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Abstract

This paper concerns optimal asset-liability management when the assets and the liabilities are
modeled by means of correlated geometric Brownian motions as suggested in Gerber and Shiu
(2003). In a first part, we apply singular stochastic control techniques to derive a free boundary
equation for the optimal value creation as a growth of liabilities or as dividend payment to
shareholders. We provide analytical solutions to the HJB optimality equation in a rather general
context. In a second part, we study the convergence of the cash flows to the optimal value
creation using spectral methods. For particular cases, we also provide a series expansion for the
probabilities of bankruptcy in finite time.
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1. Introduction

In a recent paper, Gerber and Shiu (2003) propose to model the asset X1(t) and
liability X2(t) values of a firm by means of correlated geometric Brownian motions.
Using martingale arguments, they are able to derive an analytical expression for the
dividend pay-out needed to maintain the firm value X(t) = (X1(t),X2(t)) in the cone

O :=
{

x̄ = (x1, x2) ∈ R
2 : x1 ≤ λx2 and x1 > λ1x2

}

(1)
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with λ > λ1, imposing bankruptcy when the firm value hits the barrier

e(λ1) :=
{

x̄ = (x1, x2) ∈ R
2 : x1 = λ1x2

}

for the first time. Maximizing the discounted dividend accumulated until ruin time τ =
inf{t ≥ 0 : X(t) ∈ e(λ1)}, Gerber and Shiu (2003) provide an optimal value of λ but
conjecture the optimality over all possible dividend strategies. In this paper, we prove
that the results of Gerber and Shiu (2003) are optimal only if the asset value of the firm
is controlled, and we generalize the results to strategies allowing to control the liability
values together with the asset values.

Asset-Liability Management (ALM) techniques concern the dynamic control of the
balance sheet. It consists of controlling the positive and negative cash flows generated
by the company activity in order to narrow the difference between assets and liabilities
while maximizing the creation of value. The dynamic control of the firm value as exposed
in this paper is to some extent not coherent with common standard financial theories.
In asset pricing theory as pioneered by Miller and Modigliany (1958), the firm value is
not affected by the dividend pay-out or by the methods of financing activities. Contrary
to this, the model exposed in the present paper allows to invest the profits or to pay
dividends to shareholders by modifying the dynamic of the firm asset value. Although
the model is not consistent with the results of Miller and Modigliany (1958), it provides
a tractable framework to study and compare the risks involved by a set of optimal asset-
liability management policies. The problem is classical in actuarial mathematics and finds
natural applications to manage the solvency of insurance companies, isolated business
lines or pension funds. A similar framework is proposed in Hojgaard and Taksar (2002).
As far as we know, the literature on ALM only considers the surplus process of the assets
over the liabilities. Without claiming any exhaustiveness, we refer to Asmussen and Tak-
sar (1997), Hojgaard and Taksar (1999), Hojgaard (2002), Hubalek and Schachermayer
(2004), Gerber and Shiu (2003, 2004), Rudolf and Ziemba (2004), Grandits et al. (2007),
or Hoevenaers et al. (2008). It implicitly restricts the ALM committee to act on the
asset value of the firm by the payment of dividend to shareholders, and to optimize these
dividends. However, it is more realistic to allow the ALM committee to reinvest into new
lines of business and raise liabilities when the assets grow faster than the liabilities.

In this paper, the controlled firm value satisfies

dXi(t) = µiXi(t)dt + σiXi(t)dBi(t) − ηidC(t); X(0) = x̄; i = 1, 2 (2)

where {B(t), t ≥ 0} is a bivariate Brownian motion with correlation 0 ≤ ρ ≤ 1 and
η̄ = (η1, η2) is a constant unit vector. The process X1 corresponds to the assets, and X2

to the liabilities. Throughout the paper,
(

σ2
i,j

)

stands for the covariance matrix

(

σ2
i,j

)

=





σ2
1 ρσ1σ2

ρσ1σ2 σ2
2



 .

In general, a control process is a stochastic process {C(t), t ≥ 0}, which is progressively
measurable. In this paper, we use a more strict definition, and we also assume that the
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control process {C(t), t ≥ 0} is a non-negative non-decreasing adapted process started
at 0 right continuous with left limit and admits the following cumulative representation

C(t) =

∫ t

0

a(s)ds,

where the process {a(t), t ≥ 0} can be unbounded. Remark that the assumptions on C(.)
do not imply the continuity of the control with respect to t, and thus C(.) can have
discontinuities ∆C(t) = C(t) − C(t−).

The ALM committee modifies both the assets and the liabilities in a given ratio η1/η2 (a
change of ∆X1(t) in the assets implies a change ∆X2(t) = η1

η2
∆X1(t) in the liabilities).

It is clear that η1 is positive (e.g. through the payment of dividend to shareholders)
and η2 is negative (e.g. through investment in new lines of business), or equivalently

η̄ = (γ,−
√

1 − γ2) for some γ ∈ [0, 1]. In this paper, we establish that the proposed
framework includes the model of Gerber and Shiu (2003) as a particular case. Note that
our approach differs from Leland (1994), where the author also proposes to model the
asset value of a firm by means of a diffusion process and where he examines the optimal
capital structure and corporate debts as contingent claims on the firm asset value. The
results of Leland (1994) rely on the assumption that the firm asset value is traded (or can
be replicated) and extends the results of Black and Cox (1976) to incorporate bankruptcy
costs and taxes. The framework exposed in Leland (1994) or Black and Cox (1976) is
not applicable to the present situation as the controlled asset firm obeys a stochastic
differential equation with a degenerated drift proportional to the local time of the firm
on an optimal edge e(λ), and as we can no longer rely on the existence of an equivalent
risk-neutral measure to price contingent claims on the controlled firm asset value.

The default event is the first hitting time of the firm value X on the edge e(λ1),
τ = inf{t ≥ 0 : X(t) ∈ e(λ1)}, with inf Ø = +∞, and the total (discounted) cash flow
until ruin time is

Jx̄(C(.)) =

∫ τ

0

e−rs

2
∑

i=1

|ηi| dC(s).

The constant r is the exogenously given valuation force of interest. It can be for instance
the return on a portfolio of long dated (or nowadays even perpetual) fixed income in-
struments. The force of interest can include a premium for various risks including long
term credit, liquidity and reinvestment risk. Hence r can be significantly higher than the
money-market spot rate of the Black-Scholes risk-neutral world. The cash flow variable
Jx̄(C(.)) is the total value creation achieved by the ALM strategy as a growth of the
liabilities or as dividend pay-out to the shareholders. The ALM strategy is fully deter-
mined by the choice of {η̄, λ1}. Provided a unit vector η̄ ∈ R

2, the objective of the ALM
committee is the dynamic optimization of the average total discounted creation of value

Ṽ (x̄) = sup
C(.)

E [Jx̄(C(.))]

= E [Jx̄(C∗(.))]
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over all admissible control functions C(.). Note that a control function C(.) is called
admissible, if for every deterministic initial condition, equation (2) has a unique solution
which is also weakly unique.

In the sequel, we assume that r > µ1 > µ2, in order to ensure the boundedness of
the quantity Ṽ (x̄), but we will also comment on the case where this assumption is not
satisfied. Note that although the assumption r > µ1 > µ2 is only realistic for previsible
business lines, it includes some of the most traditional insurance activities as for instance
retail life insurance.

In this paper, we derive a two-dimensional Hamilton-Jacobi-Bellman (HJB) optimality
equation for Ṽ (x̄) using singular stochastic control. We show that the optimal control
is proportional to the local time of the firm value on the edge e(λ) for some constant
λ > λ1. The optimal controlled firm value satisfies X∗(t) = X(t ∧ τ) where X is a two-
dimensional geometric Brownian motion η-reflected on the edge e(λ). More precisely, the
process behaves like a geometric Brownian motion in the half-plane below e(λ), but at
the edge e(λ) it is reflected in the specified reflection direction of the vector η̄. Under the
optimal ALM policy, for the particular case η̄ = (1, 0) or η̄ = (0,−1), we provide a series
expansion for the term structure of survival probabilities

Px̄(t) := Px̄(τ > t)

as well as for the optimal value creation until time t

V (x̄, t) = Ex̄

[

∫ t∧τ

0

e−rs

2
∑

i=1

|ηi| dC∗(s)

]

.

The assumption r > µ1 > µ2 is only needed to ensure the existence of an optimal value
of λ. The expression for the total value creation and the series expansions proposed in
the paper remain valid for sub-optimal value λ in the case µ1 > r > µ2 as in the original
paper of Gerber and Shiu (2003).

The rest of the paper is organized as follows. We start by deriving the HJB equation
for Ṽ (x̄) and we represent the solution in terms of local time. In section 3, we provide
an analytical expression to the HJB equation. The result is numerically illustrated and
interpreted. In section 4, we study the convergence of V (x̄, t) to Ṽ (x̄) and we provide
series expansions for the probabilities of default using spectral decomposition in the
particular cases η̄ = (1, 0) (the ALM committee acts on the assets) and η̄ = (0,−1) (the
ALM committee acts on the liabilities). All the proofs are contained in the Appendix.

2. Hamilton-Jacobi-Bellman equation for Ṽ (x̄)

In order to show the optimality of the results in Gerber and Shiu (2003), we use
similar arguments as in Harrison and Taksar (1983), Asmussen and Taksar (1997) or
Hojgaard and Taksar (1999). As for the one-dimensional case, the Hamilton-Jacobi-
Bellman dynamic principle leads to an optimality equation for the expected maximal cash
flow Ṽ (x̄). For a rigorous and complete account on (multi-dimensional) singular stochastic
control, we refer to Section VIII in Fleming and Soner (1993). However, similarly to
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Asmussen and Taksar (1997), we give some heuristic arguments that help to interpret
the two-dimensional HJB equation. Assume the control process admits the cumulative
representation C(t) =

∫ t

0
a(s)ds where a(.) is non-anticipating with respect to X and

bounded, or 0 ≤ a(t) ≤ θ for some constant θ < +∞. Consider the sub-optimal policy
which pays (|η1|+ |η2|)α for some constant α until time δ or time τ whenever ruin occurs
before δ, and then switch to the optimal strategy a∗

X(δ)(t − δ):

a(t) =







α, 0 ≤ t ≤ δ

a∗
X(δ)(t − δ), t > δ.

In view of the sub-optimality of the policy a(.), we deduce the inequality

Ṽ (x̄)≥ αδ(|η1| + |η2|)Px̄(τ > δ) + e−rδEx̄Ṽ (X(δ))

≥ αδ(|η1| + |η2|)Px̄(τ > δ) + (1 − rδ)Ex̄Ṽ (X(δ)).

As Px̄(τ > δ) ≈ 1 for small δ and with the assumption that the optimal gain function
Ṽ (x̄) is twice-differentiable, by standard application of multi-dimensional Itô Lemma to
Ṽ (X(δ)) and dividing by δ, we finally obtain

GṼ (x̄) − rṼ (x̄) − α
(

|η1| + |η2| − ∇ηṼ (x̄)
)

≤ 0, (3)

with G the infinitesimal generator of the bivariate geometric Brownian motion

G =
1

2

2
∑

i,j=1

σ2
i,jxixj

∂2

∂xi∂xj

+

2
∑

i=1

µixi

∂

∂xi

. (4)

It can be shown that this inequality is binding for at least one α ∈ [0, θ], see Fleming
and Soner (1993). As the left-hand-side of equation (3) is linear in α provided x̄, the
maximum is attained either for α = 0 or α = θ. It is then obvious that the optimal
control satisfies

α(x̄) = θ1A(x̄) where A = {x̄ ∈ R
2 : ∇ηṼ (x̄) ≥ |η1| + |η2|}. (5)

Such strategy is called a Bang-Bang strategy, namely paying the maximum or no control
is applied.

Let the upper limit θ go to infinity. The unboundedness of the control variable α(.)
suggests that either a degenerated impulse (paying the maximum) pushes the firm value
to below along the direction indicated by the vector η̄ or no control is applied until the
firm value exits at small surrounding interval. Under the first option, the total expected
cash flow can be decomposed as

(|η1| + |η2|)ǫ + Ṽ (x1 − η1ǫ, x2 − η2ǫ) ≈ Ṽ (x̄) + (|η1| + |η2| − ∇ηṼ (x̄))ǫ

and under the second one it is

Ex̄

[

e−rτ(ǫ)Ṽ (X(τ(ǫ)))
]

≈ Ṽ (x̄) +
(

GṼ (x̄) − rṼ (x̄)
)

Ex̄[τ(ǫ)]

≈ Ṽ (x̄) +
(

GṼ (x̄) − rṼ (x̄)
)

ǫ
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where τ(ǫ) = inf{t ≥ 0 : ||X(t) − x̄|| = ǫ}. As we choose the maximum of both alterna-
tives, we obtain the optimality equation

Ṽ (x̄) = max
{

Ṽ (x̄) + (GṼ (x̄) − r Ṽ (x̄))ǫ, Ṽ (x̄) + ((|η1| + |η2|) −∇ηṼ (x̄))ǫ
}

.

Subtracting both sides of the previous relation by Ṽ (x̄) leads intuitively to the following
singular HJB equation.

Theorem 1 Assume the optimal function Ṽ (x̄) is twice continuous differentiable. Then
the optimal function Ṽ (x̄) satisfies the following Hamilton-Jacobi-Bellman equation

max

{

GṼ (x̄) − r Ṽ (x̄),
2
∑

i=1

|ηi| − ∇ηṼ (x̄)

}

= 0, (6)

with Ṽ (x̄) = 0 ∀x̄ ∈ e(λ1), where r is the discount factor, G is the infinitesimal generator

of the bivariate geometric Brownian motion as in (4), and ∇ηṼ (x̄) =
∑2

i=1 ηi
∂Ṽ
∂xi

(x̄) is
the directional derivative along the unit reflection vector η.

We can further describe the optimal function Ṽ (x̄). It can be shown that Ṽ (x̄) is
concave with Ṽ (x̄) → +∞ as |xi| → +∞. Moreover, the control αC(.) is admissible for
the initial firm value αx̄ whenever the control C(.) is admissible for the initial firm value
x̄ and J(αC(.)) = αJ(C(.)). We conclude that Ṽ (x̄) is homogeneous of degree 1 in its
argument, Ṽ (αx̄) = αṼ (x̄), and thus

∇ηṼ (αx̄) = ∇ηṼ (x̄).

The concavity of Ṽ (x̄) together with the scaling property ∇ηṼ (αx̄) = ∇ηṼ (x̄) yield that
the set A defined by equation (5) is the half-plane

A = {x̄ = (x1, x2) ∈ R
2 : x1 ≥ λx2}

for some constant λ > 0. Let O be the optimal set defined in the introduction

O =
{

x̄ = (x1, x2) ∈ R
2 : x1 ≤ λx2 and x1 > λ1x2

}

.

The above considerations and the HJB equation yield that (G−r)Ṽ (x̄) = 0 and ∇ηṼ (x̄) ≥
∑2

i=1 |ηi| on O. It implies that the optimal control is the local time of X∗(t) = X(t ∧ τ)
on the (optimal) edge e(λ) and X is a bivariate geometric Brownian η−reflected on e(λ).
The proof is based on multi-dimensional singular stochastic control and is provided in
the Appendix.

Theorem 2 (Verification theorem) For any admissible control C(.), we have

Ṽ (x̄) ≥ EJx̄(C(.)).

Moreover, the optimal control is the local time of the process X∗ on e(λ), C∗(t) =

L
e(λ)
t (X∗), and the controlled firm value is a bivariate geometric Brownian motion in-

stantaneously η-reflected on the edge e(λ) and instantaneously killed on the edge e(λ1).
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In this paper, we also investigate the optimal value creation V (x̄, t) until time t when-
ever ruin time occurs after t

V (x̄, t) = Ex̄

[

∫ t∧τ

0

e−rs

2
∑

i=1

|ηi| dLe(λ)
s (X)

]

. (7)

To start with, the moment generating function of the quantity
∫ t∧τ

0

∑2
i=1 |ηi| dL

e(λ)
s (X)

satisfies the two-dimensional partial differential equation given in the next proposition.
The proof uses similar arguments as in Burdzy et al. (2004) and is given in the Appendix.

Proposition 1 Let X be a bivariate geometric BM with drift µ started at x̄ (in the
half-plane below e(λ)), η-reflected on e(λ) and killed at his first visit on the lower edge
e(λ1) . Suppose the twice-differentiable function I(x̄, t) is a smooth solution to the partial
differential equation

∂

∂t
I(x̄, t) = GI(x̄, t), I(x̄, 0) = 1

with G the infinitesimal generator of the bivariate geometric Brownian motion as in (4),

subject to the elastic boundary condition ∇ηI(x̄, t) = α
∑2

i=1 |ηi|I(x̄, t) for all x ∈ e(λ)
and I(x̄, t) = 1 for all x̄ ∈ e(λ1). Then the following representation holds

I(x̄, t) = Ex̄

[

e
α
∫

t∧τ

0

∑2

i=1
|ηi|dLe(λ)

s (X)
]

(8)

where L
e(λ)
s (X) is the local time of X on e(λ).

A series expansion of the exponential function in equation (8) leads to a partial differ-

ential equation for the moments Kn(x̄, t) of the quantity
∫ t∧τ

0

∑2
i=1 |ηi| dL

e(λ)
s (X)

Kn(x̄, t) = Ex̄

[(

2
∑

i=1

|ηi|
∫ τ∧t

0

dLe(λ)
s (X)

)n]

.

Inserting the following expansion

Ex̄

[

e
α
∫

τ∧t

0

∑2

i=1
|ηi|dLe(λ)

s (X)
]

=

+∞
∑

n=0

αn

n!
Kn(x̄, t),

in the partial differential equation of Proposition 1 and comparing the term of same order
in α, we finally obtain

∂

∂t
Kn(x̄, t) = GKn(x̄, t), ∀n ∈ N , (9)

together with the boundary conditions Kn(x̄, t) = 0 for all x ∈ e(λ1), and

∇ηK1(x̄, t) =

2
∑

i=1

|ηi|, ∇ηKn(x̄, t) = n

2
∑

i=1

|ηi|Kn−1(x̄, t), n 6= 1

for all x̄ ∈ e(λ). As the optimal value creation V (x̄, t) until time t is precisely equal to
∫ t

0
e−rsdK1(x̄, s), it satisfies the following partial differential equation

∂

∂t
V (x̄, t) = (G − r)V (x̄, t) (10)
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subject to the same boundary conditions as K1(x̄, t). In what follows, we are able to solve
the partial differential equation (10) for the particular cases η̄ = (1, 0) (the ALM com-
mittee acts on the assets) and η̄ = (0,−1) (the ALM committee acts on the liabilities).

3. Solving the Hamilton-Jacobi-Bellman equation

In this section, we provide analytical solutions to the HJB equation for the optimal
value creation Ṽ (x̄). The results are graphically illustrated and interpreted. As suggested
by Davis and Norman (1990) in the context of portfolio selection with transaction costs,
the two-dimensional HJB optimality equation can be simplified using the trivial scaling
property Ṽ (αx̄) = α Ṽ (x̄) or equivalently

Ṽ (x1, x2) = (x1 + x2)Ṽ

(

x1

x1 + x2
, 1 − x1

x1 + x2

)

=: (x1 + x2)W̃ (q), q =
x1

x1 + x2
.

It leads to an analytical expression for the optimal value creation given the vector η̄ =
(η1, η2). The next proposition extends the results obtained in Gerber and Shiu (2003) to
the more general situation allowing both the control of the liability and the asset values
of the firm. The condition r > µ1 > µ2 is assumed but the analytical expression provided
for Ṽ (x̄) remains valid in the case µ1 > r > µ2 for a fixed sub-optimal value of λ > λ1.
The details of the proof can be found in the Appendix.

Proposition 2 Consider the indicial equation

σ2

2
α(α − 1) + (µ1 − µ2)α + µ2 − r = 0 (11)

where σ2 = σ2
1 + σ2

2 − 2ρσ1σ2 and r > µ1 > µ2, with solutions α1 < 0 and α2 > 1. The
optimal average discounted cash flow Ṽ (x̄) for x̄ in O is given by

Ṽ (x1, x2) =
(|η1| + |η2|)(λα2

1 xα1
1 x1−α1

2 − λα1
1 xα2

1 x1−α2
2 )

η1(α1λα1−1λα2
1 − α2λ

α1
1 λα2−1) + η2((1 − α1)λα1λα2

1 − (1 − α2)λ
α1
1 λα2)

(12)
and the optimal λ∗ > λ1 is given by

λ∗ =

(

α2(α2 − 1)

α1(α1 − 1)

)
1

α1−α2

· λ1

whatever the reflection vector η̄.

The conditions r > µ2 and µ1 > µ2 guarantee the existence of two distinct real
solutions α1 and α2 (with α2 > α1 and α1 < 0) to the indicial ordinary differential
equation (11). In the case r > µ1, the inequality α2 > 1 ensures the existence of an
optimal value for λ. When µ1 converges to r, the solution α2 tends to 1 and, as a
consequence, λ∗ goes to +∞. In the limiting case µ1 = r, it is optimal never to pay
dividends nor reinvest in the firm activities (λ∗ = +∞), but the optimal value Ṽ (x̄)
creation is finite and is equal to

Ṽ (x1, x2) =
(|η1| + |η2|)

η1
x1(1 − xα1−1

1 (λ1x2)
1−α1).
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In the case µ1 > r, there is no optimal value for λ and the (non optimal) value creation
Ṽ (x̄) goes to +∞ when λ tends to +∞. We can interpret the latter observation as the
asset growth rate being so high that it is more profitable to keep the firm asset unchanged
than to pay dividends or to reinvest in the firm activities. Remark that in that case the
formula provided for the value creation remains valid for exogenously given (non optimal)
value of λ. Finally, in the limit case µ1 = µ2, it is trivial to check that α1 +α2 = 1 and as
a consequence λ∗ = λ1. In that situation, it is more profitable never to start the business
and declare bankruptcy.

The situation r > µ1 > µ2 of Proposition 2 is the most interesting case from a theo-
retical point of view because both λ∗ and Ṽ (x̄) are finite. Figure 1 plots the optimal λ∗

as a function of the volatility σ and the return on assets µ1 provided the growth rate of
liabilities µ2 = 0.04 and the risk-free interest rate r = 0.08. We observe that the optimal
λ increases both with the volatility and with the return on assets. Moreover, the value of
λ∗ increases faster with µ1 for higher values of the volatility σ. Hence if the risk is high
compared to the potential return, it is better to start paying dividends and investing into
new lines of business later and reduce consequently the risk of early bankruptcy. On the
other hand, if the return is high compared to the volatility, it is optimal to pay dividends
in an earlier phase of the business cycle. Remark that Hojgaard and Taksar (1999) draw
similar conclusions.
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0.2

0.04

0.05
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0.07

0.08
0

2

4

6

8

sigmamu1

la
m

bd
a*

Fig. 1. Optimal value of λ as a function of µ1 and σ provided µ2 = 0.04 and r = 0.08.

It is interesting to look at the dependence of Ṽ (x̄) on the reflection vector η̄. From
expression (12), it follows that there exists a value λ∗

1 for the ruin limit such that the
optimal value creation is independent of the reflection vector η̄. In view of the expression
for Ṽ (x̄) as given in (12), this particular value of the solvency limit satisfies

(α2λ
α1
1 λα2−1 − α1λ

α1−1λα2
1 ) = ((1 − α1)λ

α1λα2
1 − (1 − α2)λ

α1
1 λα2),

or equivalently

λ∗
1 =

(

α1λ
α1−1 − (α1 − 1)λα1

α2λα2−1 − (α2 − 1)λα2

)
1

α1−α2

. (13)

If the condition µ1 > µ2 is satisfied, this implies that λ∗
1 > 1. Moreover, when µ2 tends

to µ1, λ∗ approaches λ1 and as a consequence, λ∗
1 goes to 1.
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Figures 2 and 3 compare the total value creation Ṽ (x̄) at the optimal edge e(λ) for

different bankruptcy limits λ1 as a function of γ defined such that η̄ = (γ,−
√

1 − γ2).
The starting liability value x2 of the firm is normalized to 1. The total value creation
is an increasing function of γ if λ1 < λ∗

1; it is a decreasing function if λ1 > λ∗
1. An

interpretation of this observation is the following. If the liability and asset growth rates
are close to each other, it is optimal to raise the liabilities rather than to pay dividends
when the regulator allows for temporary deficit (λ1 < λ∗

1 ≈ 1). On the other hand, the
ALM committee will prefer to pay dividends if the regulator requires economic capital
(λ1 > λ∗

1 ≈ 1). However, if µ1 is significantly larger than µ2, it can be more profitable to
raise the liabilities rather than to pay dividends and reduce consequently the asset firm
value even for values of λ1 slightly higher than 1. We conclude that either for γ = 1 or
for γ = 0 the total value creation is maximized. This result justifies the choice to pay
more attention to the particular cases η̄ = (1, 0) and η̄ = (0,−1).
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Fig. 2. Total value creation on the optimal edge for µ1 = 0.06, µ2 = 0.055, σ1 = σ2 = 0.15, ρ = 0.8 and
λ1 = 0.7.
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Fig. 3. Total value creation on the optimal edge for µ1 = 0.06, µ2 = 0.055, σ1 = σ2 = 0.15, ρ = 0.8 and
λ1 = 1.3.
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4. Spectral decomposition

In the previous sections, we proved that the optimal cash flow is proportional to the
local time of the controlled firm value X∗(t) = X(t ∧ τ) along the edge e(λ∗) for some
constant λ∗ > λ1, when the process X is a geometric Brownian motion η−reflected on
e(λ∗). In this section, as suggested in Gerber and Shiu (2003) we study the convergence
of the average cash flow V (x̄, t) accumulated up to time t whenever ruin time occurs
after t

V (x̄, t) = Ex̄

[∫ τ∧t

0

e−rsdLe(λ∗)
s (X)

]

to the stationary value creation Ṽ (x̄). In the general case, one needs to solve numerically
the partial differential equation

∂

∂t
V (x̄, t) = (G − r)V (x̄, t) (14)

derived in Proposition 1. Note that the probability of ruin can also be found as the
solution to the same partial differential equation with r = 0 and suitable initial condi-
tion. Traditional methods to solve equation (14) include finite-difference or Monte-Carlo
simulation.

Our approach is different, as we will look at spectral representations, or eigendifferential
expansions as they are called in Itô and McKean (1965). This technique was already used
for financial issues earlier, e.g. by Lewis (1998) or Linetsky (2004a, 2004b, 2004c), but
the integration of this concept into discounted cash-flows in asset-liability management is
new. Spectral expansions are of interest for several reasons. They allow the investigation
of the convergence of the discounted cash flows together with the time-evolution of the
ruin probability, which leads to a finer understanding of the risks involved in an asset-
liability management policy. The first eigenvalue in the expansion has also a specific
financial meaning, as pointed out by Linetsky, in the context of term-structure modeling.
We will come back to this when we discuss the resulting expansions.

For our investigation here, the use of spectral theory in particular offers a tractable
alternative for the special cases η̄ = (1, 0) or η̄ = (0,−1). In general, the domain of the
two-dimensional firm value process is not bounded, and a spectral expansion of V (x̄, t)
is not trivial as the spectrum is not guaranteed to be discrete and of multiplicity one.
However, in the particular situations η̄ = (1, 0) and η̄ = (0,−1), the problem can be
reduced to a scalar spectral decomposition on a bounded domain with discrete spectrum.
In what follows, we assume that the ALM committee only acts on the assets, or η̄ = (1, 0).
We are confident that the interested reader will easily extend the results to the case η̄ =
(0,−1). Moreover, for the sake of simplicity and without loss of generality, we normalize
the liability value at time 0 (notation x2) to 1. We provide a series expansion for V (x̄, t) as
well as for the survival probability Px̄(t) := Px̄(τ > t). As we consider the case η̄ = (1, 0),
it is convenient to apply the following transformation

Y1 =
X1

X2

Y2 = X2. (15)

11



The bivariate process Y = (Y1, Y2) remains a two-dimensional reflecting geometric Brow-
nian motion whose generator is

Ĝ =
1

2

2
∑

i,j=1

σ̂2
i,jyiyj

∂2

∂yi∂yj

+

2
∑

i=1

µ̂iyi

∂

∂yi

(16)

with drift µ̂ = ((µ1 − µ2) + σ2
2 − ρσ1σ2, µ2) and covariance matrix

(

σ̂2
i,j

)

=





σ2 ρσ1σ2 − σ2
2

ρσ1σ2 − σ2
2 σ2

2



 .

In the coordinates (15), the set O is transformed into

Ô = {ȳ = (y1, y2) ∈ R
2 : λ1 < y1 ≤ λ}.

Solving the partial differential equation (14) in the coordinates (15) simplifies to a scalar
diffusion problem as the accumulated value creation is a homogeneous function and as
the survival probability Px̄(t) only depends on y1. It leads to the series expansions given
in the next propositions; the details of the proof can be found in the Appendix.

Proposition 3 The survival probabilities have the following spectral decomposition

Px̄(τ > t) =

+∞
∑

n=0

cne−EP
n tφn(z), z = x1/x2

with eigenfunctions

φn(z) = zθ cos (b ln z) + c zθ sin (b ln z) ,

where θ = 1
2 (1 − α), b = 1

2

√

4β − (1 − α)2, α = 2µ̂1

σ2 , β =
2EP

n

σ2 and c = −cotg (b ln λ1).
The eigenvalues {EP

n , n ∈ N} are the solutions to

θ (cos (b ln λ) + c sin (b ln λ)) + b (c cos (b ln λ) − sin (b ln λ)) = 0,

and the coefficients cn satisfy

cn =

∫ λ

λ1
φn(z)w(z)dz

∫ λ

λ1
φ2

n(z)w(z)dz

where w(z) = 2zγ−2

σ2 and γ = 2µ̂1

σ2 .

Proposition 4 The function W (z, t) ≡ V
((

x1

x2
, 1
)

, t
)

(with z = x1/x2) has the follow-

ing spectral decomposition on the interval (λ1, λ]

W (z, t) = V̆ (z) −
+∞
∑

n=1

cne−EV
n tφn(z), z = x1/x2 ∈ (λ1, λ]

with V̆ (z) ≡ V
((

x1

x2
, 1
))

(z = x1/x2) and with eigenfunctions

φn(z) = zθ cos (b ln z) + c zθ sin (b ln z),

12



where θ = 1
2 (1 − α), b = 1

2

√

4β − (1 − α)2, α = 2(µ1−µ2)
σ2 , β =

2(µ2−r+EV
n )

σ2 and c =
−cotg (b ln λ1). The eigenvalues {EV

n , n ∈ N} are the solutions to

θ (cos (b ln λ) + c sin (b ln λ)) + b (c cos (b ln λ) − sin (b ln λ)) = 0,

and the coefficients cn satisfy

cn =

∫ λ

λ1
V̆ (z)φn(z)w(z)dz
∫ λ

λ1
φ2

n(z)w(z)dz

where w(z) = 2zγ−2

σ2 and γ = 2(µ1−µ2)
σ2 .

Spectral expansions have convergence pattern opposite to more traditional numerical
methods as finite-difference solver or Monte-Carlo simulation. For shorter maturities,
more terms in the series need to be added to reach the same accuracy. The convergence
depends on the model parameters. As the difference µ1 −µ2 increases or σ2 goes to zero,
the discrete spectrum tends to be continuous, the first eigenvalue goes to zero and, as
a consequence, the series becomes oscillating. Figure 4 illustrates this hehaviour. In all
calculations r = 0.08, µ1 = 0.06, σ1 = σ2 = 0.25, ρ = 0.3 and λ1 = 0.9 are fixed. Figure
4 displays the series expansion with 15 terms for the survival probabilities Px̄(t) after 5
years as a function of z = x1/x2 for different liability growth rate µ2 and non-optimal
value of λ fixed to 1.2. The same remark also holds for the spectral decomposition of the
value creation.

The first eigenvalue has a nice asymptotic interpretation. For t going to infinity, the
survival probability satisfies

EP
0 ≈ −∂ lnPx̄(t)

∂t
,

which means that the first eigenvalue EP
0 is the asymptotic constant intensity of default.

A similar interpretation of the first eigenvalue EV
0 as an asymptotic relative rate of

growth also holds for the total value creation V (x̄, t). In what follows, comparing the
first eigenvalues of the value creation and the survival probabilities allows for a deeper
understanding of the ALM policy. In figure 5 and 7 we plot the series expansions for
V (z, t) with 15 terms as a function of the time and the ratio x1/x2. The first eigenvalue
EV

0 is equal to 0.2111 for Figure 5 (µ1−µ2 = 0.005) and to 0.0752 for Figure 7 (µ1−µ2 =
0.01). Figure 6 and 8 present the spectral decomposition of the survival probabilities
Px̄(t) also with 15 terms and the same sets of model parameters. The first eigenvalue
EP

0 is equal to 0.0567 for Figure 6 and to 0.0037 for Figure 8. The series expansions for
both the value creation and the survival probabilities converge faster to their stationary
values when µ2 is closer to µ1. This can be perfectly explained. Indeed, when the liability
growth rate tends to the asset growth rate, the risk of early bankruptcy increases together
with the chance of having achieved almost the asymptotic value creation at ruin time.
However, as the first eigenvalue decreases faster with the difference µ1−µ2 for the survival
probabilities than for the value creation, the health of the company deteriorates when
µ2 approaches µ1.
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Appendix A. Appendix

A.1. Proof of Theorem 2 (Verification theorem)

We use similar arguments as in Asmussen and Taksar (1997). Consider an admissible
control C(.). To start with, we decompose C(.) into its continuous part Cc(.) and its
discontinuous part Cd(.) =

∑

0≤s≤t[C(s)−C(s−)]. By standard application of the (two-
dimensional) change of variable formula for semimartingales as e.g. in Asmussen and
Taksar (1997), we obtain
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e−r(τ∧t)Ṽ (X(τ ∧ t)) = Ṽ (x̄) +

∫ τ∧t

0

e−rs(G − r)Ṽ (X(s))ds

+

2
∑

i=1

∫ τ∧t

0

e−rs ∂Ṽ

∂xi

(X(s))σiXi(s)dBi(s)

−
2
∑

i=1

∫ τ∧t

0

e−rs ∂Ṽ

∂xi

(X(s))ηidCc(s)

−
∑

0≤s≤τ∧t

e−rs
[

Ṽ (X(s)) − Ṽ (X(s−))
]

, (A.1)

where G is the infinitesimal generator of the geometric Brownian motion. Since Ṽ (x̄)
satisfies the HJB optimality equation, we have (G − r)Ṽ (x̄) ≤ 0 and thus
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Fig. 8. Convergence of the survival probability for r = 0.08, µ1 = 0.06, µ2 = 0.05, σ1 = σ2 = 0.25,
ρ = 0.3 and λ1 = 0.9.

E
[

e−r(τ∧t)Ṽ (X(τ ∧ t))
]

≤ Ṽ (x̄) − E

2
∑

i=1

∫ τ∧t

0

e−rs ∂Ṽ

∂xi

(X(s))ηidCc(s)

−E
∑

0≤s≤τ∧t

e−rs
[

Ṽ (X(s)) − Ṽ (X(s−))
]

.

By concavity of Ṽ (x̄), we can prove that E
[

e−r(τ∧t)Ṽ (X(τ ∧ t))
]

→ 0 when t → +∞.

Combined with ∇ηṼ (x̄) ≥ |η1| + |η2|, it follows also that Ṽ (X(s)) − Ṽ (X(s−)) ≥
∑2

i=1
∂Ṽ
∂xi

(Xi(s) − Xi(s−)) ≥ (|η1| + |η2|)∆C(t). Since C(t) = Cc(t) +
∑

0≤s≤t ∆C(s),
we finally obtain the inequality

Ṽ (x̄) ≥ E

∫ τ

0

e−rs

2
∑

i=1

|ηi| dC(s),

which is the first part of the result.

The local time L
e(λ)
t (X) of the controlled process X is a positive process that only

increases when X is located on the edge e(λ) and maintains the firm value in the cone O.
The second part follows from the same change of variable formula. As (G − r)Ṽ (x̄) = 0
when x̄ is below the edge e(λ), we directly obtain

E
[

e−r(τ∧t)Ṽ (X(τ ∧ t))
]

= Ṽ (x̄) − E

2
∑

i=1

∫ τ∧t

0

e−rs ∂Ṽ

∂xi

(X(s))ηidLe(λ)
s (X).

Since
∫ t

0
dL

e(λ)
s (X) =

∫ t

0
1(X(s)∈e(λ))dL

e(λ)
s (X) and ∇ηṼ (x̄) = |η1| + |η2| for x ∈ e(λ),

taking the limit t → +∞ provides

Ṽ (x̄) = Ex̄

[

∫ τ

0

e−rs

2
∑

i=1

|ηi| dLe(λ)
s (X)

]

.
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A.2. Proof of Proposition 1

We use similar arguments as in the first part of the proof of Theorem 2.8. in Burdzy
et al. (2004). Consider the process Y (X(t′), t′) defined by the formula

Y (X(t′), t′) = e
α
∫

t′

0

∑2

i=1
|ηi|dLe(λ)

s (X)
I(X(t′), t − t′),

and assume that I(x̄, t) solves the partial differential equation. By standard use of Itô
formula, we obtain

dY (X(t′), t′) = e
α
∫

t′

0

∑2

i=1
|ηi|dLe(λ)

s (X)

×
(

αI(X(t′), t − t′)

2
∑

i=1

|ηi|dL
e(λ)
t′ (X) +

(

d

dt′
+ G

)

I(X(t′), t − t′)

+
2
∑

i=1

∂

∂xi

I(X(t′), t − t′)σiXi(t
′)dBi(t

′) −∇ηI(X(t′), t − t′)dL
e(λ)
t′ (X)

)

= e
α
∫

t′

0

∑2

i=1
|ηi|dLe(λ)

s (X)
2
∑

i=1

∂

∂xi

I(X(t′), t − t′)σiXi(t
′)dBi(t

′),

as ∇ηI(x̄, t − t′) = α
∑2

i=1 |ηi|I(x̄, t − t′) on e(λ) and the local time L
e(λ)
t′ (X) only

increases on the edge e(λ). We conclude that the process {Y (X(t′), t′), 0 ≤ t′ ≤ t} is
a local martingale. Moreover, adapting the arguments of Lemma 2.7. in Burdzy et al.
(2004) to reflected geometric Brownian motion, we can prove that Y is a bounded local
martingale and thus a martingale :

Y (x̄, 0) = Ex̄

[

e
α
∫

t

0

∑2

i=1
|ηi|dLe(λ)

s (X)
I(X(t), 0)

]

,

which completes the proof as Y (x̄, 0) = I(x̄, t) and I(X(t), 0) = 1. Finally the condition
I(x̄, t) = 1 for all x̄ ∈ e(λ1) follows from the behavior of the process X on the edge e(λ1).

A.3. Proof of Proposition 2

First, recall that there exists a line

e(λ) :=
{

x̄ = (x1, x2) ∈ R
2 : x1 = λx2

}

such that ∇ηṼ (x̄) >
∑2

i=1 |ηi| for x̄ strictly below the line e(λ), and ∇ηṼ (x̄) =
∑2

i=1 |ηi|
for x̄ on the line e(λ), and thus (G − r)Ṽ (x̄) = 0 on O.
As a consequence, we can solve the ordinary differential equation (G − r)Ṽ (x̄) = 0 on O

subject to the boundary condition ∇ηṼ (x̄) =
∑2

i=1 |ηi| on the line e(λ) for an arbitrary

λ and then optimize over λ, since Ṽ (x̄) is the optimal gain function, see also Fleming
and Soner, 1993.

We start to reduce the original HJB equation (6) using the scaling property

Ṽ (x1, x2) = (x1 + x2)Ṽ

(

x1

x1 + x2
,

x2

x1 + x2

)

=: (x1 + x2)W̃ (q)
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with q = x1

x1+x2
and W̃ (q) = Ṽ (q, 1− q). A transformation of the derivatives in the HJB

equation, finally leads to

max
{

(η1(1 − q) − η2q)
dW̃

dq
(q) + (η1 + η2)W̃ (q) − (|η1| + |η2|),

ĜW̃ (q) − rW̃ (q)
}

= 0

together with the boundary condition W̃ (λ1/(1 + λ1)) = 0, where Ĝ is the operator

Ĝ = d1(q)
d2

dq2
+ d2(q)

d

dq
+ d3(q)

with d1(q) = 1
2σ2(1 − q)2q2, d2(q) = (µ1 − µ2)q(1 − q), and d3(q) = (µ1q + µ2(1 − q)).

We look for solutions in the form W̃ (q) = qα(1−q)β . The substitution of the suggested
solution in the ordinary differential equation gives

[

1

2
α(α − 1)σ2 + α(µ1 − µ2) + (µ2 − r)

]

+ (α + β − 1)×
[

1

2
σ2(α + β)q2 − (ασ2 + µ1 − µ2)q

]

= 0

and thus α solves the equation

1

2
α(α − 1)σ2 + α(µ1 − µ2) + (µ2 − r) = 0

and β is determined by α + β − 1 = 0. The roots α1 and α2 are easily obtained

α1 =
1
2σ2 − (µ1 − µ2 −

√
∆)

σ2

α2 =
1
2σ2 − (µ1 − µ2 +

√
∆)

σ2

with ∆ = 1
4σ4 +(µ1−µ2)

2−σ2(µ1 +µ2−2r). Under the conditions r > µ2 and µ1 > µ2,

we have ∆ >
(

1
2σ2 − (µ1 − µ2)

)2
> 0 and thus α1 < 0 and α2 > α1. Moreover the

additional condition µ1 > r implies ∆ <
(

1
2σ2 + (µ1 − µ2)

)2
and α2 > 1. The general

form of the solution is thus

Ṽ (x1, x2) = C1x
α1
1 x1−α1

2 + C2x
α2
1 x1−α2

2 .

The boundary condition Ṽ (x̄) = 0 on e(λ1) leads to C2 = −C1λ
α1−α2
1 . We observe that

∇ηṼ (x) only depends on the ratio x1

x2
and we finally find the constant C1 imposing the

boundary condition ∇ηṼ (x̄) = |η1| + |η2| on e(λ).
The optimal edge is derived by minimizing the denominator of V (x̄) over λ. As the

solutions to the indicial equation satisfy α1 < 0 and α2 > 1, it is easy to check that the
denominator of V (x̄) is the sum of two convex functions of λ with a minimum because
η1 > 0 and η2 < 0. Deriving with respect to λ the denominator leads to the condition

η1(α2(α2 − 1)λα1
1 λα2−1 − α1(α1 − 1)λα2

1 λα1−1)

−η2(α2(α2 − 1)λα1
1 λα2 − α1(α1 − 1)λα2

1 λα1) = 0.

It is trivial to check that the value proposed for λ∗ satisfies the condition.
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A.4. Proof of Proposition 3

Default occurs whenever the firm value falls below the solvency limit e(λ1) with λ1 < λ.
The time to default satisfies

τ = inf{t : X(t) ∈ e(λ1)} = inf

{

t :
X1(t)

X2(t)
= λ1

}

. (A.2)

The process Y1(t∧τ) = X1(t∧τ)/X2(t∧τ) is a linear diffusion as well, with infinitesimal
generator given by

K =
1

2
σ̂2

1,1y
2 ∂2

∂y2
+ µ̂1 y

∂

∂y
,

acting on the domain D = {u : u,Ku ∈ Cb((λ1, λ]), u(λ1+) = 0, u′(λ) = 0}. As the
state-space (λ1, λ] is bounded, the spectral representation for the transition density of
Y1 reduces to a series expansion, see Itô and McKean (1974) or Linetsky (2004). The
survival probability Pz(t) satisfies the following partial differential equation

∂

∂t
Pz(t) = KPz(t), z ∈ (λ1, λ]

subject to the boundary conditions

Pz(0) = 1, Pλ1
(t) = 0,

∂

∂z
Pλ1

(t) = 0.

The self-adjoint operator K acts on the set of w-square integrable functions and the
ordinary differential equations Kφ(z) = −Eφ(z) together with the conditions φ(λ1) = 0
and d

dz
φ(λ) = 0 is a Sturm-Liouville problem generating a discrete sequence of eigenvalues

{En, n ∈ N} and eigenfunctions φn orthonormal with respect to the scalar product

〈f, g〉 =

∫ λ

λ1

f(z)g(z)w(z)dz.

We observe that the functions zθ cos (b ln x) and zθ sin (b ln x) span the oscillating solu-
tions of Ku = −Eu and we construct the eigenfunction φn as a linear combination:

φn(z) = β1 zθ cos (b ln z) + β2 zθ sin (b ln z)

to some normalizing constant, the condition φn(λ1) = 0 provides the constant and the
condition d

dz
φn(λ) = 0 the eigenvalues. The function Pz(t) decomposes into the series

expansion

Pz(t) =

+∞
∑

n=0

cne−Entφn(z),

the coefficients cn are chosen to satisfy the initial condition

Pz(0) = 1 =

+∞
∑

n=0

cnφn(z).

A.5. Proof of Proposition 4

In the coordinates (15), the partial differential equation (14) can be simplified by means
of the scaling property of V , or
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V ((x1, x2), t) = x2V

((

x1

x2
, 1

)

, t

)

=: y2V ((y1, 1), t) .

By means of a transformation of the derivatives, the two-dimensional partial differential
equation ∂

∂t
V (x̄, t) = (G − r)V (x̄, t) reduces to a scalar equation for the quantity W (z, t)

(with z = x1/x2)

∂

∂t
W (z, t) =

[

σ2

2
z2 ∂2

∂z2
+ (µ1 − µ2)z

∂

∂z
+ (µ2 − r)

]

W (z, t), z =
x1

x2
,

subject to the boundary conditions

W (z, 0) = 0, W (λ1, t) = 0,
∂

∂z
W (λ, t) = 1.

See also Gerber and Shiu (2003) who originally obtain this equation using martingale
arguments, the sampling theorem more precisely. We rely on the spectral decomposition
of the self-adjoint linear operator

K̂ =
σ2

2
z2 ∂2

∂z2
+ (µ1 − µ2)z

∂

∂z
+ (µ2 − r) (A.3)

on the bounded domain (λ1, λ] to derive a series expansion for W (z, t). Define the surplus
J(z, t) = V̆ (z) − W (z, t). It is easy to check that J(z, t) is the solution to the partial
differential equation

∂

∂t
J(z, t) = K̂J(z, t), z ∈ (λ1, λ]

subject to the boundary conditions

J(z, 0) = V̆ (z), J(λ1, t) = 0,
∂

∂z
J(λ, t) = 0.

The self-adjoint operator K̂ acts on the set of w-square integrable functions and the
ordinary differential equations K̂φ(z) = −Eφ(z) together with the conditions φ(λ1) = 0
and d

dz
φ(λ) = 0 is a Sturm-Liouville problem generating a discrete sequence of eigenvalues

{En, n ∈ N} and eigenfunctions φn orthonormal with respect to the scalar product

〈f, g〉 =

∫ λ

λ1

f(z)g(z)w(z)dz.

We observe that the functions zθ cos (b ln x) and zθ sin (b ln x) span the oscillating solu-
tions of K̂u = −Eu and we construct the eigenfunction φn as a linear combination:

φn(z) = β1 zθ cos (b ln z) + β2 zθ sin (b ln z)

to some normalizing constant, the condition φn(λ1) = 0 provides the constant and the
condition d

dz
φn(λ) = 0 the eigenvalues. The function J(z, t) decomposes into the series

expansion

J(z, t) =

+∞
∑

n=0

cne−Entφn(z),

the coefficients cn are chosen to satisfy the initial condition

J(z, 0) = V̆ (z) =
+∞
∑

n=0

cnφn(z).
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