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Abstract. In this paper we study the resource-constrained project scheduling problem with weighted
earliness–tardinesss penalty costs. Project activities are assumed to have a known deterministic due date,
a unit earliness as well as a unit tardiness penalty cost and constant renewable resource requirements. The
objective is to schedule the activities in order to minimize the total weighted earliness–tardinesss penalty
cost of the project subject to the finish–start precedence constraints and the constant renewable resource
availability constraints. With these features the problem becomes highly attractive in just-in-time environ-
ments.

We introduce a depth-first branch-and-bound algorithm which makes use of extra precedence relations
to resolve resource conflicts and relies on a fast recursive search algorithm for the unconstrained weighted
earliness–tardinesss problem to compute lower bounds. The procedure has been coded in Visual C++,
version 4.0 under Windows NT. Both the recursive search algorithm and the branch-and-bound procedure
have been validated on a randomly generated problem set.

Keywords: resource-constrained project scheduling, weighted earliness–tardinesss costs, branch-and-
bound

1. Introduction

Most of the work in project scheduling has focused on regular measures of perfor-
mance. A regular measure of performance is a nondecreasing function of the activity
completion times (in the case of a minimization problem), with the minimization of
the project duration as the most popular one. Other examples are the minimization of
the mean flowtime, the mean lateness, the mean tardiness and the percentage of jobs
tardy.

In recent years scheduling problems with nonregular measures of performance
have gained increasing attention. A nonregular measure of performance is a measure
for which the above definition does not hold. A popular nonregular measure of perfor-
mance in the literature is the maximization of the net present value (npv) of the project.
In this case, a positive or negative cash flow is assigned to each activity and the objec-
tive is to schedule the activities in order to maximize the total net present value of the
project. We can distinguish between procedures for the unconstrained max-npv project
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scheduling problem and those for the resource-constrained max-npv project scheduling
problem. For an overview of the literature, we refer to Herroelen et al. [6] and De Reyck
and Herroelen [3].

Another nonregular measure of performance, which is gaining attention in JIT en-
vironments, is the minimization of the weighted earliness–tardinesss penalty costs of the
activities in a project. In this problem, a due date, a unit earliness penalty cost and a
unit tardiness penalty cost are assigned to the activities and the objective is to schedule
the activities to minimize the weighted penalty cost of the project. This problem often
occurs in practice since many project schedulers have to deal with due dates and penalty
costs. Costs of earliness include extra storage requirements and idle times and implic-
itly incur opportunity costs. Since we consider the project scheduling problem from
the point of view of a subcontractor who is in charge of the execution of the project, due
dates imposed by the project owner can also result in tardiness penalties. Tardiness leads
to customer complaints, loss of reputation and profits, monetary penalties or goodwill
damages. Moreover, tardiness can cause penalties due to delays in the project comple-
tion, which is often faced by many firms hiring subcontractors, maintenance crews as
well as research teams.

In this paper we present a branch-and-bound algorithm to minimize the weighted
earliness–tardinesss penalty costs in project networks subject to zero-lag finish–start
precedence constraints and renewable resource constraints (m, 1|cpm|early/tardy, ac-
cording to the classification scheme of Herroelen et al. [7] and subsequently de-
noted as RCPSPWET, i.e., the Resource-Constrained Project Scheduling Problem with
Weighted Earliness–Tardiness costs). The RCPSPWET extends the NP-hard resource-
constrained project scheduling problem under the minimum makespan objective (prob-
lem m, 1|cpm|Cmax) to the nonregular early/tardy performance measure. To the best of
our knowledge, no exact procedure has yet been suggested for its solution. The solu-
tion procedure proposed in this paper computes lower bounds using an exact recursive
search algorithm for the unconstrained weighted earliness–tardinesss project schedul-
ing problem (denoted as cpm|early/tardy and subsequently denoted as WETPSP, i.e.,
the Weighted Earliness–Tardiness Project Scheduling Problem). The branching strategy
resolves resource conflicts through the addition of extra precedence relations based on
the concept of minimal delaying alternatives developed by Demeulemeester and Herroe-
len [4,5] and further explored by Icmeli and Erengüç [8].

The organisation of the paper is as follows. In section 2 we present a formulation
for the WETPSP. Section 3 describes an exact solution procedure for this problem. In
section 4 we present a conceptual formulation of the RCPSPWET. Section 5 describes
the logic of the branch-and-bound algorithm developed for its solution. Section 6 illus-
trates the algorithm on a numerical example and in section 7 we report detailed compu-
tational results on two randomly generated problem sets. In section 8 we give our overall
conclusions.
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2. The deterministic unconstrained weighted earliness–tardinesss project
scheduling problem (WETPSP)

The WETPSP involves the scheduling of project activities in order to minimize the
weighted earliness–tardinesss penalty costs in the absence of resource constraints. The
project is represented by an activity-on-the-node (AON) network G = (N,A) where the
set of nodes, N , represents activities and the set of arcs, A, represents finish–start prece-
dence constraints with a time lag of zero. The activities are numbered from the dummy
start activity 1 to the dummy end activity n, such that j > i for each arc (i, j ). The
duration of an activity is denoted by di (1 � i � n) and its known deterministic due date
by hi . The completion time of activity i is denoted by the nonnegative integer variable fi
(1 � i � n). The earliness of activity i can be computed as Ei = max(0, hi−fi) and its
tardiness as Ti = max(0, fi − hi). If ei and ti , respectively, denote the per unit earliness
and tardiness penalty cost of activity i, its total earliness–tardinesss cost is eiEi + tiTi .
In the sequel we assume, without loss of generality, that h1 = 0 and hn = ∞ while
e1 = t1 = ∞ and en = tn = 0. The WETPSP can be formulated as follows:

Minimize
n−1∑
i=2

(eiEi + tiTi), (1)

subject to fi � fj − dj , ∀(i, j) ∈ A, (2)

Ei � hi − fi, ∀i ∈ N, (3)

Ti � fi − hi, ∀i ∈ N, (4)

f1 = 0, (5)

fi ∈ int+, Ei ∈ int+, Ti ∈ int+, i = 1, 2, . . . , n. (6)

The objective in equation (1) minimizes the weighted earliness–tardinesss cost of
the project. The constraint set given in equation (2) maintains the finish–start precedence
relations among the activities. Equations (3) and (4) compute the earliness and tardiness
of each activity. Equation (5) forces the dummy start activity to end at time zero and
equation (6) ensures that the activity finishing times as well as the earliness and tardiness
assume nonnegative integer values, denoted by the set int+.

In the next section we describe an efficient exact recursive search algorithm for the
WETPSP as formulated above.

3. The exact solution procedure for the WETPSP

3.1. Description

The proposed recursive algorithm consists of two steps. Step 1 determines the so-called
due date tree, DT, using a forward pass procedure. The forward procedure forces the
finishing time fj of each activity j to be greater than or equal to its due date hj . Upon
terminating step 1 each node in the due date tree, except the dummy end activity n (this
will be clarified later on in the text), has at most one incoming arc.
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In step 2 the due date tree is the subject of a recursive search (starting from the
dummy end activity n) in order to identify sets of activities (SA) that might be shifted
backwards in time (towards time zero) in order to decrease the weighted earliness–
tardinesss cost of the project. Due to the structure of the recursive search it can never
happen that a forward shift of a set of activities (away from time zero) can lead to a de-
crease of the weighted earliness–tardinesss cost. In fact, all the activities are scheduled
in step 1 at their due date or later, therefore it can never be advantageous to increase the
completion times of these activities.

When a set of activities SA is found for which a backward shift leads to a reduction
in the earliness–tardinesss cost, the algorithm computes its minimal displacement inter-
val and updates the due date tree DT as follows. The arc (i, j ) which connects a node
i ∈ SA to a node j /∈ SA in the due date tree DT is removed from it. The minimal dis-
placement interval of the set of activities SA under consideration is computed as follows.
Compute

vk∗l∗ = min
(k,l)∈A

k/∈SA, l∈SA

{fl − dl − fk} and w = min
y∈SA
fy>hy

{fy − hy}.

If vk∗l∗ < w and node k∗ does not belong to an arc of the due date tree DT then arc (k∗, n)
is added to the due date tree DT. Moveover, since vk∗l∗ < w, arc (k∗, l∗) is also added to
the due date tree DT. If vk∗l∗ � w and the set of activities SA consists of more than one
activity, then arc (i, n) is added to the due date tree DT. In doing so, we make sure that
the due date tree DT is never disconnected into two subtrees during the performance of
the recursive search.

The completion times of the activities in the set of activities SA for which the dis-
placement has been computed are decreased by the minimal displacement min{vk∗l∗, w}
and the algorithm repeats the recursive search. If no further shift can be accomplished,
the algorithm stops and the completion times of the activities of the project with its
corresponding weighted earliness–tardinesss cost are reported.

3.2. The algorithm

When fj denotes the finishing time of activity j , when Pj denotes the set of its immedi-
ate predecessors, when DT denotes the due date tree, when SA denotes a set of activities
for which the per unit earliness–tardinesss cost will be denoted by ET and CA denotes
the set of already considered activities, the two steps and the recursive algorithm can be
written as follows:

Step 1. Compute due date tree
DT = ∅;
f1 = h1 = 0;
Do for j = 2 to n
fmax = −1;
Do ∀i ∈ Pj

If fi > fmax then fmax = fi and i* = i;
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fmax = fmax + dj ;
If j < n then fj = max{hj ; fmax} else fj = fmax;
If fmax > hj then DT = DT ∪ (i∗, j);

Do for j = 1 to n− 1
If ¬∃(i, j) ∈ DT and ∃(j, k) ∈ DT then DT = DT ∪ (j, n);

Step 2.
CA = ∅;
Do Recursion(n)→ SA′,ET ′ (parameters returned by the recursive function);
Report the optimal completion times of the activities and the weighted earliness–
tardiness cost of the project.

Recursion(newnode)
SA = {newnode} and CA = CA ∪ {newnode};
If fnewnode > hnewnode then ET = −tnewnode else ET = enewnode;
Do ∀i | i /∈ CA and i precedes newnode in the due date tree DT:

Recursion(i)→ SA′,ET ′
If ET ′ � 0 then

Set SA = SA ∪ SA′ and ET = ET + ET ′;
Else

DT = DT\(i, newnode);
Compute vk∗l∗ = min

(k,l)∈A
k/∈SA′, l∈SA′

{fl − dl − fk} and w = min
y∈SA′
fy>hy

{fy − hy};

If vk∗l∗ < w then
If ¬∃(r, k∗) ∈ DT and ¬∃(k∗, s) ∈ DT then DT = DT ∪ (k∗, n);
DT = DT ∪ (k∗, l∗);

else
If |SA′| > 1 then DT = DT ∪ (i, n);

Do ∀j ∈ SA′: set fj = fj− min{vk∗l∗, w};
Go to Step 2;

Do ∀i | i /∈ CA and i succeeds newnode in the due date tree DT:
Recursion(i)→ SA′,ET ′
If ET ′ < 0 then

Set SA = SA ∪ SA′ and ET = ET + ET ′;
Else

DT = DT\(newnode, i);
If |SA′| > 1 then DT = DT ∪ (i, n);

Return;

Notice that the due date tree DT contains several subtrees, each connected with the
dummy end activity n. When a particular subtree is subject to a recursive search and no
displacement can be found, we make the link between that subtree and the dummy end
activity n inactive. In doing so, the recursive search procedure will dominate this link
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and will not search for a set of activities of that particular dominated subtree. When later
during the performance of the recursive search procedure, due to the displacement of a
set of activities, an arc is added between an activity of the inactive subtree and another
activity, the inactive subtree will be activated again by making its link with the dummy
end activity n active again. The subtree can now again be subject to a recursive search
and eventually a set of activities that will be shifted towards time zero can be found.

For more details and an example illustrating the recursive search algorithm, we
refer to Vanhoucke et al. [14].

4. The deterministic RCPSPWET

The RCPSPWET is identical to the WETPSP, except for the renewable resource con-
straints. There are K renewable resources with ak (1 � k � K) as the availability of
resource type k and with rik (1 � i � n, 1 � k � K) as the resource requirements of ac-
tivity i with respect to resource type k. The RCPSPWET can be conceptually formulated
as follows:

Minimize
n−1∑
i=2

(eiEi + tiTi), (7)

subject to fi � fj − dj , ∀(i, j) ∈ A, (8)

Ei � hi − fi, ∀i ∈ N, (9)

Ti � fi − hi, ∀i ∈ N, (10)∑
i∈S(t)

rik � ak, k = 1, 2, . . . , K, t = 1, 2, . . . , T , (11)

f1 = 0, (12)

fi ∈ int+, Ei ∈ int+, Ti ∈ int+ i = 1, 2, . . . , n, (13)

where S(t) denotes the set of activities in progress in period ]t − 1, t]. Equation (11)
represents the renewable resource constraints.

5. The branch-and-bound algorithm for the RCPSPWET

5.1. Description of the search tree and branching strategy

It is clear that the optimal solution to the WETPSP provides a lower bound on the corre-
sponding RCPSPWET. We exploit this fact by computing, at the root of the branch-and-
bound tree, an initial lower bound lb on the weighted earliness–tardinesss cost using the
recursive procedure of section 3. If this solution is resource feasible, we have the opti-
mal solution for the RCPSPWET and the procedure terminates. If, however, a resource
conflict can be detected, we branch into the next level of the branch-and-bound tree to
generate a set of delaying alternatives. A resource conflict occurs when there is at least
one period ]t − 1, t] for which ∃k � K:

∑
i∈S(t) rik > ak .
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According to Demeulemeester and Herroelen [4,5], it is sufficient to consider only
a set DS of minimal delaying alternatives to resolve a resource conflict, i.e., DS contains
minimal sets of activities which, when delayed, release enough resources to resolve the
resource conflict and which do not contain any other delaying alternative as a subset.
Each of these minimal delaying alternatives is delayed by each of the remaining ac-
tivities in progress in period ]t∗ − 1, t∗] (the period of the first encountered resource
conflict). Therefore, each minimal delaying alternative can give rise to several minimal
delaying modes (De Reyck [1]). For each delaying mode we impose additional prece-
dence relations to resolve the resource conflict (Icmeli and Erengüç [8]) and compute
a new lower bound using the recursive search procedure. If, for example, a resource
conflict is caused in period ]t∗ − 1, t∗] by the set of activities S(t∗) = {1, 2, 3} and the
delaying set contains two minimal delaying alternatives, i.e., DS = {{1, 2}, {3}}, then
the three different delaying modes are (1 ≺ 3), (2 ≺ 3) and (3 ≺ 1, 2) corresponding to
four additional precedence relations.

Each delaying mode corresponds with a node in the branch-and-bound tree which
will be further explored during the branching process. We select among these nodes
the delaying mode with the smallest lb. If the lower bound of a node corresponds to a
solution which is resource feasible, we update the upper bound ub of the project (initially
ub = ∞) and search for the following delaying mode at this level. If, however, the lower
bound of a node is greater than or equal to the current upper bound, we fathom this node
and select also the following delaying mode at this level. If the lower bound is smaller
than the current upper bound, we generate a new set of delaying alternatives at the next
level of the tree. If there are no delaying modes left, we backtrack and proceed in the
same way at the previous level. The algorithm stops when we backtrack to the initial
level of the branch-and-bound tree.

5.2. Node fathoming rules

Essentially, each node in the branch-and-bound tree represents the initial project net-
work extended with a set of zero-lag finish–start precedence constraints to resolve re-
source conflicts. Therefore, it is possible that a certain node represents a project network
which has been examined earlier at another node in the branch-and-bound tree. One
way of checking whether two nodes represent the same project network is to check
the added precedence constraints. If a node is encountered for which the set of added
precedence constraints is identical to the set of precedence constraints associated with a
previously examined node, the node can be fathomed. Moreover, the subset dominance
rule developed by De Reyck [1] for the resource-constrained project scheduling prob-
lem with generalized precedence relations also holds for the RCPSPWET, and can be
applied when a node is compared to a previously examined node in another path in the
branch-and-bound tree:

Subset dominance rule: If the set of added precedence constraints which leads to
the project network in node x contains as a subset another set of precedence constraints
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leading to the project network in a previously examined node y in another branch of the
search tree, node x can be fathomed.

Since the detection of a dominated subset is much faster than the calculation of a
lower bound, we first check if the node can be dominated by a previously examined node.
Only if the node cannot be fathomed due to the subset dominance rule, we calculate a
lower bound. Clearly, as mentioned earlier, a node can also be fathomed when its lower
bound is greater than or equal to the current upper bound.

5.3. The algorithm

When ACz denotes the set of added precedence constraints in node z (with respect to
the original set of precedence constraints A) and x always denotes the current node in
the branch-and-bound tree, the detailed steps of the branch-and-bound algorithm can be
written as follows:

Step 1. Initialisation

• Let ub = ∞ be the upper bound of the weighted earliness–tardinesss cost.

• Initialize the level of the branch-and-bound tree: p = 0.

• Compute a lower bound lb on the weighted earliness–tardinesss cost using the
recursive solution procedure described in section 3.2.

• If this solution is resource feasible, i.e., for each period ]t − 1, t] and

∀k � K:
∑
i∈S(t) rik � ak STOP.

• Go to Step 2.

Step 2. Minimal Delaying Alternatives

• Increase the level of the branch-and-bound tree: p = p + 1.

• Determine the minimal delaying set DS which contains the minimal delaying
alternatives DA:

DS =
{

DA | DA ⊂ S(t) and ∀k � K:
∑

i∈S(t)\DA

rik � ak

and ¬∃j ∈ DA |
∑

i∈S(t)\DA

rik + rjk � ak
}

(remark that t equals the first period in which a resource conflict occurs, i.e.,∑
i∈S(t) rik > ak and ¬∃t ′ < t | ∑

i∈S(t ′) rik > ak).
Determine the corresponding set of delaying modes MS which contains the delaying
modes DM:

MS = {
DM | DM = (k ≺ DA), k ∈ S(t) \ DA and DA ∈ DS

}
.
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• Delete all minimal delaying modes satisfying the subset dominance rule, i.e.,
MS = MS \ {DM | ACy ⊂ (ACx ∪ DM)} with y a previously examined node
in the branch-and-bound tree.

• Compute for each non-dominated delaying mode a lower bound lb on the
weighted earliness–tardinesss cost using the recursive solution procedure.

• Delete all minimal delaying modes for which lb � ub, i.e., MS = MS \ {DM |
lb � ub}.

• Go to Step 3.

Step 3. Resource Analysis

• Do for each non-dominated delaying mode:

– Determine the first period in the optimal schedule in which a resource conflict
occurs, i.e., the first period ]t − 1, t] for which ∃k � K:

∑
i∈S(t) rik > ak .

– If there is no resource conflict and lb < ub, update ub = lb.

• Go to Step 4.

Step 4. Branching

• If there are no delaying modes left at this level p with lb < ub, go to Step 5.

• Select the delaying mode DM ∈ MS with the smallest lb and add the additional
precedence relations, i.e., ACx = ACx ∪ DM.

• Go to Step 2.

Step 5. Backtracking

• Delete the additional precedence relations inserted at level p, i.e.,
ACx = ACx \ DM.

• Decrease the level of the branch-and-bound tree: p = p − 1.

• If the branching level p > 0, go to Step 4 else STOP.

6. An example

In this section we will compute the optimal solution by means of an instance adapted
from the Patterson set (Patterson [12]). The corresponding AON project network is
shown in figure 1. There are 7 activities (and two dummy activities) and one resource
type with an availability of 5. The number above the node denotes the activity duration,
while the numbers below the node denote the due date, the unit penalty cost (the unit ear-
liness costs equals the unit tardiness costs) and the resource requirements, respectively.

The branch-and-bound tree for the example is given in figure 2. At the initial level
p = 0, the value of the optimal solution using the recursive procedure is lb = 5 with
finishing times f2 = 4, f3 = 3, f4 = 6, f5 = 8, f6 = 6, f7 = 9 and f8 = 4. Since there
is a resource conflict at time instant 1 caused by activities 2, 3 and 8, we determine the
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Figure 1. A project network from the Patterson set.

Figure 2. The branch-and-bound tree.

minimal delaying set at the next level of the branch-and-bound tree. DS = {{2}, {3}, {8}}
and therefore, we create 6 delaying modes (with six additional precedence relations)
corresponding to the six nodes at level p = 1. We compute for each node a lower bound
by the recursive procedure for the unconstrained weighted earliness–tardinesss project
scheduling problem. Now we select the delaying mode with the smallest lower bound,
i.e., node 3 with lb = 15 and finishing times f2 = 4, f3 = 3, f4 = 6, f5 = 8, f6 = 6,
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Figure 3. The optimal resource profile.

f7 = 9 and f8 = 6. Activities 4, 6 and 8 cause a resource conflict at time instant 5.
We generate DS = {{4}, {6}} and 4 delaying modes corresponding to nodes 8, 9, 10
and 11 at the level p = 2. Remark that the solution of node 9 is resource feasible. We
update the current upper bound ub = 27. We continue with the delaying mode with the
smallest lower bound, i.e., node 8 with lb = 22 and finishing times f2 = 4, f3 = 3,
f4 = 6, f5 = 8, f6 = 5, f7 = 9 and f8 = 6. Since the resource requirements at
time instant 3 exceed the resource availibilities, the solution of this node is not resource
feasible either. Again, we generate DS = {{2}, {6}} and 4 delaying modes corresponding
to nodes 12, 13, 14 and 15 at level p = 3. Node 12 can be fathomed by node 10 due
to the subset dominance rule (this is denoted by D10 in figure 2). We compute a lower
bound for nodes 13, 14 and 15. All three nodes can be fathomed because the lower
bound is greater than the current upper bound. The procedure now backtracks to level
p = 2 and selects node 11 which has the smallest lower bound. The algorithm continues
this way until it returns at the initial node at level 0. The optimal solution of the example
has a weighted earliness–tardinesss cost of 27 as shown in node 9 of figure 2.

The resource profile of the optimal solution is given in figure 3. Notice that an
optimal solution with respect to the makespan objective does not necessarily correspond
to the optimal solution of the RCPSPWET. The minimal makespan of this example is 8
while the optimal weighted earliness–tardinesss-schedule corresponds to a makespan
of 9.

7. Computational experience

Both the recursive search algorithm for the WETPSP and the branch-and-bound algo-
rithm for the RCPSPWET have been coded in Visual C++ Version 4.0 under Windows
NT 4.0 on a Dell personal computer (Pentium 200 MHz processor). In order to validate
both algorithms, we used the problem generator ProGen/Max (Schwindt [13]) to gen-
erate two different problem sets. The first problem set for the WETPSP contains 1,680
problem instances while the second problem set for the RCPSPWET consists of 7,560
problem instances. The settings of these instances in activity-on-the-node format are
described in the sequel of this paper.
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Table 1
Parameter settings used to generate the test instances for the WETPSP.

Number of activities 30, 60, 90 or 120
Activity durations randomly selected from the interval [1,10]
Number of initial and terminal activities randomly selected from the interval [2,4]
Maximal number of successors and predecessors 4
Order strength OS (Mastor [10]) 0.25, 0.50 or 0.75
Due dates randomly selected with factor 1.00, 1.25, 1.50, 1.75,

2.00, 2.25 or 2.50
Unit penalty cost randomly selected from the interval [1,10] or [1,50]

Table 2
Impact of the number of activities.

# activities # problems Average CPU-time Standard deviation

30 420 0.075 0.042
60 420 0.289 0.162
90 420 0.585 0.296

120 420 1.043 0.628

Both problem sets were extended with unit penalty costs and due dates for each
activity. The due dates were generated as follows: first, we obtained a maximum due
date for each project by multiplying the critical path length with a factor as shown in
table 1. Then we randomly generated numbers between 1 and the maximum due date.
Finally, we sorted these numbers and assigned them to the activities in increasing order,
i.e., activity 1 has the lowest due date, activity 2 the second lowest, etc.

7.1. Computational experience for the WETPSP

Table 1 represents the parameter settings used to generate the test instances for the
WETPSP. The parameters used in the full factorial experiment are indicated in bold.
Using four settings for the number of activities, three settings for the order strength,
seven settings for the due date generation and two settings for the unit penalty costs, we
obtained a dataset with 168 problem classes, each consisting of 10 instances.

Table 2 represents the average CPU-time and its standard deviation in millisec-
onds (actually, we have solved 1,000 replications for each problem and reported the
time in seconds). Even instances with 120 activities can be solved within a very small
amount of computation time. We should keep in mind that the unconstrained weighted
earliness–tardinesss project scheduling problem is probably not a goal by itself. Its solu-
tion will be used by a branch-and-bound procedure to compute bounds on the weighted
earliness–tardinesss cost of a resource-constrained weighted earliness–tardinesss prob-
lem where the activities are also subject to renewable resource constraints (problem
m, 1|cpm|early/tardy). In that case the unconstrained problem should be solved effi-
ciently in every (undominated) node of the branch-and-bound tree, which may run in the
thousands (even millions). The reported CPU-times indicate that the recursive search



EXACT PROCEDURE FOR PROJECT SCHEDULING 191

procedure may well be used for that end. Notice also the relatively small standard devi-
ations, reflecting the rather robust behaviour of the procedure over the different problem
instances.

Table 3 shows a positive correlation between the OS of a project and the required
CPU-time, i.e., the more dense the network, the more difficult the problem.

Figure 4 illustrates the effect of the due date on the average required CPU-time.
When the factor used for the due date generation is small, the problems contain many
binding precedence relations and their solution will require an extensive search to shift
many sets of activities SA to solve the problem. Problems with a large factor for the due
date generation contain only few binding precedence relations in the due date tree. In
that case, many activities will be scheduled on their due date and only a small number
of shifts will be needed to solve the problem.

As expected, the earliness and tardiness penalty costs of the activities have no
significant impact on the required CPU-time, as shown in table 4.

Table 3
Impact of the order strength.

OS # problems Average CPU-time Standard deviation

0.25 560 0.403 0.378
0.50 560 0.478 0.440
0.75 560 0.613 0.647

Figure 4. Effect of the due date.

Table 4
Impact of the unit penalty cost.

Unit penalty cost # problems Average CPU-time Standard deviation

[0,10] 840 0.495 0.508
[0,50] 840 0.501 0.510
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7.2. Computational experience for the RCPSPWET

Table 5 represents the parameter settings used to generate the test instances for the RCP-
SPWET. The parameters used in the full factorial experiment are indicated in bold. We
obtained 756 problem classes, each consisting of 10 instances.

Table 6 represents the average CPU-time and its standard deviation in seconds for
a varying number of activities and a time limit of 100 seconds. The number of activ-
ities has a significant effect on the average CPU-time and on the number of problems
solved to optimality, as displayed in table 6 and figure 5, respectively. All problems with
10 activities can be solved to optimality within 1 second of CPU-time. For problems
containing 20 activities, 93.8% of the number of problems can be solved to optimality
when the allowed CPU-time is 1 second, whereas 99.8% of the number of problems can
be solved when the time limit is 100 seconds. For problems with 30 activities, 79.4% of
the number of problems can be solved within 1 second of CPU-time whereas 90.8%
of the number of problems can be solved to optimality when the allowed CPU-time is
100 seconds.

The effect of OS on the number of problems solved to optimality is displayed in
figure 6. As expected, the order strength has a negative correlation with the problem
hardness, that is, the higher OS, the easier the problem. We have observed that for the
WETPSP the opposite is true. That means that, although OS has a positive correlation
with the problem hardness for the WETPSP, the overall effect for the RCPSPWET re-
mains negative.

Table 5
Parameter settings used to generate the test instances for the RCPSPWET.

Number of activities 10, 20 or 30
Activity durations randomly selected from the interval [1,10]
Number of initial and terminal activities randomly selected from the interval [2,4]
Maximal number of successors and predecessors 4
Order strength OS (Mastor [10]) 0.25, 0.50 or 0.75
Number of resource types 4
Number of resources used per activity randomly selected from the interval [1,4]
Activity resource demand randomly selected from the interval [1,10]
Resource factor RF (Pascoe [11]) 0.25, 0.50, 0.75 or 1.00
Resource strength RS (Kolish et al. [9]) 0.00, 0.25 or 0.50
Due dates randomly selected with factor 1.00, 1.25, 1.50, 1.75,

2.00, 2.25 or 2.50
Unit penalty cost randomly selected from the interval [1,10]

Table 6
Impact of the number of activities.

# activities # problems Average CPU-time Standard deviation

10 2520 0.001 0.006
20 2520 0.508 4.128
30 2520 11.391 29.962
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Figure 5. Effect of the number of activities.

Figure 6. Effect of the order strength (OS).

Figures 7 and 8 display the effect of the resource factor (RF) and the resource
strength (RS), respectively, on the number of problems solved to optimality within an
allocated CPU-time. The higher the resource factor, the more difficult the instances.
An opposite effect can be observed for the resource strength. The number of problems
solved to optimality increases when RS increases. These results were also observed by
Kolisch et al. [9] and De Reyck and Herroelen [2].

Table 7 illustrates the effect of the due date for a different number of activities on
the CPU time with a time limit of 100 seconds. The negative correlation between the due
date factor and the hardness of the problem is due to two reasons. First, this effect was
also observed for the WETPSP: when the factor used for the due date generation is small,
the problem contains many binding precedence relations and an extensive search will be
needed to shift a large number of sets of activities to solve the problem. Problems with
a large factor for the due date generation contain only few binding precedence relations
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Figure 7. Effect of the resource factor (RF).

Figure 8. Effect of the resource strength (RS).

Table 7
Impact of due date factor on the CPU-time.

1.00 1.25 1.50 1.75 2.00 2.25 2.50

10 activities 0.002 0.002 0.001 0.001 0.001 0.001 0.001
20 activities 1.221 1.103 0.723 0.212 0.139 0.107 0.05
30 activities 22.684 17.135 12.508 9.828 7.651 5.455 4.475

in the due date tree. In that case, many activities will be scheduled on their due date and
only a small number of shifts will be needed to solve the problem. Second, when the
due date factor is large, the number of nodes in the search tree will decrease dramatically
since the probability of a resource conflict will decrease. Both the number of nodes in
the search tree and the time spent per node are negatively correlated with the due date
factor.
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Table 8
Impact of the subset dominance rule on the number of subproblems

solved.

With dominance rule Without dominance rule

10 activities 78 89
20 activities 20,992 23,813
30 activities 355,358 414,560

Table 8 shows the effect of the subset dominance rule on the average number of
nodes in the search tree without exceeding a time limit of 100 seconds. In each node
a call to the recursive search algorithm is performed to solve the WETPSP. The table
reveals that the subset dominance rule reduces the number of subproblems solved during
the search process with, on the average, 14%.

8. Conclusions

In this paper, we presented a branch-and-bound procedure for the resource-constrained
project scheduling problem with weighted earliness–tardinesss penalty costs (RCPSP-
WET; m, 1|cpm|early/tardy) based on a fast exact recursive search algorithm for the
unconstrained weighted earliness–tardinesss problem (WETPSP; cpm|early/tardy). Ac-
tivities have a known deterministic due date, a unit earliness as well as a unit tardiness
penalty cost and renewable resource requirements. The objective is to schedule the ac-
tivities in order to minimize the total weighted earliness–tardinesss penalty cost subject
to both the precedence and resource constraints. To the best of our knowledge, our
procedure is the first exact algorithm for solving the RCPSPWET.

The branching strategy of the depth-first branch-and-bound algorithm makes use
of a fast recursive search algorithm for the unconstrained weighted earliness–tardinesss
problem to compute the lower bounds. The resource conflicts are solved by generating
minimal delaying alternatives and by introducing extra precedence relations. A subset
dominance rule is used for additional node fathoming.

Both the recursive search procedure for the WETPSP and the branch-and-bound
procedure for the RCPSPWET have been coded in Visual C++, version 4.0 under Win-
dows NT and have been validated on a randomly generated problem set generated by
ProGen/Max (Schwindt [13]). The results of the extensive computational tests obtained
on a Dell personal computer (Pentium 200 MHz) are rather encouraging. The results
for the WETPSP reveal that the recursive search algorithm is very fast which makes it
very useful for the calculation of a lower bound in the branch-and-bound procedure for
the RCPSPWET. The results for the RCPSPWET are promising. Although the number
of activities is found to have a significant effect on the required average CPU-time and
the number of problems solved to optimality, the procedure is rather robust. Problems
with 30 activities can be solved in an average CPU-time of 11 seconds (some 80% of
the problems can be solved within 1 second of CPU-time; while this percentage goes up
to 90% when the CPU-time allowance is increased to 100 seconds). An investigation
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of the impact of the topological structure of the network reveals that problems become
easier to solve as the order strength goes up. The higher the resource factor, the more
difficult the problem. An opposite effect has been observed for the resource strength.
The tighter the due date, the more difficult the problem. The subset dominance rule
allowed to fathom on the average 14% of the nodes in the search tree. The procedure
holds the promise to handle other types of nonregular objective functions (such as the
maximization of the net present value of the project) with similar performance.
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