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Abstract

In this paper we estimate the parameters of a regression model using S-estimators

of multivariate location and scatter. The approach is proven to be Fisher-consistent,

and the in
uence functions are derived. The corresponding asymptotic variances are

obtained and it is shown how they can be estimated in practice.
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1 Introduction

Consider the classical regression model

yi = �+ �
t
ui + "i;

i = 1; : : : ; n where the error terms "1; : : : ; "n are i.i.d. and independent of the p-dimensional

carriers u1; : : : ; un. The least-squares (LS) estimators �̂LS and �̂LS are defined as the mini-

mizers of the sum of squared residuals

1

n

nX
i=1

(yi � �� �
t
ui)

2
: (1.1)

Since the least squares estimator is very sensitive to the presence of outliers, robust alterna-

tives need to be looked for. Many of these robust regression methods consist of minimizing

a robust loss function of the residuals, instead of a quadratic loss function. Main examples

here are the Least Median of Squares and Least Trimmed Squares estimator (Rousseeuw

1984), who can attain the maximum breakdown value. The breakdown value is the smallest

fraction of data points that needs to be replaced to carry the estimator arbitrarily far away
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(for a formal de�nition, see Rousseeuw and Leroy 1987, page 117). Generalized S-estimators

(Croux, Rousseeuw and H�ossjer 1994) and � -estimators (Yohai and Zamar 1988) combine

this high breakdown value with a high efficiency. However, their unbounded in
uence func-

tion is sometimes seen as a drawback.

Another way of robustifying LS consists of robustifying the first order conditions associ-

ated to the minimization of (1.1):

1

n

nX
i=1

(yi � �� �
t
ui)ui = 0 and

1

n

nX
i=1

(yi � �� �
t
ui) = 0: (1.2)

This lead to the construction of M and GM-estimators which are defined as solutions of

robustified versions of the first order equations (1.2). Unfortunately, they have no high

breakdown point (see e.g. Hampel et al. 1986). To remediate this, MM- (Yohai 1987) and

one step GM-estimators (Simpson, Ruppert, and Carroll 1992, Coakley and Hettmansperger

1993) were proposed.

In case of the LS-estimator, the solution of the normal equations (1.2) is explicit:

�̂ =

 
1

n

nX
i=1

(ui � �̂u)(ui � �̂u)
t

!�1 
1

n

nX
i=1

(yi � �̂y)(ui � �̂u)

!
and �̂ = �̂y � �̂

t
u�̂;

with �̂u =
1
n

Pn
i=1 ui and �̂y =

1
n

Pn
i=1 yi. With the use of the empirical covariance matrices

Ŝuy and Ŝuu, we may rewrite the above equation as

�̂ = Ŝ
�1
uu Ŝuy and �̂ = �̂y � �̂

t
u�̂: (1.3)

The idea now is not to robustify the normal equations, but its solutions. Therefore, we will

replace the empirical mean and covariance in (1.3) by robust equivalents. Many proposals

for robust location and covariance matrices have been made, such as M-estimators (Maronna

1976), the Stahel-Donoho estimator (Stahel 1981), the Minimum Volume Ellipsoid and Min-

imum Covariance Determinant estimator (Rousseeuw 1984,1985) and S-estimators (Davies

1987, Rousseeuw and Leroy 1987).

Maronna and Morgenthaler (1986) used multivariate M-estimators to insert into (1.3)

and showed that the resulting estimators have all the desired equivariance properties. They

also gave an expression for the in
uence function of this approach based on M-estimators,

but only for a regression without intercept. Visuri et al. (2000) used rank based covariance

matrices and derived results at elliptically symmetric models. In this paper, S-estimators of

location and scatter will be used. For a finite sample fz1; : : : ; zng � IR
p+1 the S-estimates
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are defined as the couple (�̂; Ŝ) which minimizes det(S) under the constraint

1

n

nX
i=1

�(
p
(zi � �)tS�1(zi � �) ) � b; (1.4)

over all � 2 IRp+1 and S 2 PDS(p + 1), where PDS(p + 1) is the set of all positive definite

symmetric matrices of size p + 1. The function � is chosen by the statistician and b is a

selected constant.

At first sight, this approach based on robust covariance matrix estimators seems to

be restricted to regression models with elliptically symmetric carrier distribution. Indeed,

consistency of robust covariance matrices is always proven under this symmetry assumption.

In practice, this restriction cannot be retained. Even an ordinary quadratic regression would

then not be covered by the hypothesis of the model. The main contribution of this paper is

that we prove the approach to be valid for arbitrary carrier distributions.

In Section 2 we define the regression functionals based on robust S-estimators of location

and scatter. The corresponding in
uence function is computed in Section 3 and shown to be

bounded for � functions with bounded derivative. An estimator for the covariance matrix

of the estimator is presented as well. Section 4 gives a real data example, while Section 5

concludes. The Appendix contains all the proofs.

2 The Functional

The functional form of S-estimators of multivariate location and scatter is defined as follows.

Let K be an arbitrary (p + 1)-dimensional distribution. For our purposes, K represents

the joint distribution of the carriers and response variable. Define now the S-estimator

(M(K); S(K)) as the couple (M;S) which minimizes det(S) under the constraintZ
�(
p
(z �M)tS�1(z �M) ) dK(z) � b; (2.1)

over all M 2 IRp+1 and S 2 PDS(p+ 1). The function � satisfies

(R) � is even, continuous, non decreasing on [0;+1[ with �(0) = 0, and almost everywhere

twice differentiable with derivative �0 =  .

The constant b satisfies 0 < b < �(1) and determines the breakdown point of the estimator

which equals min( b
�(1)

; 1 � b
�(1)

) (see Lopuha�a 1989). The vector M(K) corresponds with

the location S-estimator, and S(K) with the scatter S-estimator.
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Let u contain the first p components of the variable z � K and y the last component, so

z = (ut; y)t. The variable y will be the dependent variable of the regression equation while u

contains the explanatory variables. Split up the vector M(K) and matrix S(K) accordingly,

that is

M(K) =

0
@Mu(K)

My(K)

1
A and S(K) =

0
@Suu(K) Suy(K)

Syu(K) Syy(K)

1
A :

The functional of interest is now defined as T (K) = (a(K); b(K)t)t where

b(K) = S
�1
uu (K)Suy(K) (2.2)

is called the regression slope functional and

a(K) =My(K)� b(K)tMu(K) (2.3)

the intercept functional. One has that T = (a; bt)t is regression, scale, and carrier equivariant

(Maronna and Morgenthaler, 1986). This means that, using the notation a(K) = a(u; y)

and b(K) = b(u; y) for (ut; y)t � K,

a(Au; cy + l
t
u+ d) = c a(u; y) + d

b(Au; cy + l
t
u+ d) = (A�1)t(c b(u; y) + l)

for every l 2 IRp, c; d 2 IR and nonsingular (p� p) matrix A.

Consider now the regression model

y = � + u
t
� + "

where u is the vector of random explicative variables and " the error term. We suppose that

" is independent of u and that F (t) = P (" � t) satisfies

(F) The distribution F has a strictly positive, symmetric and unimodal density f .

We denote by H the distribution of z = (ut; y)t, and call it the model distribution. A

regularity condition (to avoid degenerate situations) on the distribution G of the carriers u

is that

(G) PG(u
t

 = �) < 1� b

�(1)
for all 
 2 IRp n f0g and � 2 IR.
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When using a 50% breakdown estimator, this means that not more than half of the mass of

the distribution of G is lying on the same hyperplane. For unbounded � functions it implies

that the distribution of G is not completely concentrated on a hyperplane. A first result is

that the functionals a and b defined in (2.3) and (2.2) are Fisher-consistent for the intercept

and slope parameters � and �.

Theorem 1. The functional T is Fisher-consistent for the parameter � = (�; �t)t at the

model distribution H, that is

T (H) =

0
@a(H)

b(H)

1
A =

0
@�
�

1
A = �:

Note that no symmetry conditions for the distribution of the carriers have been required.

3 In
uence function

Before deriving the in
uence function we recall that S-estimators satisfy the following first-

order conditions (Lopuha�a 1989):Z
w1(d

2
K(z))(z �M(K)) dK(z) = 0 (3.1)Z

w1(d
2
K(z))(z �M(K))(z �M(K))t dK(z) =

Z
w2(d

2
K(z)) dK(z)S(K); (3.2)

where the weight functions equal w1(t) =  (
p
t)=
p
t and w2(t) =

 (
p
t)
p
t��(

p
t)+b

p+1
, and

d
2
H(z) = (z � M(H))tS(H)�1(z � M(H)) is a squared Mahalanobis distance. It will be

shown that w1 determines the form of the in
uence function.

The in
uence function of the functional T at the distribution H measures the effect on T

of adding a small mass at z = (ut; y)t. If we denote the point mass at z by �z and consider

the contaminated distribution H";z = (1� ")H + "�z then the in
uence function is given by

IF (z;T;H) = lim
"#0

T (H";z)� T (H)

"
=

@

@"
T (H";z)j"=0

:

(See Hampel et al. 1986.) The next theorem gives an expression for the in
uence functions

of the regression functional b and intercept functional a at a model distribution.

Theorem 2. Let y = � + u
t
� + ", where " is independent of u, and " � F satisfying

condition (F). Let H be the distribution of z = (ut; y)t, H0 the distribution of (ut; ")t and
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denote x = (1; ut)t and � = (�; �t)t. Then the in
uence function of the functional T at the

distribution H is given by

IF(z;T;H) = C(H0)
�1
w1(d

2
H(z))x(y � x

t
�) (3.3)

where

C(H0) =

Z
w1(d

2
H0
(z))xxt dH0(z) +

2

Syy(H0)

Z
w
0
1(d

2
H0
(z))y2xxt dH0(z): (3.4)

Moreover, if the score function �f(t) = �f 0(t)=f(t) associated to the density f exists, then

C(H0) =

Z
xx

t
w1(d

2
H0
(z))y�f(y) dH0(z): (3.5)

From the above Theorem, it is seen that the in
uence function is bounded as soon as w1 is

bounded.

Remark 1: Let z � H the model distribution and denote

A =

0
@ Ip 0

��t 1

1
A and c =

0
@ 0

��

1
A :

Then Az + c � H0 and by affine equivariance of the S-estimator

S(H0) = AS(H)At =

0
@Suu(H) 0

0 Syy(H)� �
t
Suy(H)

1
A :

The scale functional �"(H) := Syy(H0) equals therefore

�"(H) =

q
Syy(H)� �tSuu(H)� : (3.6)

Since det(A) = 1 we can rewrite (3.4) as

C(H0) =

Z
w1(d

2
H(z))xx

t
dH(z) +

2

�2"(H)

Z
w
0
1(d

2
H(z))(y � x

t
�)2xxt dH(z); (3.7)

which is an expression in terms of the observed distribution H. Equivalently,

C(H0) =

Z
xx

t
w1(d

2
H(z))(y � x

t
�)�f(y � x

t
�) dH(z): (3.8)

Remark 2: Note that for �(t) = t
2, we have w1(t) = 1 and from (3.7) C(H0) = EH [xx

t].

Therefore, the in
uence function becomes IF(z;T;H) = EH [xx
t]�1x(y � x

t
�) which is, as

expected, the in
uence function of the least squares estimator.
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4 Estimating the asymptotic variance

Asymptotic variances can be obtained in a heuristic way from the in
uence function by

means of

ASV(T;H) =

Z
IF(z;T;H) IF(z;T;H)t dH(z)

(cfr. Hampel et al. 1986, page 226). Together with expression (3.3) this yields

ASV(T;H) = C(H0)
�1
D(H0)C(H0)

�1

with

D(H0) =

Z
w
2
1(d

2
H0
(z))y2xxt dH0(z) =

Z
w
2
1(d

2
H(z))(y � x

t
�)2xxt dH(z): (4.1)

At the sample level, we estimate the parameters �; � by �̂ = a(Hn) and �̂ = b(Hn),

where Hn is the empirical distribution function of the data zi = (xti; yi)
t (1 � i � n).

With �̂ = M(Hn) and Ŝ = S(Hn) we retrieve the estimators defined in the introduction

(equations (1.3) and (1.4)). The covariance matrix of �̂ = (�̂; �̂t)t is now estimated in a

natural way by replacing H by Hn in the right hand side of expressions (3.7) and (4.1):

\

Cov(�̂) =
1

n

\ASV(T;H) =
1

n

\C(H0)
�1
\D(H0)\C(H0)

�1
(4.2)

with

\D(H0) =
1

n

nX
i=1

w
2
1(d

2
i )r

2
i xix

t
i

\C(H0) =
1

n

nX
i=1

fw1(d
2
i ) +

2

�̂2";n

w
0
1(d

2
i )r

2
i gxix

t
i;

where xi = (1; uti)
t, ri = yi�uti�̂� �̂, di =

q
(zi � �̂)tŜ�1(zi � �̂) is the robust Mahalanobis

distance of zi (Rousseeuw and van Zomeren 1990), and

�̂";n =

q
Ŝyy � �̂tŜ�1uu �̂ :

Alternatively, C(H0) can be estimated, by using (3.8), as

\C(H0) =
1

n

nX
i=1

xix
t
iw1(d

2
i )ri�f̂n(ri); (4.3)
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which requires however a nonparametric estimate f̂n of the density f . If f is specified to be

N(0; �2) then we have �f(t) = � d
dt
log f(t) = t=�

2. The parameter � can be estimated from

the residuals by a consistent scale estimator �̂n(r1; : : : ; rn). For Gaussian errors (4.3) then

results in

\C(H0) =
1

n

nX
i=1

xix
t
iw1(d

2
i )
r
2
i

�̂2n

yielding

\

Cov(�̂) = �̂
4
n

 
nX
i=1

w1(d
2
i )r

2
i xix

t
i

!�1 nX
i=1

w
2
1(d

2
i )r

2
i xix

t
i

! 
nX
i=1

w1(d
2
i )r

2
i xix

t
i

!�1

: (4.4)

If the function � becomes constant for values larger than a certain c�, then the function w1

is redescending to zero. It follows that in this case the estimators for Cov(�̂) are robust since

outliers are downweighted to zero in expressions (4.2) and (4.4).

5 Example

As an example we consider the famous Hawkins-Bradu-Kass data (Hawkins et al. 1984),

which is a constructed data set with n = 75 and p = 3. The first 14 observations are known

to be outliers. As � function the Tukey Biweight function was taken

�c(t) = min(
t
2

2
�

t
4

2c2
+

t
6

6c4
;
c
2

6
) (5.1)

and the constant b was set to
�(1)

2
to ensure that the estimator will have a 50% breakdown

point. The choice of the tuning constant c is arbitrary in this regression setup, but it is

customary to select it such that EH [�(dH(z))] = b for H = N(0; Ip+1). The function �c is

bounded and sufficiently smooth, with an associated weight function w1 being redescending.

For computing the S-estimator of location and scatter, the fast and accurate algorithm of

Ruppert (1992) has been used. The estimate for the covariance matrix of the coefficients has

been computed from formula (4.2). In Table 1 (a), we report the estimates obtained with the

classical estimator, the proposed robust covariance based estimator and the MM-estimator

(Yohai and Zamar 1988) with 50% breakdown point. We have chosen to make a comparison

with robust MM-estimators, since this is an established robust regression method with high

breakdown point and good efficiency properties. It is standard implemented in S-plus and

also reports standard errors and correlations between the estimates (as described in Yohai,

Stahel and Zamar 1991).
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Table 1: Estimates of the intercept and regression parameters for (a) the Hawkins-Bradu-Kass data

and (b) the clean Hawkins-Bradu-Kass data. Standards errors are reported between parenthesis,

correlations between estimated coefficients are in the right panel of the table. The estimators

considered are the Least Squares (LS) estimator, the estimator based on the robust S-estimator of

location/scatter, and an MM-estimator.

(a)

�̂ �̂1 �̂2 �̂3 �̂ �̂1 �̂2

LS-estimator �̂1 -0.637

-0.388 0.239 -0.335 0.383 �̂2 -0.180 -0.084

(0.405) (0.255) (0.015) (0.125) �̂3 0.470 -0.540 -0.775

Robust Covariance Based �̂1 -0.360

-0.018 0.097 0.004 -0.130 �̂2 -0.635 -0.009

(0.226) (0.079) (0.078) (0.077) �̂3 -0.386 -0.316 -0.086

MM-estimator �̂1 -0.648

-0.181 0.081 0.040 -0.052 �̂2 -0.164 -0.084

(0.114) (0.073) (0.044) (0.039) �̂3 0.426 -0.487 -0.795

(b)

�̂ �̂1 �̂2 �̂3 �̂ �̂1 �̂2

LS-estimator �̂1 -0.456

-0.010 0.062 0.012 -0.107 �̂2 -0.527 -0.031

(0.190) (0.067) (0.066) (0.069) �̂3 -0.481 -0.102 -0.123

Robust Covariance Based �̂1 -0.328

-0.021 0.123 -0.001 -0.147 �̂2 -0.672 -0.020

(0.253) (0.087) (0.088) (0.082) �̂3 -0.371 -0.354 -0.058

MM-estimator �̂1 -0.463

-0.011 0.062 0.012 -0.107 �̂2 -0.533 -0.008

(0.245) (0.086) (0.086) (0.090) �̂3 -0.451 -0.127 -0.149
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We see that the two robust methods give quite similar results, while the classical estimates

are very different since they are highly in
uenced by the outliers. Note that none of the

variables is declared as significant by the robust approach, while the second and third slope

parameter are significantly different from zero according to the LS method. It is instructive

to compare these results with those based on the clean data-set with the 14 artificial outliers

deleted. From Table 1 (b), we notice that the results for the method based on the robust

covariance matrix hardly change, neither for the estimates, neither for the covariance matrix

of the estimates. The MM-estimator appears to be less stable for the correlations between

the coefficients. Note that, on the basis of the clean data, LS finds none of the variables to

be significant.

Several diagnostic plots can be produced. We will illustrate them for the estimator

based on the robust S-covariance matrix defined above. In Figure 1a, the standardized

residuals ri=�̂n are represented versus their index. We immediately observe that the first 14

observations are not following the linear relation imposed by the majority of the data.

The robust distance di of an observation zi = (xi; yi) indicates how far the data point is

from the bulk of the data cloud. In Figure 1b the robust distances di are compared with the

constant c of (5.1). If di is bigger than this critical value then w1(d
2
i ) will vanish, resulting

in a zero in
uence on the estimator according to (3.3). We see that the 14 outliers were all

above this critical value, and therefore are completely downweighted.

To verify whether condition (F) on the residuals is reasonable, a diagnostic plot will be

used (cfr. Figure 1c). The solid line is the kernel density estimate f̂h(t) of the distribution of

the residuals. The Gaussian kernel has been used and the bandwidth h was selected using

maximum-likelihood cross-validation (see e.g. H�ardle 1991, p. 93). Afterwards, a symmetric

unimodal version of this density has been added to this plot. It has been constructed as

follows: first we computed f̂
s
h(tj) = (f̂h(tj) + f̂h(�tj))=2 for a grid of equidistant positive

points starting from zero. Then a classical monotonic regression algorithm (see e.g. Cox and

Cox 1994, page 51) has been applied on the f̂ sh(tj) to obtain f̂ smh (tj). Putting f̂ smh (�tj) =

f̂
sm
h (tj) and connecting all the obtained values results in the dashed line of Figure 1c, which

is a symmetric and unimodal function. Note that the initial density estimate is reasonably

close to the unimodal symmetric version, so we assume that condition (F) is satisfied. Of

course, more formal tests for unimodality and symmetry could be applied. To put emphasis

on the central part of the data, the density estimate has been restricted to the interval
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Figure 1: Diagnostic plots for the residuals of the regression estimator based on an S-estimator

of multivariate location/scatter for the Hawkins-Bradu-Kass data: (a) standardized residuals (b)

robust distances versus their index (c) kernel-based density estimate (solid line) and its symmetric,

unimodal version (dashed line) (d) QQ-plot of the residuals.
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Table 2: Estimates of the intercept and regression parameters for the Hawkins-Bradu-Kass data by

the method based on a robust covariance S-estimator, as in Table 1. Now, for computing standards

errors and correlations between estimated coefficients the hypothesis of normality was used.

�̂ �̂1 �̂2 �̂3 �̂ �̂1 �̂2

Complete data set �̂1 -0.538

-0.018 0.097 0.004 -0.130 �̂2 -0.457 -0.028

(0.297) (0.102) (0.101) (0.111) �̂3 -0.572 0.063 -0.114

Clean data set �̂1 -0.530

-0.021 0.123 -0.001 -0.147 �̂2 -0.461 -0.002

(0.231) (0.080) (0.079) (0.089) �̂3 -0.534 0.003 -0.150

[�3�̂n; 3�̂n]: Finally, a classical QQ-plot is presented in Figure 1d. Once again, since we do

not want the outliers to dominate this picture and make the interpretation harder, the plot is

based on all residuals with absolute value smaller than 3�̂n. Figure 1d suggest that normality

will not be rejected. This is confirmed by a Kolmogorov-Smirnoff test (P-value> 0:2).

Supposing normality of the error terms allows us to use formula (4.4) to estimate the

covariance matrix of the estimator. The scale of the Gaussian error distribution " was es-

timated by an A-estimator of scale (see Iglewicz 1982, page 417), which has the maximal

breakdown point, a redescending in
uence function (like the regression and intercept esti-

mators) and is standard implemented in S-plus. Results are reported in Table 2. We see

that estimates, standard errors, and correlations between the coefficients remain robust: the

outcomes based on the whole data set and just on the clean data are not too different and

close to the LS result computed from the data with the outliers deleted.

To conclude this Section, we note that an unbounded (in the x-direction) in
uence es-

timator, like the MM-estimator or the Least Trimmed Squares estimator, will yield small

standardized values for residuals 11 upto 14. Using these estimators, observations 11-14 are

not declared as regression outliers, but are called \good leverage points": they are outlying

in the design space, but still follow the regression model. Our analysis yields a different

result: we declare 11-14 as regression outliers, although far less outlying than the first 10

observations. We claim that our interpretation is the correct one: the unbounded in
uence

function approach has the risk that leverage points, not too far located from the \true"

12



regression plane, can still have a huge in
uence on the estimator and attract the regression

line towards them. Extensive diagnostic testing confirmed our conclusion. For example,

computing standardized residuals for the suspected observations 11 to 14 from the LS-fit

based on the clean data set (observations 15 upto 75) yielded values higher than 4.5.

6 Conclusions

In this paper we discussed properties of regression estimators based on high breakdown S-

estimators of location and scatter. We proved Fisher consistency of the method, without

making the hypothesis of elliptical symmetry on the distribution of the explanatory variables.

We derived the in
uence function, which appears to be bounded for the usual choices of �

functions in robust statistics. Moreover, it can easily be shown that the resulting regression

estimator inherits the breakdown point of the location/scatter S-estimator.

S-estimators of location and scatter have very attractive properties. It was shown that

they are asymptotically normal (Davies 1987) with a quite high efficiency also in higher di-

mensions (Lopuha�a 1989, Croux and Haesbroeck 1999). At the same time they are extremely

robust and have a smooth in
uence function. Moreover, there exist very fast algorithms to

compute them (Ruppert 1992, Woodruff and Rocke 1994), even in high dimensions. They

seem to be an excellent choice as robust covariance matrix estimators in multivariate analy-

sis. In the context of principal components analysis, they have been successfully applied by

Croux and Haesbroeck (2000).

Although many robust regression approaches have already been proposed in the litera-

ture, we think that the approach based on robust covariance matrices merits to be added to

the list of available robust regression estimators. A thorough comparison with other methods

would lead us too far, but let us mention some important advantages.

First of all, a robust estimate for the covariance matrix of the estimator is available.

Practitioners ask for standard errors around their robust estimates, but robust standard

errors are not so often available in the literature (among the exceptions are the bounded

in
uence regression estimators proposed by Chang, Mckean, Naranjo and Sheather 1999

and Ferretti et al. 1999). Secondly, a similar approach can be applied to more general

regression models, like multivariate regression (Rousseeuw, Van Aelst en Van Driessen 2000)

and calibration models (Cheng and Van Ness 1997). Finally, the method is simple and easy

to explain.

13



7 Appendix

To prove Theorem 1 we will use the following lemma.

Lemma 1. If the function � satis�es condition (R) and the distribution F satis�es condition

(F), then the function

��;c(t) =

Z
�(
p
(y � t)2� + c) ) dF (y)

is symmetric and increasing on [0;+1[ for every � > 0, c � 0. Moreover, for c < c
� =

infft > 0 j �(t) = �(1)g, ��;c(t) is strictly increasing on [0;+1[.

Proof of Lemma 1: The symmetry of ��;c follows from the symmetry of F :

��;c(�t) =
Z
�
�
((y + t)2� + c)1=2

�
dF (y) =

Z
�
�
((�y + t)2� + c)1=2

�
dF (y) = ��;c(t):

Now ��;c has a positive derivative �
0
�;c(t) on ]0;+1[ which can be seen as follows:

�
0
�;c(t) =

@

@t

Z
�
�
((y � t)2� + c)1=2

�
dF (y)

= ��
Z

(y � t)

((y � t)2� + c)1=2
 
�
((y � t)2� + c)1=2

�
f(y) dy

= ��
�Z t

�1

(y � t)

((y � t)2� + c)1=2
 
�
((y � t)2� + c)1=2

�
f(y) dy

+

Z 1

t

(y � t)

((y � t)2� + c)1=2
 
�
((y � t)2� + c)1=2

�
f(y) dy

�
:

By transforming the integration variables in these last two integrals, we obtain

�
0
�;c(t) = ��

�
�
Z 1

0

s

s2� + c
 
�
(s2� + c)1=2

�
f(t� s) ds

+

Z 1

0

s

s2� + c
 
�
(s2� + c)1=2

�
f(t+ s) ds

�

= �

Z 1

0

s

s2� + c
 
�
(s2� + c)1=2

�
[f(t� s)� f(t+ s)] ds:

For every s; t > 0 we have f(t � s) � f(t + s) > 0 from the unimodality of F . Condition

(R) ensures that  
�
(s2� + c)1=2

�
� 0 implying that �0�;c(t) � 0. Moreover, if c < c

�,

then fs > 0 j 
�
(s2� + c)1=2

�
> 0g has a non-zero Lebesgue measure, so that in this case

�
0
�;c(t) > 0 for t > 0. 2

Proof of Theorem 1: First of all, due to equivariance, we may suppose that � = 0 and

� = 0, so y = ". Lopuha�a (1989) has shown that a solution (M(H); S(H)) of problem (2.1)
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always exists. It is now sufficient to prove that My(H) = 0 and Suy(H) = 0, which will

imply immediately that T (H) = 0 = (�; �t)t. Denote M �M(H), S � S(H) and

S
�1 =

0
@Suu S

uy

S
yu

S
yy

1
A

where 0 < S
yy
< 1 since S is a positive definite matrix. Suppose that (i) Suy 6= 0 or (ii)

(Suy = 0 and My 6= 0). With ~Suu = S
uu � (SuySyu)=Syy, define ~S by

~S�1 =

0
@ ~Suu 0

0 S
yy

1
A and put ~M =

0
@Mu

0

1
A :

Now by definition of T (H) = (M(H); S(H)), and using independence of y and u, we may

write

b �
ZZ

�(�u(y)
1=2) dF (y) dG(u)

with

�u(y) = (u�Mu)
t
S
uu(u�Mu) + (y �My)

2
S
yy + 2(u�Mu)

t
S
uy(y �My)

With t(u) =My �
(u�Mu)

tSuy

Syy
2 IR, we have that �u(y) = (y� t(u))2Syy + (u�Mu)

t ~Suu(u�

Mu). From Lemma 1 it follows that the function

t!
Z
�

�
((y � t)2Syy + (u�Mu)

t ~Suu(u�Mu))
1=2
�
dF (y)

is symmetric and increasing on [0;+1[. Therefore, it holds for every u thatZ
�(�u(y)

1=2) dF (y) �
Z
�

�
(y2Syy + (u�Mu)

t ~Suu(u�Mu))
1=2
�
dF (y);

with strict inequality if t(u) 6= 0 and cu < c
�, where cu =

q
(u�Mu)t ~Suu(u�Mu) and c

�

defined as in Lemma 1. Denote A = fu j t(u) = 0g and B = fu j cu � c
�g. Since for all

u 2 B, �u(y)1=2 � c
� for every y, we have that

b � EH [�(�u(y)
1=2)] � EH [�(�u(y)

1=2)I(u 2 B)] = �(1)P (B):

If PG(A [ B) = 1, then we would have that P (A) � 1 � P (B) � 1 � b
�(1)

contradicting

hypothesis (G), since A forms a hyperplane in IRp. Therefore, we have PG(A [B) < 1 and

b �
ZZ

�(�u(y)
1=2) dF (y) dG(u) >

ZZ
�

�
(y2Syy + (u�Mu)

t ~Suu(u�Mu))
1=2
�
dF (y) dG(u)

=

Z
�

�
((z � ~M)t ~S�1(z � ~M))1=2

�
dH(z);
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while at the same time det(S) = det( ~S). Therefore there exists a constant c < 1 such that

EH

h
�

�
((z � ~M)t(c ~S)�1(z � ~M))1=2

�i
� b while det(c ~S) = c

p+1 det( ~S) < det(S), hereby

contradicting the definition of T (H) = (M(H); S(H)). We conclude that case (i) and (ii)

are excluded, and therefore My = 0 and Suy = 0 (which implies Suy = 0). 2

To prove Theorem 2 we need the following two lemmas.

Lemma 2. From the �rst order condition (3.2) for the scatter matrix functional S, it follows

that

�
2

Syy(H0)

Z
w
0
1(d

2
H0

(z)) y2 ~u dH0(z)

�
IF(z;My ;H0) +

�Z
w1(d

2
H0
(z)) ~u~ut dH0(z) +

2

Syy(H0)

Z
w
0
1(d

2
H0
(z)) y2 ~u~ut dH0(z)

�
S
�1
uu (H0)IF(z;Suy;H0) =

w1(d
2
H0
(z))y~u: (7.1)

where ~u = u�Mu(H0).

Proof of Lemma 2: Consider the contaminated distribution H" = (1� ")H0+ "�z. Lopuha�a

(1989) has shown that a solution of problem (2.1) exists for contaminated distributions of

this type when " is sufficiently small. From the (u; y) component of equation (3.2) we obtain

(1�")

Z
w1(d

2
H"
(z))(u�Mu(H"))(y�My(H")) dH0(z)+"w1(d

2
H"
(z))(u�Mu(H"))(y�My(H")) =

(1� ")

Z
w2(d

2
H"
(z)) dH0(z)Suy(H") + "w2(d

2
H"
(z))Suy(H"):

Differentiating both sides of the above equation w.r.t. " and evaluating at 0 yields

�

Z
w1(d

2
H0

(z))~u(y �My(H0)) dH0(z) +

Z
w
0
1(d

2
H0
(z))

@

@"
d
2
H"
(z)

j"=0
~u(y �My(H0)) dH0(z)�Z

w1(d
2
H0

(z))IF(z;Mu;H0)(y �My(H0)) dH0(z)�

Z
w1(d

2
H0

(z))~uIF(z;My ;H0) dH0(z) +

w1(d
2
H0

(z))~u(y �My(H0)) = �

Z
w2(d

2
H0
(z)) dH0(z)Suy(H0) + w2(d

2
H0

(z))Suy(H0) +Z
w
0
2(d

2
H0

(z))
@

@"
d
2
H"
(z)

j"=0
dH0(z)Suy(H0) +

Z
w2(d

2
H0
(z)) dH0(z) IF(z;Suy;H0):

where ~u = u � Mu(H0). From (3.2) it follows that the first term on the left hand side

equals the first term on the right hand side in the above equation. Since My(H0) = 0 and

Suy(H0) = 0 and using that

@

@"
d
2
H"
(z)

j"=0
= (z �M(H0))

tIF(z;S�1;H0)(z �M(H0))� 2(z �M(H0))
t
S
�1(H0)IF(z;M;H0)

16



the previous equation becomes

Z
w
0
1(d

2
H0

(z))(z �M(H0))
tIF(z;S�1;H0)(z �M(H0))~uy dH0(z)�

2

Z
w
0
1(d

2
H0
(z))(z �M(H0))

t
S
�1(H0)IF(z;M;H0)~uy dH0(z)�Z

w1(d
2
H0

(z))y dH0(z) IF(z;Mu;H0)�

Z
w1(d

2
H0
(z))~u dH0(z) IF(z;My ;H0) +

w1(d
2
H0

(z))~uy =

Z
w2(d

2
H0
(z)) dH0(z) IF(z;Suy;H0): (7.2)

Now IF(z;S�1; H0) = �S(H0)
�1IF(z;S;H0)S(H0)

�1 (this inequality follows immediately

from matrix derivation rules see e.g. (Pullman 1976, page 120), so

(z�M(H0))
tIF(z;S�1;H0)(z�M(H0)) = (z�M(H0))

t
S(H0)

�1IF(z;S;H0)S(H0)
�1(z�M(H0)) =

~utIF(z;S�1uu ;H0)~u+ IF(z;Syy;H0)(y=Syy(H0))
2 + 2~utS�1uu (H0)IF(z;Suy;H0)y=Syy(H0) (7.3)

since My(H0) = 0 and Suy(H0) = 0. Also d2H0
(z) = y

2
=Syy(H0) + ~utS�1uu (H0)~u. Therefore,

using (7.3), the first integral in expression (7.2) can be split up into three parts. The first

part equalsZ
~utIF(z;S�1uu ; H0)~u

�Z
w
0
1(y

2
=Syy(H0) + ~utS�1uu (H0)~u)y dF (y)

�
~udG(u) = 0;

since the inner integral is zero thanks to symmetry of F . For the same reason we have for

the second partZ �Z
w
0
1(y

2
=Syy(H0) + ~utS�1uu (H0)~u)(y=Syy(H0))

2
y dF (y)

�
dG(u)IF(z;Syy; H0) = 0:

Therefore, the first integral of equation (7.2) becomes

Z
w
0
1(d

2
H0

(z))(z �M(H0))
tIF(z;S�1;H0)(z �M(H0))~uy dH0(z) =

2

Syy(H0)

Z
w
0
1(d

2
H0
(z)) y2 ~u~ut dH0(z) S

�1
uu (H0)IF(z;Suy;H0): (7.4)

The second integral of equation (7.2) can be split up into two parts by using

(z �M(H0))
t
S
�1(H0)IF(z;M;H0) = ~utS�1uu (H0)IF(z;Mu;H0) + IF(z;My ;H0)y=Syy(H0):

The first part equalsZ
~utS�1uu (H0)IF(z;Mu; H0)

�Z
w
0
1(y

2
=Syy(H0) + ~utS�1uu (H0)~u)y dF (y)

�
~udG(u) = 0;
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by symmetry of F . Therefore, the second integral of equation (7.2) reduces to

Z
w
0
1(d

2
H0
(z))(z �M(H0))

t
S
�1(H0)IF(z;M;H0)~uy dH0(z) =

1

Syy(H0)

Z
w
0
1(d

2
H0
(z)) y2~u dH0(z) IF(z;My ;H0): (7.5)

The integral in the third term of expression (7.2) also equals zero by symmetry of F . From

the u component of (3.1) it follows that also the fourth term of (7.2) equals zero. Using the

(u; u) component of (3.2) the right hand term of (7.2) can be rewritten asZ
w2(d

2
H0
(z)) dH0(z) IF(z;Suy; H0) =

Z
w1(d

2
H0
(z))~u~ut dH0(z) S

�1
uu (H0) (7.6)

Substituting (7.4), (7.5), and (7.6) in expression (7.2) yields the desired result. 2

Starting from the y component of (3.1), with similar computations as in Lemma 2, the next

lemma can be proven.

Lemma 3. From the �rst order condition (3.1) for the location functionalM , it follows that�Z
w1(d

2
H0
(z)) dH0(z) +

2

Syy(H0)

Z
w
0
1(d

2
H0
(z)) y2 dH0(z)

�
IF(z;My; H0) +

2

Syy(H0)

Z
w
0
1(d

2
H0
(z)) y2 ~ut dH0(z) S

�1
uu (H0)IF(z;Suy; H0) = w1(d

2
H0
(z))y (7.7)

where ~u = u�Mu(H0).

Using Lemma 2 and lemma 3 given above we can prove Theorem 2.

Proof of Theorem 2: We first derive the in
uence function at H0. We write

T (H0) =

0
@a(H0)

b(H0)

1
A = Q(H0)

�1

0
@ My(H0)

S
�1
uu (H0)Suy(H0)

1
A ;

with

Q(H0) =

0
@1 M

t
u(H0)

0 Ip

1
A ;

and Ip the identity matrix. Since My(H0) = 0 and Suy(H0) = 0 it follows that

IF(z;T;H0) = Q(H0)
�1

0
@ IF(z;My ;H0)

S
�1
uu (H0)IF(z;Suy;H0)

1
A : (7.8)

18



We can combine Lemma 2 and Lemma 3 in one single equation:

�Z
w1(d

2
H0

(z)) ~x~xt dH0(z) +
2

Syy(H0)

Z
w
0
1(d

2
H0
(z)) y2 ~x~xt dH0(z)

�0
@ IF(z;My;H0)

S
�1
uu (H0)IF(z;Suy;H0)

1
A =

w1(d
2
H0
(z))y~x (7.9)

with ~x = (1; ~ut)t and where we used
R
w1(d

2
H0
(z)) ~udH0(z) = 0 (which follows from (3.1)).

Together with expression (7.8) this yields

IF(z;T;H0) = Q(H0)
�1
A(H0)

�1
w1(d

2
H0

(z))~xy (7.10)

where

A(H0) =

Z
w1(d

2
H0
(z)) ~x~xt dH0(z) +

2

Syy(H0)

Z
w
0
1(d

2
H0

(z)) y2 ~x~xt dH0(z) (7.11)

Now we can easily check that Q(H0)
t~x = (1; ut)t = x. It follows from (7.10) and Q(H0)

�1 =

�Q(H0) that

IF(z;T;H0) = �Q(H0)
�1
A(H0)

�1
Q(H0)

t
w1(d

2
H0
(z))xy

= (Q(H0)
t
A(H0)Q(H0))

�1
w1(d

2
H0
(z))xy

= C(H0)
�1
w1(d

2
H0

(z))xy (7.12)

where C(H0) = Q(H0)
t
A(H0)Q(H0) equals, using (7.11),

C(H0) =

Z
w1(d

2
H0
(z)) xxt dH0(z) +

2

Syy(H0)

Z
w
0
1(d

2
H0
(z)) y2 xxt dH0(z): (7.13)

Using integration by parts, expression (7.13) can be rewritten as (3.5).

Finally, note that if z = (ut; y)t � H, then Az+c � H0 with A =
�

Ip 0

��t 1

�
, and c = ( 0

�� ).

By equivariance of the functional T we have T (H) = T (H0) + (
�
� ) and therefore

IF(z;T;H) = IF(Az + c;T;H0) = IF((u; y � x
t
�);T;H0) (7.14)

Due to the affine equivariance of the S-estimator, we have

d
2
H(z) = (z �M(H))tS(H)�1(z �M(H))

= (Az � (M(H0)� c))tS(H0)
�1(Az � (M(H0)� c))

= d
2
H0
(Az + c)

for all z 2 IRp+1. Therefore, it follows from (7.14) and (7.12) that

IF(z;T;H) = C(H0)
�1
w1(d

2
H(z))x(y � x

t
�): 2
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