

6Assuming that g (x) vanishes when x → ±∞ and that m (x) is bounded, we have: E
[
∂m(x)
∂x

]
=

∫ +∞
−∞

∂m(x)
∂x g (x) dx = [m (x) g (x)]+∞−∞ −

∫ +∞
−∞

∂g(x)
∂x m (x) dx = −

∫ +∞
−∞

∂g(x)
∂x m (x) g (x) g−1 (x) dx =

E [m (x) s (x)]. Equation (2.5) follows by noting that E [s (x)] is zero. Similarly, equation (2.6) follows from

cov(s (x) , x) = E [s (x)x] = −
∫ +∞
−∞

∂g(x)
∂x

g−1 (x)xg (x) dx =
∫ +∞
−∞

g (x) dx.
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Stoker (1993) shows that the three estimators (2.4), (2.7) and (2.8) are
√
T -consistent7 and

asymptotically normal. Moreover, they are first-order equivalent8 to each other (Li, 1996).

Stoker (1993) favors δ̂
IV

since it allows its nonparametric components to be less accurately

estimated,9 as the ratio form of the estimator partially cancels out inaccuracy.

Under some general conditions, Härdle and Stoker (1989, Theorem 3.1, Equation (3.6))

show that a consistent estimator of Σ ≡ limT→∞var
[√
T
(
δ̂
ind − δ

)]
is given by

Σ̂ = T−1
T∑

t=1

r̂tr̂
′
t1[ĝ(xt−1)>b] − r̂tr̂

′

t,

where

r̂t = ŝ (xt−1)∆ft1[ĝ(xt−1)>b] + T
−1h−kRP

T∑

t=1

[
h−1RPK

′

(
x− xt−1
hRP

)
(2.9)

−K
(
x− xt−1
hRP

)
ŝ (xt−1)

]
∆ft1[ĝ(xt−1)>b]

ĝ (xt−1)

and r̂t = T−1
∑T

t=1 r̂t1[ĝ(xt−1)>b]. Hence, the covariance matrix of δ̂
ind

is estimated by T−1Σ̂.

Recalling that cov(s (x) ,x) = 1, it is obvious that

√
T
(
δ̂
IV − δ

)
d→ N

(
0,AΣA′

)
,

where A ≡ {cov(s (x) ,x)}−1. Thus, the covariance matrix of δ̂
IV

may be estimated by

T−1ÂΣ̂Â with Â ≡
{
T−1

∑T
t=1 ŝ (xt−1)x

′
t−11[ĝ(xt−1)>b]

}−1
.

2.2.2 Time series issues

The theory for average derivative estimation applies in situations where the regression errors

∆ft − x′t−1δ and the observations are i.i.d. However, the kernel density estimators which are

the ingredients needed to build the ADEs are still consistent and asymptotically normal under

the weaker assumption that the data are stationary and α-mixing10 (Pagan and Ullah (1999),

7Remark that we get a (parametric)
√
T rate of convergence for the ADEs while the ingredients building

this estimator, ĝ (·) and ĝ′ (·), achieve consistency at a slower rate. In fact, averaging reduces the variance of
the estimator. See Ichimura and Todd (2006, p. 77).

8Two estimator, δ̂1 and δ̂2, are first-order equivalent if
√
T
(
δ̂1 − δ̂2

)
p→ 0.

9There is a systematic downward bias in density kernel derivative estimators ĝ′ (x). The same bias applies
to the estimated scores, as ŝ (x) ≡ −ĝ′ (x) / ĝ (x); see Stoker (1993).

10An α-mixing series satisfies a condition on the speed at which the influence of the past events on future
events disappears, as the interval of time between past and future events increases.
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Chapter 2). If so, the ADEs remain consistent11 and asymptotically normal with weakly

dependent observations.

The covariance matrix T−1ÂΣ̂Â has to be corrected to account for heteroskedasticity and

autocorrelation in ∆ft. A heteroskedasticity and autocorrelation consistent covariance matrix

is given by T−1ÂΣ̂
NW

Â where Σ̂NW is the Newey-West estimator of the long-run covariance

matrix of r̂t.
12

2.3 Measuring economic relevance

While we can easily establish whether and when a non-zero forecast is statistically significant,

there is no unique measure of economic relevance. The criterion we adopt is the size of the

impact on the hedge ratios. The risk-averse hedger maximizes a mean-variance objective

function of the return.13 The time-varying optimal mean-variance hedge ratio that incorporates

both risk and return is given by

hµσ
2

t−1 ≡ argmax
ht−1

[
E [∆pt|xt−1]−

A

2
var [∆pt|xt−1]

]
,

=
cov (∆st,∆ft|xt−1)− 1

AE [∆ft|xt−1]
var (∆ft|xt−1)

, (2.10)

where∆pt ≡ ∆st−ht−1∆ft is the portfolio return and A is the relative risk aversion parameter.

This mean-variance hedge ratio hµσ
2

t in (2.10) reduces to the minimum-variance hedge ratio,

hMinV ar
t−1 ≡ argmin

ht−1
var [∆pt|xt−1] ,

=
cov (∆st,∆ft|xt−1)

var (∆ft|xt−1)
, (2.11)

if the hedger is infinitely risk averse, i.e. A → ∞, or if the expected return on the futures

contract E [∆ft|xt−1] is zero. So, when considering non-infinitely risk-averse hedgers, pre-

11Ghysels and Ng (1998) claim that δ̂
IV

remains
√
T -consistent and asymptotically normal invoking the paper

of Chen and Shen (1998) where the
√
T -convergence rate and asymptotic normality of the Sieve extremum class

of estimates (SEE) is obtained for weakly dependent data. In fact, the claim seems incomplete as δ̂
IV

cannot be
written as a SEE. At the very most, it can be seen as an extremum estimator (in the sense defined in Hayashi

(2000), Chapter 7) as δ̂
IV

is a variant of a GMM estimate with ŝ (x) as the instrument. However, such an
extremum estimator does not belong to the class of the SEE.

12We set the lag truncation parameter at
⌊
4(T/100)2/9

⌋
, a common choice.

13See Lien and Tse (2002) or Chen, Lee and Shrestha (2003) for a general review on the hedging literature.
The obvious shortcoming of this model is that, formally, it assumes that there is just one source of risk to
be hedged, and one hedge. However, in view of the low correlations between returns from commodities and
financial assets, a true multi-risk solution would come up with essentially the same hedge strategy.
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dictability or no predictability of the futures prices bears on choice between the mean- and

minimum-variance hedge ratio.

The mean-variance model takes a portfolio point of view, where the producer takes the pay-

offs of the assets as given and merely tries to combine them optimally. In reality, corporate

hedging also affects the payoffs if it reduces the expected costs of financial distress and so on.

Since we cannot possibly include this consideration into the optimal hedge, we cannot estimate

the optimal hedge. Still, we can compute by how much the optimal hedge is changed by any

predictability for a given operational effect: its differential effect on the hedge ratio is measured

by

∆ht−1 ≡ hµσ
2

t−1 − hMinV ar
t−1 =

− 1
AE [∆ft|xt−1]

var (∆ft|xt−1)
. (2.12)

Thus, a sensible measure of relevance is the ratio of excess expected return14 to variance, not

standard deviation. The standard deviation would have been adopted in a Sharpe ratio, a

criterion that is popular among traders even if theoretically it only makes sense for entire

portfolios, not parts thereoff. We consider the impact of predictability on the hedge ratio for

measures of relative risk aversion ranging between two and ten.

3 Application to agricultural futures

We now turn to an empirical application of the technique suggested. We start by describing

the data and discuss the potential spurious predictability arising from the fact that spot and

futures prices are not synchronized. Then we estimate the regression coefficients, graph each

estimated conditional expectation given the constructed index and end the section by discussing

the empirical implications for hedgers.

3.1 Data

The data consist of daily spot and nearest-to-maturity futures closing prices of corn, wheat,

soybeans and oats. Daytime futures closing prices were extracted from the Chicago Board of

Trade tapes and cover the period 1 January 1979 through 31 December 2003 (23 years), for all

four commodities considered. For the same period, the commodity spot prices were extracted

from Datastream. Corn, soybeans and wheat spot prices (in cents/bushel) are the average of

14Since a futures contract is a zero-investment instrument, its percentage change is similar to an excess return
for a regular asset.
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all Central Illinois Elevators prices paid by the Country Elevators to the producers, after 2:00

p.m. Oats spot prices are from Minneapolis, Minnesota. The spot prices are for the following

qualities: oats, No.2; wheat, No.2, Soft Red; soybeans, No.1, Yellow; corn, No.2, Yellow.

Even though both states, Illinois and Minnesota, are in the same time zone, futures returns

and the lagged spot return predictors are overlapping. The reason is that the agricultural

futures market closes before 1:15 pm for the period under consideration, so that their closing

prices miss possible information available after 2:00 pm, the afternoon when spot prices are

set. Suppose we want to predict the Wednesday-Thursday change in the futures price, noon

to noon. Ideally, we should use tuesday-wednesday changes in the spot price, noon to noon.

In reality we only have an afternoon-to-afternoon spot return for Tuesday-Wednesday, which

includes information not yet available when the prediction for the futures market is to be

made and which therefore overestimates the predictive power of the spot return. On the

other hand, the alternative of using an afternoon-to-afternoon spot return for Monday-Tuesday

would underestimate the predictability since all information that became available Tuesday

evening and Wednesday morning is ignored. For our purpose, erring in the conservative side

is preferable to the alternative, so our predictions are based on just price information that is

available. That is, we use the following predictors:

x
∗
t−1 =

(
∆ft−1,∆st−2, ft−2 − st−2, (∆ft−1)2 , (∆st−2)2 ,∆ft−2∆st−2

)′
.

For completeness, however, we also re-estimate everything with xt−1, ignoring the synchroniza-

tion issue. This at least provides an indirect indication as to whether the information ignored

by x∗t−1 is very important and whether the predictability pattern is seriously affected.

Following standard practice in the literature (see for example Bera, Garcia and Roh (1997),

Harris and Shen (2003)), and in order to avoid thin trading and expiration effects, a contract

that expires in month m is replaced with the next expiring contract on the last day of month

m − 1. Specifically, on the last day of m − 1, ∆ft is set equal to the return on the former

contract, while on the first day of m, ∆ft is set equal to the return on the latter contract.

The prediction horizons considered in this paper are one day and one week. Similar horizons

have been considered in the literature; see for instance Baillie and Myers (1991), Bera, Garcia

and Roh (1997), Lien, Tse and Tsui (2002) or Byström (2003). The returns were aggregated

to yield weekly (Friday to Friday) returns. Table 1 gives descriptive statistics on ∆st and

∆ft for each commodity on the 23-year data span. It shows the mean, standard deviation,

skewness, kurtosis and autocorrelations. The returns data are non-normal as evidenced by the
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Table 1: Descriptive statistics on spot and futures returns
mean std. dev. skew. kurt. autocorrel. coef.
×102 ρ1 ρ6 ρ12

Corn, daily, 2/1/1979-31/12/1993
∆st 0.006 0.0144 −0.483 8.977 0.019 0.022 −0.004
∆ft −0.290 0.0122 −0.006 5.656 0.050 −0.007 0.010

Corn, weekly, 19/1/1979-31/12/1993
∆st −0.015 0.0325 −0.496 7.219 0.040 0.027 −0.037
∆ft −1.433 0.0280 0.301 6.826 −0.016 −0.011 −0.000

Wheat, daily, 4/1/1983-31/12/1993
∆st −0.007 0.0172 −0.973 22.108 −0.008 0.004 0.022
∆ft −0.205 0.0137 −0.814 5.539 0.024 0.003 0.021

Wheat, weekly, 6/1/1984-31/12/1993
∆st 0.000 0.0372 −0.661 10.973 −0.020 −0.018 0.018
∆ft −1.003 0.0301 0.423 4.679 0.002 −0.031 0.026

Oats, daily, 3/1/1979-31/12/1993
∆st 0.027 0.0193 −0.079 22.967 −0.029 0.011 −0.001
∆ft 0.341 0.0178 −0.057 5.127 0.057 −0.010 −0.004

Oats, weekly, 19/1/1979-31/12/1993
∆st 0.065 0.0420 −0.056 7.703 −0.071 −0.032 −0.026
∆ft −1.727 0.0415 0.131 7.017 −0.051 −0.019 0.041

Soybeans, daily, 3/1/1979-31/12/1993
∆st −0.023 0.0135 −0.372 6.594 −0.029 −0.021 −0.011
∆ft −0.162 0.0129 −0.151 5.306 −0.017 −0.023 0.003

Soybeans, weekly, 12/1/1979-31/12/1993
∆st 0.084 0.0307 −0.144 6.089 −0.087 −0.012 −0.013
∆ft 0.805 0.0294 −0.159 6.311 −0.054 −0.002 −0.031

high kurtosis and the significant Jarque-Bera statistics (not reported here).

3.2 Predicting futures returns

We first predict ∆ft using x∗t−1. Panels A and B of Table 2 report the ADEs defined in

(2.8) with Newey-West standard errors. As a matter of comparison, we also report the OLS

estimates of the linear regression of ∆ft on the (standardized) predictors x∗t−1. The ADEs

must yield similar values to the OLS estimates if the relation between ∆ft and x∗t−1 is truly

linear. Indeed, both estimators are supposed to measure the same thing because, when m (·)
is the identity function, γ equals unity in (2.3).

For the daily horizon, the Wald statistics reject the hypothesis that all ADEs are jointly

equal to zero. This is less obvious for the OLS estimates. More importantly, with the ADE

model, the lagged futures returns do always carry significant information about the next period

futures returns. In contrast, the two-period lagged spot returns have no significant impact,

with the possible exception of corn with the ADE model and soybeans with the OLS model.

The squared futures and spot returns do not have a significant explanatory power for any
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commodity and the interaction component only matters for corn. Although it is not significant,

the estimated effect of the basis on the futures returns is always negative (with the exception of

soybeans with ADE), as expected. For the weekly horizon, the uniformity of the results across

commodities is much weaker. Moreover, the predictive power of the ADE model disappears for

corn, soybeans and wheat, as indicated by the Wald tests. As can be seen from the two last

columns of Panel B, there is predictability for oats on a weekly horizon. However, when plotting

the response function Ê
[
∆ft|x∗′t−1δ̂

IV
]

(not reported here), it appears that the predictability

area is smaller than the one from the daily horizons. For all these reasons, we focus on daily

data for the remainder of the analysis.

The ADE and OLS estimates are used as weights to construct two daily indices, x∗′t−1δ̂
IV

and x∗′t−1β̂
OLS

. It can be shown (not reported here) that all the ADE indices based on the

full set of (standardized) predictors are mainly driven by (∆st−2)
2 and, to a lesser extent,

by (∆ft−1)
2 and/or ∆ft−2∆st−2. To get some insight, take the example of soybeans: the

ADEs of (∆st−2)
2, (∆ft−1)

2 and ∆ft−2∆st−2 are much larger in absolute value than the

coefficient estimates of ft−2 − st−2, ∆st−2, ∆ft−1. This clearly adds noise to the indices

as these standardized predictors have been shown not to be significant. To circumvent that

problem and to avoid potential data snooping critiques by selecting a particular set of variables

for each different commodity, we construct all indices from the constrained regression where

we impose the coefficients of (∆ft−1)
2, (∆st−1)

2 and ∆ft−1∆st−1 to be zero: that is we use

x
∗∗
t−1 = (∆ft−1,∆st−2, ft−2 − st−2)′ .

ADE and OLS estimates of the constrained regression are reported in Panel C of Table 2.

Estimates of the remaining coefficients are qualitatively similar to the ones reported in Panel

A. In Table 3, we show the descriptive statistics of the constrained ADE and OLS indices.

There is a reassuringly high correlation between the two indices.

The next step is to model the response of the expected futures returns to the estimated index

x
∗∗′
t−1δ̂

IV
. It is worth noting that the Nadaraya-Watson kernel estimator m̂

(
x
∗∗′
t−1δ̂

IV
)

converges

at the optimal nonparametric (univariate) rate T−2/5, even though x∗∗′t−1δ
IV is replaced by the

estimated index x∗∗′t−1δ̂
IV

(Härdle and Stoker (1989), Theorem 3.3). In Figures 1 to 4, we plot

the response functions Ê
[
∆ft|x∗∗′t−1δ̂

IV
]
≡ m̂

(
x
∗∗′
t−1δ̂

IV
)
. To diminish the distorting influence

of the outliers, m̂
(
x
∗∗′
t−1δ̂

IV
)

is estimated on the interval bounded by the sample mean of

x
∗∗′
t−1δ̂

IV
plus and minus twice its standard deviation. A 95% bootstrap pointwise confidence
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Table 2: Average derivative and OLS estimates for prediction of futures returns, 1/1/1979-
31/12/2003.

DAILY Corna,b Wheata,b Soybeansa,b Oatsa,b

ADE OLS ADE OLS ADE OLS ADE OLS
ft−2 − st−2 −0.0023 −0.0001 −0.0079 −0.0102 0.0052 −0.0270 −0.0295 −0.0450

[0.0327] [0.0219] [0.0306] [0.0207] [0.0554] [0.0192] [0.0359] [0.0277]
∆st−2 −0.0696 0.0085 −0.0186 −0.0382 0.0060 0.0403 0.1033 0.0040

[0.0342] [0.0199] [0.0432] [0.0206] [0.0676] [0.0203] [0.0711] [0.0293]
∆ft−1 0.1067 0.0593 0.1391 0.0340 −0.0906 −0.0255 0.1674 0.0983

[0.0291] [0.0223] [0.0366] [0.0213] [0.0380] [0.0232] [0.0429] [0.0294]

(∆ft−1)
2 0.7959 0.0073 −0.0448 −0.0003 1.5929 −0.0274 0.0510 −0.0087

[0.7830] [0.0280] [0.3835] [0.0333] [3.1065] [0.0282] [0.1559] [0.0321]

(∆st−2)
2 1.3375 −0.0557 −0.3539 −0.0315 2.1606 −0.0146 0.0405 0.0575

[1.3390] [0.0452] [1.1846] [0.0252] [4.5095] [0.0667] [0.5080] [0.0453]
∆ft−2∆st−2 0.4007 0.1017 −0.0166 0.0364 0.4939 0.0487 0.2826 0.0448

[0.1825] [0.0415] [0.1309] [0.0292] [0.4660] [0.0538] [0.1704] [0.0433]
Wald stat 21.9420 11.5755 15.4056 5.9680 13.0639 11.7784 21.6758 19.5770
p-val. 0.0012 0.0721 0.0173 0.4268 0.0420 0.0671 0.0014 0.0033

WEEKLY Corna,b Wheata,b Soybeansa,b Oatsa,b

ADE OLS ADE OLS ADE OLS ADE OLS
ft−2 − st−2 −0.1828 0.1256 0.2253 0.0396 −0.1599 −0.1163 −0.3212 −0.1107

[0.1662] [0.1278] [0.1560] [0.0977] [0.1591] [0.0822] [0.1741] [0.1402]
∆st−2 0.1687 0.2584 0.2180 0.0222 0.1393 0.2037 0.1302 0.1860

[0.2005] [0.0957] [0.1826] [0.1136] [0.1622] [0.0988] [0.2517] [0.1295]
∆ft−1 −0.0005 −0.0519 −0.0887 0.0592 0.0647 −0.1569 −0.1498 −0.2329

[0.2372] [0.1130] [0.1807] [0.0919] [0.1404] [0.1126] [0.2193] [0.1820]

(∆ft−1)
2 0.4496 0.0969 −1.6213 −0.1743 −1.9356 −0.2313 −0.7590 0.0055

[3.4684] [0.2231] [0.7933] [0.1476] [2.4883] [0.1393] [3.0644] [0.3014]

(∆st−2)
2 0.0873 0.1877 −2.6008 −0.1955 −4.0273 −0.5643 −0.8692 −0.2551

[4.2104] [0.1471] [1.8326] [0.0705] [2.9643] [0.3131] [4.8540] [0.2407]
∆ft−2∆st−2 0.1823 −0.1096 −0.7113 0.2624 1.2849 0.8855 2.4740 0.5725

[0.6581] [0.2461] [0.5008] [0.1387] [0.8733] [0.3599] [0.8414] [0.2331]
Wald stat 3.2242 12.8650 13.2046 20.4691 7.3072 13.3083 16.6477 14.5278
p-val. 0.7802 0.0452 0.0599 0.0023 0.2934 0.0384 0.0107 0.0243

DAILY Corna,b Wheata,b Soybeansa,b Oatsa,b

ADE OLS ADE OLS ADE OLS ADE OLS
ft−2 − st−2 −0.01181 0.00307 −0.01059 −0.00995 −0.00376 −0.02577 −0.05543 −0.04971

[0.03177] [0.02085] [0.02919] [0.02046] [0.02835] [0.01993] [0.03358] [0.02919]
∆st−2 −0.03735 0.00693 −0.03378 −0.02849 0.00985 0.03855 0.05313 0.00101

[0.02661] [0.02096] [0.03059] [0.01934] [0.02669] [0.02092] [0.05814] [0.02864]
∆ft−1 0.06404 0.06039 0.08568 0.03418 −0.08398 −0.02439 0.12370 0.09913

[0.02403] [0.02290] [0.02906] [0.02144] [0.02522] [0.02354] [0.03406] [0.02918]
Wald stat 8.9393 7.0092 9.9362 4.3164 11.3207 7.5010 17.2495 13.498
p-val. 0.0301 0.0716 0.0191 0.2293 0.0101 0.0573 0.0006 0.0037

a. Newey-West standard errors in brackets and robust Wald tests.
b. All estimates and standard errors have been multiplied by 102.

interval is also added.15

15The optimal cross-validation bandwidths are 0.0007185, 0.0005870, 0.0005670 and 0.0009252 for corn, wheat,
soybeans and oats, respectively. The trimming bound is set such that 5% of the observations are dropped. We
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Figure 1: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗t−1 = (ft−2 − st−2,∆ft−1,∆st−2)′; corn, 1/1/1979-31/12/2003.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

ADE index

E
s
ti
m
a
te
d
 e
x
p
e
c
te
d
 r
e
tu
rn

WHEAT

Expected return

95% conf. bound

95% conf. bound

Figure 2: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗t−1 = (ft−2 − st−2,∆ft−1,∆st−2)′; wheat, 1/1/1979-31/12/2003.
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Figure 3: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗t−1 = (ft−2 − st−2,∆ft−1,∆st−2)′; soya, 1/1/1979-31/12/2003.
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Figure 4: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗t−1 = (ft−2 − st−2,∆ft−1,∆st−2)′; oats, 1/1/1979-31/12/2003.
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Table 3: Descriptive statistics of the daily ADE- and OLS-based indices with 3 predictors,
1/1/1979-31/12/2003.

DAILY Corn Wheat
ADE OLS ADE OLS

mean −1.54× 10−19 −9.54× 10−8 −3.10× 10−20 −1.69× 10−8
var. 7.25× 10−4 3.77× 10−7 9.15× 10−4 2× 10−7
skew. 0.0468 −0.0066 0.0414 0.1087
kurt. 5.2218 5.8684 5.4424 6.9870
correl. 0.7744 0.9430

Soybeans Oats
ADE OLS ADE OLS

mean −3.17× 10−20 −4.41× 10−8 4.57× 10−8 1.98× 10−7
var. 8.43× 10−4 2.70× 10−7 0.0015 1.26× 10−6
skew. 0.1013 −0.1527 0.2057 0.2597
kurt. 4.9073 6.4622 5.9414 4.7963
correl. 0.5394 0.9383

The confidence bounds confirm that there exists predictability through the index that we

consider, notably when x∗∗′t−1δ̂
IV

takes on negative values. For corn and wheat, this happens

when the lagged futures return takes on large negative values and/or the two-period lagged

spot return and basis take on large and positive values. For oats, the index is negative when

the two-period lagged basis is positive and the two-period lagged spot and one-period lagged

futures returns are negative. For soybeans, there is predictability when the basis and the

lagged futures return are positive and the two-period lagged spot return is negative. We also

observe an “asymmetry” in predictability: all indices are only able to predict negative futures

returns. The graphs also indicate that the relation between x∗∗′t−1δ̂
IV

and the expected return

deviates from linearity.

Recall that all of the above ignores information that became available in the late afternoon

and the subsequent morning preceding the prediction period, which is noon to noon. In that

sense, what we found thus far is a lower bound on the predictability. Including the missing

information is possible only at the cost of including also the early-afternoon data, which is not

yet available when the prediction interval starts. Still, doing the tests with this set of data

provides an upper bound on the predictability and allows us to check whether the forecasting

pattern observed thus far is much affected by subsequent information. All results are reported

in Tables 5 and 6 in the appendix. For the same reasons as above, we ended with the three

use 100 bootstrap replications and choose an average block length of 10 periods. This value seems reasonable

given the weak autocorrelation in the daily data.
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following predictors:

x
∗∗∗
t−1 = (∆ft−1,∆st−1, ft−1 − st−1)′ .

The ADEs are presented in Panel C of Table 5. The spot return predictor becomes significant,

which is not surprising when the period covered by the spot return overlaps with that covered

by the futures return. Although not significant, the sign of the basis is still negative.

The curves m̂
(
x
∗∗∗′
t−1 δ̂

IV
)

are graphed in Figures 5 to 8.16 In order to compare both

approaches, we focus on the area where there is predictability, notably the area where the

index assumes negative values. Notice that, for all commodities, the upper confidence bounds

are below the zero line. Thus, here, a way to compare both approaches with respect to H0,x

is to compare the distance from the 95% upper bounds to the zero line. Indeed, the further

away an upper bound is from the zero line, the stronger the rejection is of the null H0,x and

vice versa. For corn, soybeans and oats in Figure 5, 7 and 8, the upper confidence bound

are generally further away from zero line than in Figure 1, 3, and 4, indicating a stronger

rejection of H0,x; only in Figure 6 (wheat) is the upper bound closer than its analog in Figure

2, suggesting a weaker rejection ofH0,x. In short, the extra information would have allowed the

trader to make more pronounced negative forecasts, but would not have affected the near-zero

forecasts. This confirms the asymmetry we established before: there is no indication that the

information missed in the base test would have allowed to predict also positive returns.

3.3 Economic implications

In this section we analyze the consequences of the observed predictability for the hedger. Recall

that, for the hedger, our question is whether any predictability has a noticeable impact on the

optimal hedge ratio. For illustrative purposes, we first compute the hedge ratio at the one-day

horizon for the pure hedging model, the static ratio ĥMinV ar = ĉov(∆st,∆ft)
v̂ar(∆ft)

. Next we compute

the differential impact of the predictability on the hedge ratio, for values of A between two

and ten and for a given value of the ADE index, set at the sample mean of the ADE index

minus one standard deviation:

∆ĥt−1 = −
1
AÊ

[
∆ft|ADE = ADE− σ̂ (ADE)

]

v̂ar (∆ft)
.

16The optimal cross-validation bandwidths are 0.0012498, 0.0006867, 0.001044 and 0.0014072 for corn, wheat,
soybeans and oats, respectively. The trimming bound stays the same.
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Figure 5: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗∗t−1 = (ft−1 − st−1,∆ft−1,∆st−1)′; corn, 1/1/1979-31/12/2003.
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Figure 6: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗∗t−1 = (ft−1 − st−1,∆ft−1,∆st−1)′; wheat, 1/1/1979-31/12/2003
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Figure 7: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗∗t−1 = (ft−1 − st−1,∆ft−1,∆st−1)′; soya, 1/1/1979-31/12/2003
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Figure 8: Estimated conditional expected return in function of the ADE index constructed
with 3 predictors x∗∗∗t−1 = (ft−1 − st−1,∆ft−1,∆st−1)′; oats, 1/1/1979-31/12/2003
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Table 4: Comparison of mean-variance and minimum-variance hedge ratios, 1/1/1979-
31/12/2003.

ĥMinV ar = ĉov(∆st,∆ft)
v̂ar(∆ft)

∆ĥt−1 = −
1

A
Ê[∆ft|·]

U B

v̂a r(∆ft)

Ê
[
∆ft|ADE = ADE− σ̂ (ADE)

]UB
A =∞ A = 10 A = 5 A = 3.5 A = 2

Corn ≈ −0.010% 0.98 0.07 0.13 0.19 0.34
Wheat ≈ −0.025% 0.92 0.13 0.27 0.38 0.67
Oats ≈ −0.025% 0.46 0.08 0.16 0.23 0.39

Soybeans ≈ −0.090% 0.93 0.54 1.08 1.55 2.70

ĥMinV ar = ĉov(∆st,∆ft)
v̂ar(∆ft)

∆ĥt−1 = −
1

A
Ê[∆ft|·]

v̂a r(∆ft)

Ê
[
∆ft|ADE = ADE− σ̂ (ADE)

]
A =∞ A = 10 A = 5 A = 3.5 A = 2

Corn ≈ −0.050% 0.98 0.34 0.67 0.96 1.68
Wheat ≈ −0.100% 0.92 0.53 1.07 1.52 2.66
Oats ≈ −0.075% 0.46 0.24 0.47 0.68 1.18

Soybeans ≈ −0.150% 0.93 0.90 1.80 2.58 4.51

ĥMinV ar = ĉov(∆st,∆ft)
v̂ar(∆ft)

∆ĥt−1 = −
1

A
Ê[∆ft·]

LB

v̂a r(∆ft)

Ê
[
∆ft|ADE = ADE− σ̂ (ADE)

]LB
A =∞ A = 10 A = 5 A = 3.5 A = 2

Corn ≈ −0.090% 0.98 0.60 1.21 1.73 3.02
Wheat ≈ −0.150% 0.92 0.80 1.60 2.28 4.00
Oats ≈ −0.100% 0.46 0.32 0.63 0.90 1.58

Soybeans ≈ −0.250% 0.93 1.50 3.00 4.29 7.51

Note: Ê
[
∆ft|ADE = ADE− σ̂ (ADE)

]LB (UB)
is the 95% confidence lower (upper) bound of the esti-

mated expected return given that the index equals its sample mean minus once its standard deviation.
Ê
[
∆ft|ADE = ADE− σ̂ (ADE)

]
is the estimated expected return given that the index equals its sample

mean minus once its standard deviation.

Results are reported in Table 4 for all commodities. As expected, the static hedge ratios

ĥMinV ar are close to unity, with the exception of oats. The reason might be that the oats spot

market is the Minneapolis exchange whereas the futures contract is traded on the Chicago

Board of Trade. For a degree of risk of aversion A = 3.5, the impact of the mean on ĥµσ
2

t−1

is potentially huge, even when using the 95% upper bound of the estimated futures return

Ê
[
∆ft|ADE = ADE− σ̂ (ADE)

]UB
instead of the central forecast. But even for A = 10,

central-forecast hedge ratios still rise by at least 30 percent, and occasionally even almost 100

percent. It is also clear that the large 95% confidence interval around the estimated expected

mean, has a high impact on the mean-variance hedge ratios, but never to the extent that it

would make the minimum-variance hedge a serious candidate for the optimal ratio. In short, we

can conclude there is an economically important tradeoff between risk and return in hedging,

for a certain range of negative values of the index, even though the mean-variance hedge ratio

remains imprecisely determined due to the lack of precision in the predictability.

For the academic economist, the puzzle is why any predictability is confined to negative

forecasts. It is hard to believe that the commodity futures’ non-diversifiable risk, its covariance

with the pricing kernel, goes from zero to negative on a day to day basis; in fact, estimated
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betas for commodity futures have turned positive, recently.17 There seems to be an unidentified

cost in going short.

4 Conclusion

In this paper, we investigated the predictability of the agricultural futures returns and its

practical implications. The question was addressed via a semiparametric approach where a

parametric index combining several predictors is nonparametrically related to the expected

futures returns.

We find statistically strong empirical evidence against Samuelson’s (1965) hypothesis. Our

results indicate that each estimated index contains statistically significant information regard-

ing the expected futures returns. This finding has a large effect on the optimal mean-variance

hedge ratio, even though it is still estimated rather imprecisely.

17The Economist, Oct 12, 2006.
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Appendix: Additional results

Table 5: Average derivative and OLS estimates for prediction of futures returns, 1/1/1979-
31/12/2003.

DAILY Corna,b Wheata,b Soybeansa,b Oatsa,b

ADE OLS ADE OLS ADE OLS ADE OLS
ft−1 − st−1 −0.0352 −0.0044 −0.0327 −0.0124 −0.0278 −0.0400 −0.0369 −0.0574

[0.0316] [0.0205] [0.0317] [0.0207] [0.0296] [0.0210] [0.0354] [0.0284]
∆st−1 0.2048 0.1561 0.1617 0.0506 0.3542 0.1880 0.1410 0.0511

[0.0532] [0.0337] [0.1004] [0.0328] [0.0717] [0.0464] [0.0736] [0.0303]
∆ft−1 −0.1023 −0.0691 −0.0424 −0.0029 −0.3847 −0.1899 0.1590 0.0837

[0.0508] [0.0338] [0.0950] [0.0321] [0.0673] [0.0454] [0.0487] [0.0314]

(∆ft−1)
2 0.4237 0.0312 0.0451 −0.0188 −0.8803 0.0756 0.2273 −0.0075

[0.7973] [0.0731] [3.8606] [0.0592] [0.8956] [0.0840] [0.4874] [0.0355]

(∆st−1)
2 0.6959 −0.0098 0.8701 0.0113 −0.9877 −0.0014 1.0112 0.0022

[1.1491] [0.0389] [9.7229] [0.0241] [1.0810] [0.0551] [1.2205] [0.0374]
∆ft−1∆st−1 −0.6078 0.0007 −0.0460 0.0273 1.3399 −0.1091 −0.2350 0.0160

[1.1443] [0.0895] [5.1060] [0.0572] [1.3850] [0.1007] [0.3540] [0.0446]
Wald stat 23.7490 33.3857 19.7401 5.1510 34.2444 27.2121 25.6076 17.1708
p-val. 0.0006 0.0000 0.0031 0.5246 0.0000 0.0001 0.0003 0.0087

WEEKLY Corna,b Wheata,b Soybeansa,b Oatsa,b

ADE OLS ADE OLS ADE OLS ADE OLS
ft−1 − st−1 −0.1543 −0.0033 −0.0287 0.0165 −0.0094 −0.0326 −0.3800 −0.1749

[0.1507] [0.0986] [0.1467] [0.0877] [0.1434] [0.0930] [0.1882] [0.1685]
∆st−1 −0.2419 0.2083 −0.0888 −0.0347 0.0850 −0.4199 0.1611 0.1768

[0.3349] [0.2059] [0.3260] [0.2136] [0.3011] [0.2405] [0.2761] [0.2121]
∆ft−1 0.1789 −0.2613 0.0448 0.0573 0.0250 0.2509 −0.2746 −0.3132

[0.3237] [0.2013] [0.3103] [0.1907] [0.2974] [0.2348] [0.3018] [0.2464]

(∆ft−1)
2 1.8086 0.3748 −1.0830 −0.4214 −0.1301 1.1520 −2.6250 −0.2624

[2.5574] [0.4687] [1.8978] [0.3191] [1.9616] [0.7713] [7.2469] [0.3834]

(∆st−1)
2 0.8783 −0.2568 −0.0141 0.2305 0.1405 0.0063 −0.9773 0.1004

[2.7560] [0.1380] [3.2574] [0.1478] [1.8111] [0.4503] [8.1461] [0.1451]
∆ft−1∆st−1 −2.4121 −0.0543 0.2330 0.2083 0.2643 −1.3097 1.5323 0.3587

[3.2103] [0.4138] [2.3315] [0.3356] [2.9735] [1.0325] [5.6145] [0.3145]
Wald stat 3.5738 20.4350 4.5205 4.8219 0.8464 7.3869 11.1592 7.6810
p-val. 0.7341 0.0023 0.6066 0.5669 0.9908 0.2865 0.0836 0.2624

DAILY Corna,b Wheata,b Soybeansa,b Oatsa,b

ADE OLS ADE OLS ADE OLS ADE OLS
ft−1 − st−1 −0.0400 −0.0039 −0.0280 −0.0108 −0.0254 −0.0454 −0.0498 −0.0576

[0.0310] [0.0197] [0.0278] [0.0203] [0.0288] [0.0224] [0.0342] [0.0295]
∆st−1 0.2150 0.1563 0.1470 0.0531 0.3434 0.2133 0.1033 0.0507

[0.0459] [0.0315] [0.0606] [0.0324] [0.0632] [0.0554] [0.0622] [0.0303]
∆ft−1 −0.1345 −0.0694 −0.0448 −0.0056 −0.3638 −0.2112 0.1422 0.0835

[0.0430] [0.0333] [0.0514] [0.0287] [0.0607] [0.0524] [0.0407] [0.0311]
Wald stat 26.2838 30.2952 11.0370 4.4634 37.1776 19.9870 28.4503 14.4058
p-val. 0.0000 0.0000 0.0115 0.2156 0.0000 0.0002 0.0000 0.0024

a. Newey-West standard errors in brackets and robust Wald tests.
b. All estimates and standard errors have been multiplied by 102.
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Table 6: Descriptive statistics of the daily ADE- and OLS-based indices with 3 predictors,
1/1/1979-31/12/2003.

DAILY Corn Wheat
ADE OLS ADE OLS

mean −4.91× 10−19 −3.23× 10−8 1.03× 10−19 −1.48× 10−7
var. 1.78× 10−6 1.12× 10−6 1.51× 10−6 0.26× 10−6
skew. −0.8557 −0.8688 −2.2868 −1.4390
kurt. 20.8220 16.4510 48.8536 28.6041
correl. 0.9327 0.9842

Soybeans Oats
ADE OLS ADE OLS

mean −2.33× 10−19 −9.37× 10−8 3.66× 10−18 2.03× 10−7
var. 2.95× 10−6 1.30× 10−6 4.53× 10−6 1.60× 10−6
skew. 0.1623 0.0209 0.0659 0.2601
kurt. 27.8915 25.3289 7.0035 5.9467
correl. 0.9580 0.9723
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