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Abstract: One of the main supply chain deficiencies is the bullwhip effect: demand 

fluctuations increase as one moves up the supply chain from retailer to manufacturer. 

The Beer Distribution Game is widely known for illustrating these supply chain 

dynamics in class. In this paper we present a spreadsheet application, exploring the 

two key causes of the bullwhip effect: demand forecasting and the type of ordering 

policy. We restrict our attention to a single product two-echelon system and illustrate 

how tuning the parameters of the replenishment policy induces or reduces the 

bullwhip effect. We also demonstrate how bullwhip reduction (dampening the order 

variability) may have an adverse impact on inventory holdings and/or customer 

service. As such, the spreadsheets can be used as an educational tool to gain a clear 

insight into the use of inventory control policies and forecasting in relation to the 

bullwhip effect and customer service.  

 

Keywords: Bullwhip effect, replenishment rules, forecasting techniques, spreadsheet 
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1 Introduction: teaching the bullwhip effect 

The bullwhip effect is a well-known phenomenon in supply chain management. In a 

simple, linear supply chain that consists of a manufacturer, a distributor, a wholesaler 

and a retailer, we observe that the retailer’s orders to the wholesaler display greater 

variability than the end-consumer sales, the wholesaler’s orders to its distributor show 

even more oscillation, and the distributor’s orders to the manufacturer are most 

volatile. 

 

The bullwhip effect and its dynamics are often illustrated in class by the “Beer 

Distribution Game”, developed at MIT (Sterman 1989). It is by far the most popular 

simulation and the most widely used game in many business schools, supply chain 

electives and executive seminars. Simchi-Levi et al. (2003) developed a computerized 

version of the Beer Game, and several versions of the Beer Game are nowadays 

available, ranging from manual to computerized and even web-based versions (e.g. 

Machuca and Barajas 1997, Chen and Samroengraja 2000, Jacobs 2000). 

 

Beyond the games, real cases are used as teaching tools to introduce and to address 

the bullwhip effect, e.g. the case study Barilla SpA (Hammond 1994), a major pasta 

producer in Italy, Campbell Soup’s chicken noodle soup experience (Cachon and 

Fisher 1997), and more recently, Kuper and Branvold (2000), Hoyt (2001) and Peleg 

(2003). 

 

In this paper we explore the two key causes of the bullwhip effect: demand 

forecasting and the type of ordering policy used (Lee et al. 1997a). An increasing 

number of studies has already been devoted to the adverse effects of demand signaling 

and improper forecasting. E.g. Watson and Zheng (2002) use formal models to 

address manager’s over-reaction to demand changes and the misuse of forecasting 

approaches. Lee et al. (1997b) provide a mathematical proof that variance 

amplification takes place when the retailer adjusts his ordering decision based on 

demand signals. Dejonckheere et al. (2003) and Chen et al. (2000) demonstrate that 

the use of “non-optimal” forecasting schemes, such as the exponential smoothing and 

moving average forecast, always lead to bullwhip, independent of the observed 

demand pattern. Disney and Lambrecht (2008) offer a recent overview. 
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However, when elaborating on these concepts in class, students (and especially 

executives) dislike complex mathematics. They predominantly want to obtain insights 

in the dynamics of the bullwhip problem. Besides they prefer a one-fits-all solution 

rather than a dozen different formulas.  

 

To meet these challenges, we developed a user-friendly and easy to understand 

spreadsheet application, designed in Microsoft Excel. Spreadsheets have been used 

among others by Munson at al. (2003) to teach the cost of uncoordinated supply 

chains. Our spreadsheets explore a series of base-stock (order-up-to) replenishment 

policies and forecasting methods confronted with different demand processes. Where 

available, we provide the analytical results that we have found in the literature. This 

way all available results from literature are grouped in one tool, which can easily be 

consulted by students and executives. The spreadsheets have been useful in core 

operations management courses at undergraduate and MBA level, and in supply chain 

electives. 

 

The objective of this paper is threefold. First, the basic spreadsheet calculations help 

the students to obtain insights in the bullwhip dynamics. Second, all results that are 

currently available in the literature are collected into one tool. Third, using simulation 

analysis, we can go beyond the existing analytical results. As such, the spreadsheet 

models guide the decision maker through a fairly complicated interplay between order 

fluctuations, inventory fluctuations and customer service in a variety of demand 

process scenarios and forecasting techniques. One can easily evaluate the impact of 

different replenishment strategies: what often appears to be a rational policy of the 

decision maker may create tremendous order amplification. On the other hand, 

reducing the bullwhip effect may hurt customer service (Disney and Lambrecht 

2008). 

 

Our spreadsheet simulation model differs from the existing models (e.g. Simchi-Levi 

et al. 2003) in several ways. First, we bring several ‘demand signal processing’ 

methods together in a single spreadsheet application, ranging from the early work by 

Lee et al. (1997a), to the traditional (moving average and exponential smoothing) 

forecasting methods towards the more complex (merely academic) mean squared 
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error forecasting method. Second, we extend the traditional standard order-up-to 

replenishment policy to a generalized (or “smoothed”) order-up-to policy, which is 

able to dampen or smooth the order variability for any demand process. Finally, we 

consider both inventory related costs and production switching costs as performance 

measures. They should both be analyzed as the two measures are simultaneously 

affected by the replenishment rule. 

 

In the next section we present our spreadsheet model. Section 3 analyses the impact of 

the standard order-up-to policy with different forecasting techniques on the bullwhip 

effect. Section 4 describes a smoothed order-up-to policy and we discuss its impact on 

customer service.  

 

2 Description and use of the spreadsheet model 

The spreadsheet model is designed to illustrate the ordering dynamics between two 

supply chain partners. We have previously used it in a debriefing session after having 

played the Beer Distribution Game, but also separately to illustrate the impact of the 

order-up-to replenishment policy in a supply chain context. Ideally, the students have 

already covered basic inventory management techniques, including the periodic 

review policy, where a variable amount of product is ordered at fixed periods (e.g. 

daily or weekly), as opposed to the EOQ policy (continuous review), where a fixed 

amount of product is ordered at variable time instants. 

 

One may start the class by briefly recapitulating the periodic review order-up-to 

policy. If this technique has not been covered yet, the instructor may spend some time 

on it as this policy is common practice in retailing and is optimal when there is no 

fixed ordering cost and both holding and shortage costs are proportional to the volume 

of on-hand inventory or shortage (Zipkin 2000). These assumptions hold in many 

practical cases, as well as in the standard setup of the Beer Distribution Game.  

 

Once it is clear how this ordering policy works, the instructor may guide the students 

through the simulation table for one or two periods (see section 2.1), and explain to 

them how this method ‘simulates’ a random demand and calculates the orders 

according to the chosen replenishment rule. The remaining of the session is then 
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devoted to analyzing the impact of tuning the parameters of the replenishment rule 

(see section 2.2) on the ordering behavior and supply chain performance (section 2.3). 

It is not needed to go through the simulation table after each run, but the students 

should know they can easily check the outcome by going through the same 

calculations. We suggest a story line at the end of each of the following sections, 

depending on what exactly the instructor wants to cover in class (sections 3.6 and 

4.5). 

 

The following has worked well. The instructor asks the students to recapitulate the 

periodic review order-up-to technique at home and to simulate a number of scenarios 

before class. The same sequence of scenarios can be used as described in sections 3.6 

and 4.5. In class the instructory may spend time discussing their findings, the use of 

the parameters, and the rationale behind the results. 

 

In the remainder of this section we briefly focus on (1) the simulation table, (2) the 

parameter selection (input section), and (3) the performance measurement (output 

section). The spreadsheet model can be downloaded here [insert link to download the 

spreadsheet file]. We refer to the student manual to tell the students how to simulate 

using the spreadsheet models [insert link to download the student manual] and to the 

instructor manual for the detailed mathematics [insert link to download the instructor 

manual]. 

 

2.1 Simulation table 

Our model follows the standard setup of the Beer Distribution Game (Sterman 1989), 

where we have the following sequence of events in each period:  

(1) First, incoming shipments from the upstream supplier are received and placed in 

inventory. Assuming that the supplier has ample stock, these shipments correspond to 

the order placed Tp + 1 periods ago. Tp refers to the deterministic transportation delay 

and there is 1 period ordering delay (due to the sequence of events);  

(2) Next, a random customer demand is observed and either fulfilled (if enough on-

hand inventory available) or placed in backlog. A positive net stock represents 

inventory immediately available to meet demand, whereas a negative net stock refers 

to a backlog (demand that could not be fulfilled and still has to be delivered). The 
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pipeline inventory represents the items ordered but not yet arrived due to the 

transportation lead time. The inventory position is the sum of the net stock and the 

pipeline inventory.  

(3) Finally, a new order is placed to raise the inventory position to the order-up-to 

level: 

order quantity = order-up-to level – (net stock + pipeline inventory) (1) 

 

These numbers can easily be tracked in the simulation table. We refer to the instructor 

manual for the exact mathematics behind the calculations [insert link to download the 

instructor manual]. In classroom it is sufficient to provide a screenshot of some 

periods only (see Figure 1). Note that the simulation table also contains the forecast of 

next period’s demand. We need this number to calculate the order-up-to (OUT) level. 

In the next section we discuss in more detail how to obtain this demand forecast and 

the OUT level. 

 

period receive demand net stock pipeline demand order-up-to order inventory switching

inventory forecast level quantity costs costs

10 108 110 19 225 110,36 353,60 110 9,50 6,00

11 112 113 18 223 110,89 355,18 114 9,00 8,00

12 113 122 9 224 113,11 361,85 129 4,50 30,00

13 110 120 -1 243 114,49 365,98 124 20,00 10,00

14 114 119 -6 253 115,39 368,69 122 120,00 4,00

15 129 117 6 246 115,71 369,66 118 3,00 8,00

16 124 120 10 240 116,57 372,23 122 5,00 8,00  

Figure 1: Spreadsheet example of a standard OUT policy with Tp =2 

 

Finally, we compute the incurred costs. The inventory cost consists of a holding cost 

per unit in inventory (when net stock is positive) and a shortage cost per unit 

backlogged (negative net stock). The production switching cost is incurred for 

changing the level of production in a period. Assuming the production level is equal 

to the order quantity placed, the change in production is given by the difference in 

order quantity versus the previous period. 

 

2.2 Parameter selection 

In the input section, the user defines the parameters of the customer demand process 

and the forecasting technique. The cells of the parameters that can be changed are 

shaded. We blocked the cells with automatic calculations in the spreadsheets in order 
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to avoid mistakes and miscalculations. The protection can easily be removed using the 

Unprotect Sheet command (Excel 2003: Tools menu, Protection submenu – Excel 

2007: from the Ribbon, select the Review command tab). We refer to the student 

manual for the description how to input the parameters, and to the instructor manual 

for the mathematics behind the input section. 

 

2.3 Performance measurement 

We define three types of performance measures of the simulation analysis: (1) the 

variance amplification ratios ‘bullwhip effect’ and ‘net stock amplification’; (2) the 

average inventory and switching costs per period; and (3) the customer service 

measures ‘customer service level’ and ‘fill rate’. 

 

(1) We define the bullwhip effect as follows: 

 

 Bullwhip = 
demand of Variance

 orders of Variance
. 

 

A bullwhip measurement equal to one implies that the order variance is equal to the 

demand variance, or in other words, there is no variance amplification. A bullwhip 

measurement larger than one indicates that the bullwhip effect is present 

(amplification), whereas a bullwhip measurement smaller than one is referred to as a 

“smoothing” scenario, meaning that the orders are smoothed (less variable) compared 

to the demand pattern (dampening).  

 

Our focus is not only on the bullwhip measure. In this paper we also check the 

variance of the net stock since this has a significant impact on customer service (the 

higher the variance of net stock, the more safety stock required). Therefore we 

measure the amplification of the inventory variance, NSAmp, as: 

 

 NSAmp = 
demand of Variance

stock net  of Variance
. 

 



 8 

(2) The inventory and switching costs are related to these variance amplification 

measures. A high bullwhip measure implies a wildly fluctuating order pattern, 

meaning that the production level has to change frequently, resulting in a higher 

average production switching cost per period. An increased inventory variance results 

in higher combined holding and backlog costs.  

 

(3) Finally, we provide the customer service level and fill rate resulting from the 

simulation analysis. The customer service level represents the probability that 

customer demand is met from stock, while the fill rate measures the proportion of 

demand that is immediately fulfilled from the inventory on-hand. 

 

3 Impact of forecasting on the bullwhip effect 

In the previous section we introduced the standard order-up-to policy: we place an 

order equal to the deficit between the OUT level and the inventory position (Eq. (1)). 

According to the theory, the OUT level, which we denote by St, covers the forecasted 

average demand during the protection interval and a safety stock. The protection 

interval L equals the physical lead time plus the review period. 

 

 L

tt D̂S = +SS,        (2) 

 

with L

tD̂  the forecasted demand over L periods and SS the safety stock (either equal 

to Lzσ  or set to an arbitrary value). We will now review a number of forecasting 

techniques and illustrate their impact on the bullwhip effect by means of our 

spreadsheet models.  

 

3.1 Mean demand forecasting 

If the decision maker knows that the demand is IID, then the best possible forecast of 

all future demands is simply the long-term average demand, D . As a consequence, 

the forecasted lead time demand equals DLD̂L

t = , and the OUT level St given by Eq. 

(2) remains constant over time, so that Eq. (1) becomes 
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 Ot = St – (St-1 – Dt) = Dt .       (3) 

 

We simply place an order equal to the observed demand; we call this policy the 

“chase sales policy”. In this setting, the variability of the replenishment orders is 

exactly the same as the variability of the original demand and the bullwhip effect does 

not exist. 

 

By selecting in the spreadsheet model the “mean demand forecasting” technique, the 

user can observe how the generated orders are equal to the demand, with a bullwhip 

measure equal to one as a result. Although we do not discuss in this section the net 

stock amplification, it is worthwhile to check that number as well. 

 

In case the Beer Distribution Game has been played in class, the instructor could pop 

up the question why the students did not play like this, or in other words, why do we 

observe variance amplification. If the Beer Distribution Game has not been played in 

class, the instructor could question why this policy would not work in the real world. 

The answer is that decision makers do not know the demand (over the lead time) and 

consequently they forecast demand and constantly adjust the OUT levels. Suppose the 

demand is not characterized by an IID process, but rather a correlated or a non-

stationary process, it is preferable to use the knowledge of the current demand to 

forecast next period’s demand. Because of the fact that the true underlying 

distribution of demand is not directly observed (only the actual demand values are 

observed) many inventory theory researchers suggest the use of adaptive inventory 

control mechanisms. This is also how many students play the Beer Distribution Game. 

Unfortunately, these adjustments create bullwhip. We now discuss some possible 

adjustments that are frequently used. 

 

3.2 Demand signal processing 

Lee et al (1997a) introduce the term “demand signal processing”, which refers to the 

situation where decision makers use past demand information to update their demand 

forecast. As a result, the order-up-to level does not remain constant, instead it 

becomes adaptive. Suppose that the retailer experiences a surge of demand in one 
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period. It will be interpreted as a signal of high future demand; the demand forecast 

will be adjusted and a larger order will be placed. In other words, the order-up-to level 

is adjusted based on the demand signal: 

 

 )Dχ(DSS 1tt1tt −−
−+= ,       

 

which results in the following order size: 

 

 )Dχ(DOO 1tt1tt −−
−+= ,      (4) 

 

where χ is the signaling factor, a constant between zero and one. A value χ =1 implies 

that we fully adjust the order quantity by the increase (decrease) in demand from 

period to period.  

 

This ordering policy can be explained to the students as follows (Cachon and 

Terwiesch 2006). An increase in demand could signal that demand has shifted, 

suggesting the product’s actual expected demand is higher than previously thought. 

Then the retailer should increase his order quantity to cover additional future demand, 

otherwise he will quickly stock out. In other words, it is rational for a retailer to 

increase his order quantity when faced with an unusually high demand observation. 

These reactions by the retailer, however, contribute to the bullwhip effect. Suppose 

the retailer’s high demand observation occurred merely due to random fluctuation. As 

a result, future demand will not be higher than expected even though the retailer 

reacted to this information by ordering more inventory. Hence, the retailer will need 

to reduce future orders so that the excess inventory just purchased can be drawn 

down. Ordering more than needed now and less than needed later implies the 

retailer’s orders are more volatile than the retailer’s demand, which is the bullwhip 

effect. 

 

Suppose we select “demand signal processing” in our spreadsheet (the “Define a 

demand forecasting technique” window), then we immediately observe demand 

amplification. If we set χ = 1, the bullwhip effect increases to a value around 5. If we 

anticipate to a lesser degree to the change of the demand, for example by setting χ = 
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0.2, the bullwhip effect remains, but tempers to a value around 1.48. Observe that the 

switching costs also increase together with the bullwhip measure. 

 

3.3 Moving average forecast 

When the retailer does not know the true demand process, he can also use simple 

methods to forecast demand, such as the moving average or exponential smoothing 

technique. This way future demand forecasts are continuously updated in face of new 

demand realizations (sometimes students keep track of historical demand data in order 

to forecast future demand when they play the Beer Distribution Game). Adjusting the 

demand forecasts every period, the order-up-to level becomes adaptive (see Eq. (2)). 

The computerized Beer Game developed by Simchi-Levi et al. (2003) offers the 

players different replenishment policy options. One of them is an adaptive order-up-to 

policy based on a moving average forecast of demand. 

 

The moving average forecast (MA) takes the average of the observed demand in the 

previous periods, with Tm the number of (historical) periods used in the forecast. The 

forecast of the lead time demand is obtained by multiplying the next period’s demand 

forecast by the lead time L, t

L

t D̂LD̂ = , which determines the OUT level in Eq. (2). 

 

By selecting the “moving average” forecasting technique in our spreadsheet models, 

we observe the impact of this forecast method on the order behavior. Assuming an IID 

demand and a physical lead time of 2 periods, the bullwhip effect equals 3.63 for Tm = 

4 (if one period corresponds to a week, then we use the demand data of the past 4 

weeks or 1 month to compute the forecast). By using the data of 1 year or Tm=52, we 

obtain a much smaller bullwhip of 1.12 and we approach the chase sales policy. 

Indeed, the more data we use from the past, the closer our forecast will approach the 

average demand, and our results coincide with mean demand forecasting.  

 

The spreadsheets also allow us to illustrate the effect of the lead times on the bullwhip 

effect. Doubling the physical lead time to 4 periods for example, the bullwhip 

measure increases to 6.63 with Tm = 4. We observe the same dynamics when demand 

is correlated (AR demand process). Note that the degree of bullwhip is impacted by 
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the specific demand structure, but the dynamics when we start forecasting are the 

same, irrespective of the correlative structure of the demand process. We find that 

there is always bullwhip for all values of ρ and L. This result is worthwhile to stress in 

class: no matter the lead time or specific demand process, the bullwhip will always be 

present. 

 

3.4 Exponential smoothing forecast 

The exponential smoothing (ES) forecast is another forecasting technique. In this case 

the next period’s demand forecast is adjusted with a fraction (α) of the forecasting 

error. Analogously to the moving average forecasting method, we multiply the next 

period’s demand forecast by the lead time L to obtain a measure of the lead time 

demand forecast. 

 

The impact of this forecasting method can be illustrated with the spreadsheets. When 

demand is IID and Tp=2, a smoothing factor α=0.4 generates a bullwhip measure of 

5.20. We observe that an increase of α increases the bullwhip effect, since more 

weight is given to a single observation in the forecast. Similar to the MA forecast, we 

observe that an increase in the lead time results in a higher bullwhip measure. 

 

3.5 Minimum Mean Squared Error forecast 

Finally we consider the minimum mean squared error (MSE) forecasting method, 

which is mathematically more complex than the previous methods. With this 

forecasting technique, we explicitly exploit the underlying nature of the demand 

pattern to predict future demand (Box and Jenkins 1976). To calculate the forecast of 

the demand over the lead time horizon L, we do not simply multiply the next period’s 

forecast with the lead time, but instead we explicitly forecast the demand of τ periods 

ahead. We refer to the instructor manual for the detailed math. 

 

Because the MSE method minimizes the variance of the forecasting error among all 

linear forecasting methods, it leads to the lowest average cost among the three 

forecasting approaches (Zhang 2004). It explicitly takes the demand structure into 

account (e.g. a first-order autoregressive pattern), which is not the case in the MA and 
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ES techniques. It assumes, however, that the underlying parameters of the demand 

process are known or that an infinite number of demand data is available to estimate 

these parameters accurately. 

 

We illustrate the impact of this forecasting method with our spreadsheets, and again 

assume Tp = 2. The results obtained are different from the previous results. In this 

case, when demand is negatively correlated, there is no bullwhip effect. When for 

instance ρ = –0.5, we obtain a bullwhip measure of 0.30, meaning that the order 

variability is dampened compared to the customer demand, instead of being amplified. 

We refer to Alwan et al. (2003) for a theoretical justification. When ρ = 0.5, we obtain 

a bullwhip measure of 2.64, indicating that the bullwhip effect is present for positively 

correlated demand. Note that when ρ = 0, the demand process is IID and the MSE 

forecast boils down to the mean demand forecast, resulting in a bullwhip measure of 

one. Furthermore, we again observe that increasing the lead time results in a higher 

bullwhip measure.  

 

3.6 Insights for classroom purposes 

We have contrasted five different forecasting methods to replenish inventory with the 

standard order-up-to policy for both IID and AR(1) demand. The findings indicate 

that different forecasting methods lead to different bullwhip measures. The bullwhip 

measure also varies according to the lead time and demand process.  

 

The spreadsheet application helps the student to evaluate the impact of forecasting on 

the variability of the material flow. In class, we advise to start with forecasting 

demand by its long-term average, in which case there is no bullwhip effect. The 

instructor may then ask how realistic this policy is. If students don’t come up 

immediately with the adaptive proposal, the instructor may ask them what they should 

do in case demand doubles from one period to another and you don’t change your 

policy. Next the instructor can show how demand signal processing adjusts the order-

up-to level every period, and why it results in the bullwhip effect. He tells them that 

an alternative way to process demand signals, is to use forecasting methods, such as 

the simple exponential smoothing or moving average technique. The students should 

observe that using these methods the standard order-up-to policy will always result in 
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a bullwhip effect, independent of the demand process. The impact of lead times can 

also be investigated. 

 

Finally the instructor may discuss the MSE forecasting technique, which takes the 

nature of the demand process explicitly into account. This method is clearly the 

winner among the forecast methods, because it chases sales when demand is an IID 

process and it dampens the order variability when demand is negatively correlated. 

Moreover, it minimizes the variance of the forecasting error among all linear 

forecasting methods, and therefore it leads to the lowest inventory costs. Nevertheless, 

the students should be aware that this forecast method requires an elaborate study to 

discover the parameters of the demand process, is generally more complex to 

calculate and therefore (unfortunately) less frequently used for practical purposes. 

 

The instructor may conclude that improper forecasting may have a devastating impact 

on the bullwhip effect. As a consequence, inventory and production switching costs 

may increase significantly. This observation puts forecasting in a totally different 

perspective. A vivid discussion on a proper use of forecasting and demand 

management techniques may arise. 

 

4 Impact of bullwhip reduction on customer service 

In the previous section we illustrated that the bullwhip effect may arise when using 

the standard order-up-to policy with traditional forecasting methods. In this section 

we introduce a smoothed order-up-to policy that avoids variance amplification and 

succeeds in generating smooth ordering patterns, even when demand has to be 

forecasted.  

 

Smoothing models have a long tradition. A smoothing policy is justified when 

production (ordering) and inventory costs are convex (e.g. quadratic costs) or when 

there is a production switching cost. In such an environment it is preferable not to 

accept large deviations, instead some form of “averaging” is optimal. Generally, there 

are one or two students who come up with this idea of smoothing the order pattern 

when searching for solutions to cope with the bullwhip effect. It often occurs that 

students, who have played the Beer Distribution Game before, don’t want to fall into 
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the bullwhip ‘trap’, and keep their orders constant. To their own surprise, their 

inventory costs turn out not be lower at all. In the debriefing of the game, it is 

therefore worthwhile to elaborate on this smoothing strategy. 

 

The smoothed order-up-to policy described in this section allows order dampening. 

Make clear to the students that this is a heuristic; optimality is not claimed. Finding 

the optimal policy is far from a trivial exercise (see Sobel 1969). Modigliani and 

Hohn (1955) offer another well known discrete time smoothing policy. 

 

4.1 Smoothed order-up-to policy 

We present a generalized order-up-to policy with the intention of dampening the order 

variability or smoothing the order pattern. It can be easily derived from the standard 

order-up-to policy. Substituting Eq. (2) into Eq. (1) we obtain 

 

    Ot
   

= order-up-to level – inventory position 

  = L
tD̂  + SS – IPt  = tD̂L  + SS – IPt  

          = tp D̂1)+(T  + SS – IPt  = tD̂  + [ tpD̂T  + SS – IPt],  (5) 

 

where tpD̂T  + SS can be seen as the desired inventory position DIP, which is the sum 

of the desired pipeline stock tpD̂T  and the desired net stock or safety stock SS. The 

difference between the desired and actual inventory position [DIP – IPt] is denoted as 

the inventory deficit. 

 

Introducing a proportional controller β for the inventory deficit, results in the 

following smoothed order-up-to policy: 

 

 Ot
  
= tD̂  + β · [DIP – IPt],      (6) 

 

with 0 < β < 2. Forrester (1961) refers to 1/β as the “adjustment time”. When β < 1 the 

user explicitly acknowledges that the deficit recovery should be spread out over time, 

whereas β > 1 implies an overreaction to the inventory deficit. Hence, when β < 1, the 
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inventory deficit is only partially recovered during the next ordering period. This 

fractional adjustment is second nature to control engineers. It is the reason why the 

decision rule given by Eq. (6) may generate a “smooth” ordering pattern.  

 

We developed a spreadsheet simulation of this smoothed inventory policy (this model 

can be found in a second worksheet of the same file). The model is similar to the 

spreadsheet simulation of the standard OUT policy, but with a few important 

modifications. We additionally input a value for the smoothing parameter β (since the 

control engineer literature prefers to use the inverse of β, namely Ti = 1/β, we also 

mention the Ti parameter in the input section).  

 

In Figure 2 we illustrate the impact on the order pattern when we choose a value β = 

0.5, demand is IID and forecasted with its long-term average. The fractional controller 

indeed has a dampened or “peak-shaving” impact on the order pattern; the resulting 

bullwhip measure equals 0.33. 
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Figure 2: Generated order pattern when β = 0.5 
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4.2 Trade-off between bullwhip and inventory variance 

So far we have been concentrating on the variance of orders placed. Smoothing the 

order pattern may indeed provide a solution to counter the bullwhip effect. This is, 

however, only one side of the coin. When students smooth the order pattern in the 

Beer Distribution Game, they do not necessarily obtain lower inventory costs, even to 

the contrary. In developing a replenishment rule one has to consider the impact on the 

inventory variance as well, because that variance will have an immediate effect on 

customer service: the higher the variance, the more stock will be needed to maintain 

customer service at the target level. We therefore measure the net stock amplification 

(NSAmp), which equals the ratio of the inventory variance over the demand variance. 

Net stock variance (let alone variance amplification) is not a common supply chain 

measure, but we need it to calculate the fill rate, which is a popular customer service 

measure (see Disney et al. 2006). 

 

Hence, we take into consideration the two following factors: on the one hand, the 

bullwhip effect which is related to the order variability and the switching costs; on the 

other hand the net stock amplification which is related to investment in inventories 

and the customer service.  

 

Intuitively, we expect smooth ordering patterns will result in higher inventory 

fluctuations since the inventory buffer absorbs all the demand fluctuations, resulting 

in a poorer fill rate. This can be illustrated with the spreadsheets. Suppose we assume 

an IID demand, mean demand forecasting and Tp=2. A chase sales strategy with β=1 

results in an NSAmp value of 3. Smoothing with β=0.5 reduces the bullwhip measure 

to 0.33, and equivalently decreases switching costs. On the other hand, it increases the 

NSAmp measure to 3.33, together with an increase in inventory and backlogging 

costs. We are able to smooth the order pattern, but pay the price of higher inventory 

fluctuations and more inventory and backlogging costs.  

 

These observations lead to a trade-off between bullwhip and customer service (as 

measured by net stock variance amplification). The question we should ask ourselves 

is to what extent production rates can be smoothed in order to minimize production 

adaptation costs, without adversely increasing our inventory related costs too much.  
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Disney et al. (2004) show that when demand is IID and we forecast demand with its 

mean, then the sum of bullwhip and NSAmp is minimized at β = 0.618, which can be 

seen as “the best of both worlds” solution. This remarkable result is the “Golden 

Section”, also known as the Golden Mean, Golden Ratio or Divine Proportion. By 

adding up the bullwhip effect metric and the net stock amplification metric, we 

assume that both factors are equally important. It is clear that in the real world 

companies apply weights to the bullwhip-related costs and customer service-related 

costs. In this case the shape of the total cost curve may be different and the optimal 

smoothing parameter may no longer be “golden”. 

 

4.3 Win-win solutions for some demand patterns 

We demonstrated that bullwhip can be reduced by ordering a fraction of the inventory 

deficit, rather than recovering the entire deficit in one time period. When demand is 

IID, order smoothing comes at a price: in order to guarantee the same fill rate, more 

investment in safety stock is required due to an increased inventory variance. Disney 

et al. (2006) show that it is possible to actually achieve bullwhip reduction and 

inventory reduction together whilst maintaining customer service. This is a true win-

win situation resulting from the smoothed OUT policy. However, this cannot be 

achieved in all cases as it depends on the demand pattern. 

 

Consider a stochastic demand pattern with auto regressive and moving average 

(ARMA) components of order one, with ρ the correlation coefficient and δ the 

moving average coefficient (Box and Jenkins 1976). Then, depending on the specific 

values of ρ and δ, inventory variance can be reduced by smoothing the demand signal 

(β < 1). In other words, bullwhip can be removed whilst reducing net stock variance 

(when compared to the standard OUT policy). In other cases, lower inventory 

variability is achieved by over-reacting to the ARMA signal (i.e., β > 1). In that case 

bullwhip leads to lower inventory costs compared to the chase sales policy (β = 1). 

 

Although the win-win issue is already a highly specialized issue (can be skipped in 

class), described in the literature by Disney et al. (2006), these situations can be easily 

illustrated with the spreadsheets. For instance, suppose that ρ=0.5, δ=1.8 and we 
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forecast demand with its long-term average (“mean demand forecasting”).  Then, a 

chase sales strategy (β=1) results in an NSAmp measure of 6.73. A value of β = 1.8 

increases the bullwhip measure to 1.33, but decreases the NSAmp to 5.5 (observe that 

smoothing with β = 0.5 decreases the bullwhip to 0.66, but increases NSAmp to 9.13). 

Hence, in this case lower inventory variability is achieved with bullwhip. When we 

consider another example where demand is characterized by ρ=0.25 and δ=0.25, then 

a chase sales strategy (β=1) results in an NSAmp of 1.46. Smoothing with β = 0.5 

decreases the inventory variability to 1.15. Inventory variance is in this case reduced 

by smoothing the demand signal, which is a win-win solution. We refer to Disney et 

al. (2006) for a detailed analysis of potential win-win scenarios. 

 

4.4 The smoothed order-up-to policy with demand forecasting 

It is clear that the smoothed order-up-to policy described by Eq. (6) provides the 

opportunity to dampen the variability in orders compared to the demand pattern. 

Indeed, when an IID demand is forecasted with its long-term average, it is shown that 

for 0 < β < 1 we generate a smooth replenishment pattern (dampening order 

variability) and for 1 < β < 2 we create bullwhip (variance amplification).  

 

However, when the smoothing rule is applied and demand is forecasted with e.g. the 

moving average or exponential smoothing technique, a feedback parameter β < 1 does 

not necessarily imply that the order variability is dampened. For instance, when 

demand is IID and forecasted with exponential smoothing and a smoothing parameter 

α = 0.5, then a value β = 0.5 results in a bullwhip measure equal to 2.41. Hence the 

bullwhip effect is present, although the feedback parameter β is smaller than one. We 

need to reduce β down to 0.2 in order to obtain a smooth order pattern with a bullwhip 

measure smaller than one when using this particular forecast method. In other words, 

improper use of forecasting techniques may destroy the smoothing effect of the 

“smoothed” order-up-to policy.  

 

These results are generally very complex and not always available in the literature. 

Using the spreadsheets, one can go beyond the existing analytical results and conduct 

several experiments to obtain insights into this complicated issue. The available 

results are added in the appendix of the instructor manual. 
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4.5 Insights for classroom purposes 

When production is inflexible and significant costs are incurred by frequently 

switching production levels up and down, standard order-up-to policies with 

forecasting mechanisms may no longer be desirable. Because of the huge expenses, it 

may be important to avoid variance amplification or even to reduce variability of 

customer demand. Starting from the standard order-up-to policy, the instructor may 

derive the smoothed order-up-to decision rule. The crucial difference with the 

standard order-up-to policies is that the inventory deficit is only fractionally taken into 

account.  

 

In using the smoothed order-up-to policy, the instructor should emphasize two 

aspects: the ordering behavior (as measured by the bullwhip effect), and the impact on 

its own net stock (as measured by the net stock amplification). The insights are 

clearest when demand is forecasted with its long-term average and demand is an IID 

process. In that case bullwhip reduction comes at a price. In order to guarantee the 

same fill rate, a larger safety stock is required. The instructor may ask the students to 

evaluate the impact of different values of β on inventory and switching costs. 

 

The instructor may then point to the fact that the specific values of the demand 

parameters impact the ordering behavior. For ARMA(1,1) demand patterns, it is 

possible to end up in four different scenarios when compared to the standard OUT 

policy: (1) win-win, we can remove bullwhip and reduce inventory; (2) win-lose, 

sometimes bullwhip can only be removed at the expense of holding extra inventory; 

(3) lose-win, sometimes bullwhip can be endured because it results in a policy that 

requires less inventory to be held; (4) lose-lose, sometimes excessive bullwhip and 

inventory may exist. These scenarios depend on the statistical properties of the 

demand process. The exact conditions to end up in the different scenarios go far 

beyond the scope of the student’s course, but we advise the students to play around 

with the parameters and come up with these scenarios. Generally, two to three 

scenarios are found by themselves. 
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When demand is forecasted using the exponential smoothing or moving average 

method, the results are much more complex. In class, the instructor may point to the 

fact that in that case a feedback parameter β < 1 does not necessarily imply that the 

order variability is dampened compared to the demand pattern. Using the spreadsheet 

application the students can experiment with order smoothing and forecasting and as 

such, they can evaluate the impact of different replenishment strategies on the 

fluctuations in both the order and inventory pattern. 

 

5 Download information 

The following files are available for download: 

- bullwhipexplorer.xls: contains the spreadsheet file with two simulation models 

in two separate worksheets: standard OUT and smoothed OUT, referring to 

the standard order-up-to policy and the smoothed order-up-to policy. Both 

models work analogously. [insert link to download the spreadsheet file] 

 

- instructor manual.doc: elaborates on the mathematics behind the input section, 

where the user selects the parameters of the model, and the simulation table, 

where the user can track the calculations of how orders are generated. In 

addition a summary is added of the analytical results available in the literature. 

[insert link to download the instructor manual] 

 

- student manual.doc: describes on a step-by-step basis how to simulate using 

the spreadsheets. We omitted the mathematics behind the formulas. [insert link 

to download the student manual] 
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