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Abstract

This paper proposes new methods for the econometric analysis of
outlier contaminated multivariate conditionally heteroscedastic time se-
ries. Robust alternatives to the Gaussian quasi-maximum likelihood
estimator are presented. Under elliptical symmetry of the innovation
vector, consistency results for M-estimation of the general conditional
heteroscedasticity model are obtained. We also propose a robust esti-
mator for the cross-correlation matrix and a diagnostic check for correct
specification of the innovation density function. In a Monte Carlo ex-
periment, the effect of outliers on different types of M-estimators is
studied. We conclude with a financial application in which these new
tools are used to analyse and estimate the symmetric BEKK model for
the 1980-2006 series of weekly returns on the Nasdaq and NYSE com-
posite indices. For this dataset, robust estimators are needed to cope
with the outlying returns corresponding to the stock market crash in
1987 and the burst of the dotcom bubble in 2000.
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1 Introduction

It is widely recognized that the volatility and the correlations of daily and

weekly financial returns may be time-varying. There is no doubt that incorpo-

rating these features into the estimation of the conditional covariance matrix

of financial returns can lead to better decisions on portfolio optimization, asset

pricing and risk management. One way to do this is to specify the conditional

covariance matrix as a measurable function of the past of the time series. This

approach defines the class of multivariate conditionally heteroscedastic time se-

ries models. Most popular is the family of multivariate GARCH (MGARCH)

models (see Bauwens et al., 2006, for a recent survey).

It is common to estimate MGARCH models using a Maximum Likelihood

(ML) procedure, assuming the innovations to be conditionally Gaussian dis-

tributed. Jeantheau (1998) shows that this approach can produce consistent

parameter estimates, even when the true distribution is not Gaussian. This is

an important result, since it is common to find that after correcting the returns

for the dynamics in the conditional covariance matrix, the marginal distribu-

tion of the standardized return series is still heavy tailed. An alternative

approach is to do ML estimation under the multivariate Student t distribu-

tion (Fiorentini et al., 2003). Newey and Steigerwald (1997) prove consistency

of the Student t Quasi-Maximum Likelihood (QML) estimator for univariate

conditional heteroscedasticity models, provided the true innovation density is

unimodal and symmetric around zero.

According to Franses and Ghijsels (1999) the leptokurtosis in the stan-

dardized returns can also be interpreted as an indication of outliers in the

data set. The effect of outliers on estimating univariate GARCH models has

been studied in the literature and robust estimators have been proposed. One

approach to estimating GARCH models in the presence of outliers is to prune

iteratively the outliers and fit the model to the remaining data until no more

outliers are detected (Franses and Ghijsels, 1999). Another approach is to use

an estimator that is robust to outliers. Sakata and White (1998), Park (2002)

and Peng and Yao (2003) estimate the GARCH model by minimizing a robust

measure of scale of the residuals. Mancini et al. (2005) and Muler and Yohai

(2002,2006) propose a robust M-estimator that assigns a much lower weight

to outliers than the Gaussian ML estimator does.

All authors find that in the presence of outliers, the Gaussian ML estimator

collapses and that robust estimators are more reliable. Van Dijk et al. (1999)
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find that LM-tests for conditional heteroscedasticity perform better when they

are based on robust parameter estimates rather than on the Gaussian QML

estimates. Muler and Yohai (2002,2006) argue that in the presence of out-

liers, it may be more prudent to specify the conditional variance as a bounded

function of past returns. Doing so, one limits the impact of outliers on subse-

quent conditional variance predictions which depend in an autoregressive way

on past returns.

To our best knowledge, we are the first to propose robust methods for

the econometric analysis of an outlier contaminated multivariate conditionally

heteroscedastic time series. As compared with their univariate counterparts,

multivariate volatility models enable the specification, estimation and eval-

uation of time-varying correlations and can be used to improve accuracy of

forecasts. We use results and techniques from the robustness literature (see

e.g. Maronna et al., 2006) to propose robust estimators for the parameter

vector underlying the multivariate conditionally heteroscedastic time series

model. The new estimators are of the same form as their classical counter-

part but give a reduced weight to observations from the extreme tails of the

outlier-contaminated distribution.

This paper also contributes to our understanding of the impact of large

returns on stock market volatility and on market interdependencies. We ro-

bustly estimate the symmetric BEKK volatility model (Engle and Kroner,

1995) for the weekly returns on the Nasdaq and NYSE composite indices be-

tween January 1980 and December 2006. We examine the constant correlation

hypothesis in the presence of large shared volatility shocks (such as the stock

market crash in 1987) and market-specific volatility shocks (such as the burst

of the dotcom bubble in 2000).

The remainder of the paper is organized as follows. In Section 2 we prove

consistency of M-estimators of conditionally heteroscedastic time series models

when the innovations are elliptically distributed. In Section 3 we follow the

argument of Muler and Yohai (2002,2006) that QML estimators can be made

more robust by bounding their loss function and by bounding the impact of

news on the conditional covariance matrix process. Two new diagnostic checks

for correct model specification are presented in Section 4. Sections 5-7 illustrate

the new methodology through a Monte Carlo study and a financial application.

Section 8 summarizes our conclusions and outlines the implications for further

research.
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2 M-estimation

2.1 Definition

Our analysis starts from a multivariate conditionally heteroscedastic time se-

ries model Pθ for the centered N -variate random process {rt}. Let Irt−1 be

the information incorporated in the past of rt. We assume that under Pθ the

probability of observing rt conditional on its past is described by the elliptic

density function

p(rt|Irt−1 ; θ) = (det Ht,θ)
−1/2 g

(
r′t H

−1
t,θ rt

)
, (2.1)

where the function g : R+ → R+. The scatter matrix Ht,θ and the function

g(·) have been standardized such that Ht,θ is the conditional covariance matrix

of rt. While there exist elliptic distributions without finite second moment,

we consider here only distributions for which the covariance matrix exists. A

common choice of g(·) is the standard normal density function which we denote

by φ(·). Another popular choice for g(·) is the standardized Student t density

function with ν > 2 degrees of freedom:

tν(z) =
Γ

(
ν+N

2

)

Γ
(

ν
2

)
[π(ν − 2)]

N
2

[
1 +

z

ν − 2

]−N+ν
2

, (2.2)

where Γ(·) is the gamma function.

Under Pθ, the conditional covariance matrix Ht,θ is parameterized by an

econometric model as a measurable function of the past of rt. More precisely,

we assume that

Ht,θ = Hθ(rt−1, rt−2, ...), (2.3)

with Hθ(·) a N ×N positive definite, symmetric matrix function of a sequence

of N -dimensional vectors. As an illustration, consider the BEKK parameteri-

zation for Ht,θ (Engle and Kroner, 1995):

Ht,θ = C ′C + A′rt−1r
′
t−1A + B′ Ht−1,θ B, (2.4)

where A,B and C are N ×N parameter matrices and C is upper triangular.

Denote θ∗ the true, unknown parameter vector belonging to the parameter

space Θ and g∗(·) the true density function in (2.1). It is common to estimate

θ∗ by the value of θ ∈ Θ that maximizes the joint density of the sample
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ST = {r1, ..., rT} constructed under the nominal assumption that the density

function of the data is g(·). This estimation approach yields the QML estimator

θ̂QML = argmaxθ∈Θ − ave
t

[
log det Ht,θ − 2 log g

(
r′t H

−1
t,θ rt

)]
, (2.5)

where avet stands for the arithmetic average over t = 1, ..., T . It coincides with

the ML estimator when g(·) = g∗(·). Jeantheau (1998) proves consistency of

the Gaussian QML estimator, which is given by

θ̂φ−QML = argmaxθ∈Θ − ave
t

[
log det Ht,θ + r′t H

−1
t,θ rt

]
. (2.6)

The QML estimator belongs to the broader class of M-estimators defined as

follows.

Definition 1 The M-estimate based on a sample ST = {r1, ..., rT} is the value

of θ ∈ Θ for which the M-function

M (ST ; θ, ρ) = ave
t

[
log det Ht,θ + σ∗ρ

(
r′t H

−1
t,θ rt

)]
, (2.7)

is minimized, with ρ(·) a positive, non-decreasing scalar function. The scalar

σ∗ is a consistency factor.

The consistency factor σ∗ depends on the true density function g∗(·) and on

ψ(·) = ρ′(·), the first derivative of the function ρ(·). It equals

σ∗ = N

{
2πN/2

Γ(N/2)

∫ ∞

0

ψ(t2)tN+1g∗(t2)dt

}−1

. (2.8)

In Subsection 3.1 we present numerical values for σ∗.
The function ρ(·) in the above definition is called the loss function asso-

ciated to the M-estimator. If ρ(·) = −2 log g(·), with g(·) a specified density

function, we obtain a QML estimator. The Gaussian φ and standardized Stu-

dent tν density functions are the most popular elliptical density functions used

to describe financial return series. The corresponding Gaussian and Student

tν (ν > 2) loss functions are given by

ρφ(z) = z ; ρtν (z) = (N + ν) log

[
1 +

z

ν − 2

]
. (2.9)

These loss functions are unbounded. In Section 3 we will discuss loss functions

that are bounded and do not correspond to a specified distribution of the

innovation vectors.
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2.2 Asymptotic properties

Jeantheau (1998)’s proof of consistency of the Gaussian QML estimator can

only be used to prove consistency of M-estimators whose loss function ρ(·)
satisfies Eθ∗ρ(z) = ρ(Eθ∗z), where Eθ∗ denotes the expectation under the true

model Pθ∗ . Moreover it requires that the covariance matrix of the innovation

vector exists. In Appendix A we prove consistency for a wide range of M-

estimators, including M-estimators with a Student tν loss function. Denote

m (rt; θ, ρ) = log det Ht,θ + σ∗ρ
(
r′t H

−1
t,θ rt

)
. The consistency result is obtained

under the following assumptions on the loss function, on the derivative of the

M-function Ṁ (rt; θ, ρ) = ∂M (rt; θ, ρ) /∂θ and on the density function of the

innovations.

A1 The loss function ρ(·) has the following properties.

1. Its derivative ψ(·) = ρ′(·) is nonnegative, nonincreasing and continuous.

2. The function ψ(z)z is bounded. Let K = supz≥0 ψ(z)z.

3. The function ψ(z)z is nondecreasing, and is strictly increasing in the

interval where ψ(z)z < K.

4. There exists z0 such that ψ(z2
0)z

2
0 > N and that ψ(z)z > 0 for z ≤ z0.

5. There exists a > 0 such that for every hyperplane H, the probability

under Pθ∗ for an observation to lie in H is at most 1−N/K − a.

A2 p(rt|Irt−1 ; θ∗) = (det Ht,θ∗)
−1/2 g∗

(
r′t H

−1
t,θ∗ rt

)
.

A3 Hrt,θ = Hrt,θ∗ ⇒ θ = θ∗.

A4 Θ is compact.

A5 Eθ∗ [∂m (rt; θ, ρ) /∂θ] < ∞.

A6 plim Ṁ (ST ; θ, ρ) = 0 ⇒ Eθ∗ [σ∗ψ(r′t H
−1
t,θ rt)rtr

′
t|Irt−1 ] = Ht,θ .

Proposition 1 Under A1-A6 the M-estimator θ̂ defined in Definition 1 is a

consistent estimator for θ∗.
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An intuitive interpretation of this result is that under the previous assump-

tions, minimizing the M-function coincides with finding the value of θ ∈ Θ for

which the estimated conditional covariance matrix equals the conditional ex-

pectation of a weighted covariance matrix,

Ht,θ = Eθ∗
[
σ∗ψ(r′t H

−1
t,θ rt)rtr

′
t|Irt−1

]
. (2.10)

The weights are proportional to ψ(r′t H
−1
t,θ rt), with d2

t,θ = r′t H
−1
t,θ rt the squared

Mahalanobis distance of rt. We have that asymptotically, under A1-A6, θ∗ is

the unique solution to this problem1.

Under regularity conditions, M-estimators are asymptotically normal with

asymptotic covariance matrix (Chapter 7 in Hayashi, 2000):

{
Eθ∗

[
∂2m(rt; θ∗, ρ)

∂θ∂θ′

]}−1

Σ

{
Eθ∗

[
∂2m(rt; θ∗, ρ)

∂θ∂θ′

]}−1

, (2.11)

where Σ is the long run covariance matrix of ∂m(rt; θ∗, ρ)/∂θ. In the empirical

application of Section 7, we estimate this quantity by its sample counterpart

whereby the Bartlett HAC long-run autocovariance matrix estimate is used as

well as the formulas in Hafner and Herwartz (2003) for computing the score

and Hessian of the M-function analytically.

3 Robust M-estimation

For many applications, a fully specified conditionally heteroscedastic time se-

ries model with elliptical innovations is at most a very good approximation of

the true data generating process. It may explain well the bulk of the obser-

vations, but real-world time series will almost always contain some outlying

observations or discrepant substructures. In a conditionally heteroscedastic

time series setting, outliers can be defined as observations that are extremely

unusual given the past of the series. It is common to do as if there were no

outliers in the data and to estimate θ∗ by the value of θ ∈ Θ that minimizes

the M-function (2.7). Such an approach will still yield reliable result in the

presence of outliers if (1) a bounded loss function or a loss function with a

derivative that decreases sufficiently fast towards zero, is used; (2) a specifi-

cation for Ht,θ is taken under which innovations have a limited impact on the

conditional covariance matrix process.

1Note that this result does not require that the distribution of the innovations has a finite
second moment.
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3.1 The loss function

Outliers are characterized by a large value of d2
t,θ∗ = r′t H

−1
t,θ∗ rt, which is the

squared Mahalanobis distance of rt under the true model. The shape of the loss

function associated to the M-estimator is very important since it controls the

impact of d2
t,θ on the M-function in (2.7). Observe in (2.9) that outliers have an

unbounded impact on the objective function of the M-estimator with Gaussian

or Student tν loss function because these loss functions are unbounded. Hence,

a bounded loss function is called for.

From (2.10) it follows also that the shape of ψ(·), the first derivative of the

loss function ρ(·), is important. Indeed, it determines the weight given to each

observation as a function of d2
t,θ. Robust M-estimators will be characterized by

a loss function whose derivative, for large values of d2
t,θ, decreases sufficiently

fast and tends to zero at infinity. The derivatives of the Gaussian and Student

tν loss functions equal

ρ′φ(z) = 1 ; ρ′tν (z) =
N + ν

ν − 2 + z
. (3.1)

We see that the M-estimator with Gaussian loss function is not robust because

it gives the same weight to all realizations irrespective of their degree of out-

lyingness, as measured by d2
t,θ. However, the derivative of the Student tν loss

functon is decreasing and tends to zero at infinity. The smaller ν is, the more

robust the M-estimator with Student tν loss function will be.

A proposal of a loss function that combines the desirable properties of

boundedness and decreasing first derivative equals the Gaussian or Student tν
loss function for reasonable values of rt and is bounded for extreme values of

rt. This approach is pursued by Muler and Yohai (2002,2006) for univariate

GARCH processes. An elegant way of creating such a loss function is to make

use of an operator, say ω, that projects any function ρ(·) on its bounded version

ωρ(·). We define the operator ω as follows:

ωρ(z) =





ρ(z) for 0 ≤ z < χ2
N,α1

qρ(z) for χ2
N,α1

≤ z < χ2
N,α2

qρ(χ
2
N,α2

) for z ≥ χ2
N,α2

.

(3.2)

Here z ≥ 0 and qρ(·) is the unique quadratic function for which ωρ(·) and

ω′ρ(·) are continuous. The threshold χ2
N,α is the α-quantile of the chi-squared

distribution with N degrees of freedom, which is the distribution function of

d2
t,θ∗ when rt is conditionally normal. For most density functions, we have
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Figure 1: Gaussian and Student t4 loss functions and their derivative (solid

line), together with their bounded counterparts (dashed line).

that the higher α1, α2 are, the more efficient the estimate is in the absence of

outliers and the lower they are, the more robust it is. Also α1 may not be too

close to α2; otherwise the slope of ωρ(·) between χ2
N,α1

and χ2
N,α2

will be too

steep, which has a harmful effect on the M-estimator. We set α1 = 0.95 and

α2 = 0.99. The Gaussian and Student t4 loss functions and their derivative are

plotted in Figure 1, together with their bounded counterpart and its derivative.

Note that, by construction, the derivative of the bounded loss function gives

a zero weight to extreme observations.

Table 1 reports the consistency factors for the M-estimators with (un)bounded

Gaussian and Student t4 loss functions, obtained by numerical integration of

the expression (2.8). Observe that for the M-estimator with Gaussian loss

function (being the Gaussian QML estimator) the consistency factor is one

whatever be the true density function (g∗) and the dimension of the data (N).

This is not true for the M-estimator with Student tν loss function whose consis-

tency factor increases with the dimension of the series and the thickness of the

tails of the true density function. The consistency factor is one when the loss

function is proportional to log g∗. In this case, the M-estimator coincides with

the ML estimator. The consistency factor of the M-estimator with bounded

loss function is always larger than the one of its unbounded counterpart.
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g∗ φ t6 t4
N 1 2 3 1 2 3 1 2 3

ρφ 1 1 1 1 1 1 1 1 1

ωρφ
1.129 1.104 1.090 1.386 1.384 1.392 1.603 1.612 1.630

ρt4 0.826 0.831 0.838 0.915 0.918 0.922 1 1 1

ωρt4
0.865 0.863 0.867 1.009 1.169 1.335 1.124 1.297 1.475

Table 1: Consistency factors for M-estimators with (un)bounded Gaussian and

Student t4 loss function. The consistency factor is computed for the density

function g∗ of a series of dimension N .

3.2 Impact of news on subsequent volatility predictions

Most conditionally heteroscedastic time series models specify the elements of

the conditional covariance matrix as an unbounded function of a distributed lag

of the squares and cross-products of the components of the innovation vector

rt. It follows that the news impact curve, which measures the effect of the

innovations on the one-step ahead conditional covariance matrix (Engle and

Ng, 1993), is unbounded. Moreover, because of the autoregressive structure of

the process, the impact of news propagates to future values of the conditional

covariance matrix process. Muler and Yohai (2002,2006) stress that because

of this property of innovation propagation, neglecting outliers renders any

inference on autoregressive time series processes extremely sensitive to outliers.

For GARCH processes this is aggravated by the fact that the news impact curve

is typically quadratic. Hence, neglected outliers may have a very adverse effect

on subsequent values of the estimated volatility process.

It is possible to bound the impact of outliers on the conditional covari-

ance matrix by specifying it as a function Hθ(·) of the weighted observations

r̃t = w(d2
t,θ)rt instead of the raw observations rt. The weight function w(·)

downweights extreme observations, that is observations with a large value of

d2
t,θ. When Hθ(·) has the BEKK specification (2.4), we obtain the following

specification for the conditional covariance matrix:

H̃t,θ = Hθ(r̃t−1, r̃t−2, ...) = C ′C + w2(d2
t−1,θ)A

′rt−1r
′
t−1A + B′ H̃t−1,θ B. (3.3)

The weight function we will use in the application is

w(d2
t,θ) = [ωf (d

2
t,θ)/d

2
t,θ]

1
2 , (3.4)
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where f(z) = z and ωf (·) is as defined in (3.2), with α1 = 0.95 and α2 =

0.99. This weight function is plotted in Figure 2 for N = 2. We see that

only the observations with squared distance above the 95% quantile of the χ2
2

distribution are downweighted. The weight function tends to zero at infinity

such that the impact of outliers on the conditional covariance matrix is limited.

The idea of robustifying the conditional covariance matrix against outliers in

the data by downweighting past observations of rt in the GARCH specification

has already been pursued by Muler and Yohai (2002,2006) in the univariate

case. We follow them in calling this the Bounded Innovation Propagation

(BIP) conditionally heteroscedastic time series model.

5 10 15 20

0.
6

0.
7

0.
8

0.
9

1.
0

BIP weight function

Figure 2: Weight function used in the Bounded Innovation Propagation (BIP)

conditionally heteroscedastic time series model.

Muler and Yohai (2002,2006) estimate the parameters of the univariate

GARCH model by minimizing the M-function corresponding to the BIP-GARCH

model and call the newly obtained estimator the BIP M-estimator. This ap-

proach readily extends to the multivariate case in which the BIP M-estimator

is defined as the value of θ ∈ Θ that minimizes the BIP M-function

M̃ (ST ; θ, ρ) = ave
t

[
log det H̃t,θ + σ∗ρ

(
r′t H̃

−1
t,θ rt

)]
. (3.5)

Because the conditional covariance matrix is misspecified under Pθ∗ , the

BIP M-estimator may not be consistent for θ∗ in the absence of outliers. In

practice, the data will not follow Pθ∗ exactly and the asymptotic bias of the

BIP M-estimator under Pθ∗ may be compensated by its reduced sensitivity to

outliers in the data.
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4 Diagnostic checks

Consistency of M-estimators has been proven under the assumption of correct

specification of the conditional mean and covariance matrix of the time series.

The robustly estimated cross-correlation in the series is a helpful tool for ap-

propriate specification of the conditional moments of the data. In Subsection

4.1 we propose a robust estimator for this quantity. Another issue is that the

definition of a consistent M-estimator depends on knowledge of the true den-

sity function g∗(·) through the consistency factor σ∗ in (2.8). In Subsection 4.2

a diagnostic check for correct specification of g(·) is proposed.

4.1 A robust sample cross-correlation matrix

Prior to estimation of a conditionally heteroscedastic time series model, it is

useful to check whether the series present evidence of conditional heteroscedas-

ticity. To our knowledge, there are no robust multivariate checks for condi-

tional heteroscedasticity that do not require prior estimation of the model. In

the empirical application, we will use the following multivariate extension of

the α-trimmed autocorrelation proposed by Chan and Wei (1992).

Definition 2 Let a1, ..., aT be a N-dimensional vector time series of length

T and 0 < α < 1 a trimming factor. The α-trimmed lag l sample cross-

correlation matrix is the N ×N matrix which (i, j)-th element is given by

∑T
t=l+1(ai,t − ai)(aj,t−l − aj)L

α
t Lα

t−l[∑T
t=l+1(ai,t − ai)2Lα

t−lL
α
t

∑T
t=l+1(aj,t − aj)2Lα

t−lL
α
t

]1/2
, (4.1)

with indicator function

Lα
t =

{
0 if (at − a)′Σ−1

t (at − a) ≤ χ2
N,1−α,

1 otherwise.
(4.2)

The N-dimensional vector a and square matrix Σt are robust measures of the

mean and local covariance matrix of at, respectively.

Throughout this paper we will use Rousseeuw (1985)’s 75% minimum covari-

ance determinant (MCD) estimator for estimating the unconditional mean and

covariance matrix of multivariate time series. They are defined as the sample

moments of the subset for which the covariance matrix has the lowest deter-

minant among all subsets containing 75% of the observations.
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The implicit outlier detection criterion used to compute the α-trimmed lag

l sample cross-correlation matrix differs from the one usually used in multivari-

ate outlier detection methods (see e.g. Rousseeuw and van Zomeren, 1990) by

measuring distances with respect to a robust measure of the local covariance

matrix of the series. Doing so, it avoids the masking of outliers in periods of

low volatility and the identification of regular observations as outliers (called

swamping) in periods of high volatility. The conditional mean of the series is

assumed to be constant over time. In the application we set α = 0.01 and take

Σt as the MCD covariance estimate applied to the observations in the time

window t− 2, ..., t + 2.

Because the lag l cross-correlation is independent of the trimming criterion,

the distribution theory for the classical sample cross-correlation (Tiao and Box,

1981) carries over to this estimator. A useful result is that when at is white

noise, the cross-correlation of at is asymptotically normal with mean zero and

variance 1/
∑T

t=k+1 Lα
t−kL

α
t , the inverse of the number of observations used

to compute the trimmed autocorrelation estimate. Note that the effect of

trimming is a decrease in the efficiency of the estimator and an increase in its

robustness. In the financial application in Section 7 we use this result to detect

any significant cross-correlations in the return and absolute return series of two

major stock indices.

4.2 Consistency factor test statistic

An issue in applying the M-estimator in practice is that it requires knowledge

of the true density function through the definition of the consistency factor σ∗.
Here we propose a test for the null that g(·) = g∗(·). Under the null, we have

that the expression in (2.10) will only hold for θ∗. We can rewrite (2.10) as

follows:

Eθ∗
[
σ∗ψ(r′t H

−1
t,θ rt)rtr

′
t H

−1
t,θ |Irt−1

]
= IN . (4.3)

Taking the trace, we find that if θ = θ∗, then the following result must hold:

Eθ∗
[
σ∗ψ(r′t H

−1
t,θ rt)r

′
t H

−1
t,θ rt|Irt−1

]
= N. (4.4)

Consequently, the following statistic can be used to test for the null of a cor-

rectly specified density function.
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Definition 3 The consistency factor test statistic for testing H0 : g(·) = g∗(·)
is given by

κ(g) =
√

T
avet ψ(r′t H

−1
t,θ rt)r

′
t H

−1
t,θ rt −m

s
, (4.5)

with m = 2πN/2

Γ(N/2)

∫∞
0

ψ(t2)tN+1g(t2)dt, s =
[

2πN/2

Γ(N/2)

∫∞
0

[ψ(t2)t2 −m]
2
tN−1g(t2)dt

] 1
2

and ψ(·) the derivative of the loss function of the M-estimator used to estimate

the unknown θ.

Since under the model assumptions made previously, the distances are con-

ditionally independent and the M-estimator is consistent, one can invoke a

central limit theorem to state that this statistic is asymptotically standard

normal distributed when g(·) = g∗(·).

5 Implementation

The aim of this section is twofold. First we specify the particular model within

the family of multivariate conditional heteroscedasticity models that will be

used in the Monte Carlo study of Section 6 and the financial application in

Section 7. Second, we discuss the numerical procedure used to obtain the

parameter estimates.

5.1 The model

We consider the bivariate conditionally Student tν BEKK volatility model of

order one proposed by Engle and Kroner (1995). Under this model, the data

generating process is given by the following set of equations:

{
rt|Irt−1

i.i.d.∼ tν(0, Ht,θ) ; ν > 2

Ht,θ = C ′C + A′rt−1r
′
t−1A + B′ Ht−1,θ B.

(5.1)

The parameter matrices C, A and B all denote 2× 2 coefficient matrices and

C is upper triangular. To reduce the number of parameters, we further assume

that the matrices A and B are symmetric. Let θ be the vector of length 9 that

stacks the upper diagonal elements of the matrices C, A and B one on top

of the other. Observe that each element of the conditional covariance matrix

is specified as a linear function of the lagged squares and cross-products of

the elements of rt as well as of the lags of the elements of the conditional

14



covariance matrix. As such, the BEKK model can replicate the stylized fact

that volatility clusters over time and co-moves across assets.

The way in which the conditional covariance matrix process evolves in time

depends on the parameter values and the realizations of the stochastic process

{rt}. In general, one wants the process {Ht,θ} to be positive definite and

covariance stationary whatever be the realizations of {rt}. The BEKK model

thanks its popularity to the fact that this can be guaranteed under simple

constraints on the parameter space. Indeed, Engle and Kroner (1995) show

that if C is of full rank, {Ht,θ} will be positive definite for all t and covariance

stationary if and only if all the eigenvalues of A′⊗A′ + B′⊗B′ are less than one

in modulus. Because of the quadratic forms, different values of θ may generate

the same sequence {Ht,θ}. In the bivariate case, the following conditions ensure

{Ht,θ} to be identified, positive definite and covariance stationary:

C11 > 0, C22 > 0, A11 > 0, B11 > 0 (5.2)

ζθ ≡ ζ (A′ ⊗ A′ + B′ ⊗B′) < 1, (5.3)

where ζ(·) is the operator that takes the largest eigenvalue in absolute value

of its argument. In the following, it is assumed that the true parameter vector

θ∗ belongs to the parameter space Θ defined as the subset of R9 for which the

conditions (5.2)-(5.3) are satisfied.

5.2 Algorithm

The M-estimators for the bivariate BEKK volatility model are defined as the

solution to a highly nonlinear minimization problem, without an explicit so-

lution. The algorithm we use to compute the M-estimates proceeds in three

steps.

First the raw time series is centered by subtracting the robust minimum

covariance determinant (MCD) estimate of location. The recursive conditional

covariance matrix process is initialized at the MCD estimate for the uncondi-

tional covariance matrix. Second, starting values for the parameter estimates

are found. In the Monte Carlo experiment, we take the true parameter vector

as starting value for the parameter estimates. For the empirical application,

a grid search is used to obtain a reasonable set of starting values. Finally we

switch to a quasi-Newton minimization algorithm in which the score and the

Hessian are computed on the basis of finite difference procedures. We impose

the constraints (5.2) and (5.3) through a special type of active set method,
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called the gradient projection method (see e.g. Nocedal and Wright, 2000).

Because this method cannot deal with the very complex and non-linear co-

variance stationarity condition (5.3), we only impose the following necessary

conditions for (5.3) to be satisfied:

|A11| < 1, |A22| < 1, |B11| < 1, |B22| < 1

A2
11 + B2

11 < 1, A11A22 + B11B22 < 1, A2
22 + B2

22 < 1. (5.4)

These conditions can be derived by noting that for the bivariate symmetric

BEKK model the covariance stationarity constraint in (5.3) is equivalent to

the condition that I4−A′⊗A′ − B′⊗B′ is a positive definite matrix (Altay-

Salih et al., 2003).

6 Monte Carlo

This section aims to compare the behavior of the (BIP) M-estimators with

bounded and unbounded Gaussian and Student t4 loss function for simulated

date with different levels of outlier contamination. The artificial time series

are generated as follows. First outlier-free time series {yt} of length 1000 are

generated from model (5.1), with parameter matrices:

C ′C =

(
0.16 0.20

0.20 0.34

)
A =

(
0.25 0.04

0.04 0.30

)
B =

(
0.85 0.05

0.05 0.80

)
.

We then add outliers to the clean series using the following probabilistic setup:

rt = yt + 5ξtdt. (6.1)

Under this model the occurrence of an outlier in any of the two series is gov-

erned by the random process {dt}, modeled as a sequence of i.i.d. draws from a

Bernoulli distribution where the occurrence of an outlier (dt = 1) has probabil-

ity ε. The transmission and the size of the outliers stems from a 2-dimensional

i.i.d. vector process {ξt} constructed such that, when an outlier occurs, it will

be either in the first component, second component or both with probability

0.3, 0.3 and 0.4, respectively. The magnitude of the outlier is 5 times the

conditional standard deviation of the corresponding element of yt.

Since M-estimators are defined by the extremum of the M-function, it is

important that the location of the extremum as a function of the parameter

vector is robust to outliers in the data. In Figure 3 the M-function (2.7) with
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(bounded) Gaussian and Student t4 loss function are plotted as a function

of θ9, once in the absence and once in the presence of 5% of outliers. The

outlier-free time series is conditionally Gaussian distributed. We see that in

the absence of outliers, all M-functions reach an extremum close to the true

parameter value, which is 0.8. Because of the quadratic forms in the BEKK

specification, the M-function reaches also a local minimum around θ9 = −0.8.

Hence, the importance of having good starting values and of imposing the

bound constraints (5.2) in the optimization process.

Note that contaminating 5% of the data with additive outliers increases

the variability of the M-Function. The magnitude of this outlier induced vari-

ability depends on the loss function. For the Gaussian loss function (ρφ), the

variability of the M-function is so large that there is no more visible evidence

that the M-function reaches an extremum close to the true parameter value.

Moreover the outliers modify the global shape of the M-function with Gaus-

sian loss function. This is not the case for the two other loss functions. The

outlier induced variability is much smaller for the M-function with bounded

Gaussian (ωρφ
) and Student t4 (ρt4) loss function. The global shape of these

M-functions is little influenced by the outliers.

Of course this is only a partial analysis. To study the effect of out-

lier contamination on the bias and efficiency of the (BIP) M-estimator with

(un)bounded Gaussian or Student t4 loss function (a total of 8 estimation

procedures), we consider 400 replications of (6.1), three levels of outlier con-

tamination (ε = 0, ε = 0.01 and ε = 0.05) and innovations that are either

conditionally Gaussian or Student t4 distributed. For each M-estimator and

for each type of simulated series, we aggregate the parameter estimates to

compute the mean error (ME) and the root mean squared error (RMSE) as

follows,

ME = ‖ ave
j

θ̂j − θ∗‖ , RMSE =

√
ave

j
‖θ̂j − θ∗‖2, (6.2)

where avej denotes the average across the 400 replications and ‖ · ‖ is the

Euclidian norm operator. These summary statistics are reported in Table 2.

We find that in the absence of outliers (ε = 0), the estimation of the

BEKK model on the basis of the BIP-BEKK model does not seem to have a

large impact on the bias of the M-estimator. Under Gaussian innovations, the

finite sample bias and efficiency of the M -and BIP M-estimator with the same

loss function are similar and under Student t4 innovations, the M-estimator
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Figure 3: M-functions with unbounded Gaussian (ρφ), bounded Gaussian (ωρφ
)

and unbounded Student t4 (ρt4) loss function for different levels of contami-

nation ε. Except for θ9, the M-function is computed at the true parameter

values, which is 0.8 for θ9.

does only slightly better2.

When the series are outlier contaminated (ε = 0.01 or ε = 0.05), an overall

result is that outliers adversely affect the bias as well as the efficiency of all

M-estimators. Consistent with Sakata and White (1998), we find that ML

estimation under a heavy-tailed density function does not yield outlier robust

estimates. Indeed, not only the Gaussian but also the Student t4 ML esti-

mators collapse in the presence of small levels of outlier contamination. The

lack of robustness of the M-estimator with a Student t4 loss function is be-

cause of the unbounded innovation propagation in the conditional covariance

matrix process. In the presence of outliers in the data, the BIP version of this

2Surprisingly, for Gaussian innovations, the ML estimator does not have the smallest
RMSE at finite samples.
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estimator needs to be used.

Note that under Gaussian innovations, the (BIP) M-estimator with bounded

Student t4 loss function (ωρt4
) does not perform well when 5% of the observa-

tions are outlier contaminated. It seems that, provided the impact of news on

volatility is bounded, a loss function with a smooth, sufficiently fast decreasing

derivative such as ρt4(·), is a better characteristic of a robust M-estimator than

a bounded loss function. A conclusion of this simulation experiment is that,

among the considered estimators, no M-estimator does better than the BIP

M-estimator with Student t4 loss function.

Loss function ρφ ωρφ
ρt4 ωρt4

M / BIPM M BIPM M BIPM M BIPM M BIPM
g∗ = φ

ε = 0 ME 0.080 0.074 0.092 0.102 0.033 0.032 0.075 0.071
RMSE 0.188 0.180 0.227 0.242 0.092 0.085 0.202 0.206

ε = 0.01 ME 0.233 0.170 0.198 0.083 0.229 0.036 0.192 0.098
RMSE 0.482 0.432 0.312 0.206 0.334 0.079 0.332 0.286

ε = 0.05 ME 0.441 0.367 0.279 0.114 0.434 0.064 0.358 0.458
RMSE 0.629 0.592 0.353 0.305 0.476 0.102 0.574 0.779

g∗ = t4
ε = 0 ME 0.099 0.106 0.148 0.158 0.067 0.075 0.121 0.131

RMSE 0.245 0.257 0.266 0.280 0.095 0.116 0.225 0.230
ε = 0.01 ME 0.235 0.178 0.220 0.142 0.177 0.072 0.195 0.110

RMSE 0.488 0.443 0.359 0.267 0.266 0.096 0.314 0.212
ε = 0.05 ME 0.433 0.358 0.299 0.105 0.436 0.108 0.278 0.080

RMSE 0.644 0.576 0.387 0.218 0.486 0.133 0.337 0.187

Table 2: Mean estimation error (ME) and root mean squared error (RMSE),

over 400 replications, for the (BIP) M-estimators with (un)bounded Gaussian

and Student t4 loss function. The simulated series is either conditionally Gaus-

sian (g∗ = φ) or Student t4 (g∗ = t4) distributed. The level of contamination

is ε.
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7 A financial application

There are many applications in finance that rely on an estimate of the con-

ditional covariance matrix of returns. Examples include portfolio allocation,

financial risk management and asset pricing decisions. It is well known that

due to market crashes and rallies, many financial data sets contain atypical

observations. We may thus expect that the robust methods discussed in Sec-

tions 3 and 4 can be used to improve decision making. Moreover, because

they are simple modifications of the classical ML estimators, they are easy to

understand by practicioners. In this section we apply the robust methods to

the time series of weekly returns on the Nasdaq and NYSE composite indices.

7.1 Data

We consider the data set of weekly bivariate return vector observations for the

Monday close prices of the dollar-denominated Nasdaq and NYSE compos-

ite indices. The data source is Datastream. The sample period ranges from

January 1980 through December 2006 (1404 observations). All returns are

continuously compounded returns and expressed in percentage points. Denote

rt the return vector whose first and second component is the t-th weekly return

on the Nasdaq and NYSE composite index, respectively.

The series are plotted in Figure 4. Note the large negative return corre-

sponding to the stock market crash of October 19, 1987. Interestingly, the

Nasdaq index had returns of similar magnitude in the year 2000. In an un-

conditional framework, these returns are qualified as outliers, whereas under a

conditionally heteroscedastic time series model, some of these extreme returns

can be explained by the model. Observe that not only there is volatility clus-

tering in both series, but also that there is a lot of commonality in volatility

across the two series.

Let us first concentrate on the unconditional properties of the time series.

Figure 5 reports a scatter plot of the data and the 97.5% confidence ellipse

computed from the MCD estimates. We find that several observations are

both one-dimensional outliers, meaning that they belong to the most extreme

observations in any of the two coordinates, and correlation outliers, meaning

that they do not obey the general correlation pattern between the Nasdaq and

NYSE return series.

In Table 3 the sample mean and covariance matrix of the vector return

series are compared with the MCD estimates. The fact that the robustly esti-
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Figure 4: Weekly returns on Nasdaq and NYSE composite index.

mated mean vector is larger than the classical sample mean reflects the stylized

fact in financial time series that large drawdowns in stock prices are more fre-

quent than equally large upward movements. Note also that outliers inflate

the classical sample variances and deflate the classical sample correlations (the

sample correlation is 0.744 whereas the MCD correlation is 0.829).

Figure 6 reports the 0.01 trimmed lag l cross-correlations defined in Subsec-

tion 4.1 and the white noise 95% confidence bands for the components of the

(absolute) return series. In the upper four plots, we see that that the return

series does not contain any significant cross-correlation. Hence, the conditional

location of the data can be modeled as being constant. In the third panel we

see that the autocorrelation in each of the absolute return series is positive and

significant. This observation can be regarded as a manifestation of volatility

clustering in the two series. There seems to be a stronger persistence in the

volatility of the Nasdaq return series than in the NYSE return series. The

robustly estimated cross-correlation between the amplitude of the current re-

turn on one index and the magnitude of the lagged return on the other index
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Figure 5: Scatter plot and robustly estimated 97.5% confidence ellipsöıd of

weekly returns on Nasdaq and NYSE composite index. The 10 largest outliers

are labeled by their time index.

is positive and significant. A multivariate volatility model is needed to decide

whether this results from a combination of strong positive correlation between

the magnitude of the two series and persistence in the univariate volatility

process or whether it reflects genuine causality between the volatility of the

two series.
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Classical estimates MCD estimates
mean covariance mean covariance(
0.194
0.188

) (
9.773 5.283
5.283 5.155

) (
0.409
0.308

) (
5.906 4.179
4.179 4.287

)

Table 3: Classical sample and robust MCD estimates for the unconditional

mean and covariance matrix of the weekly returns on the Nasdaq and NYSE

composite index.
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Figure 6: Robust lag l cross-correlation estimates for the weekly Nasdaq and

NYSE returns (Nast, NYSEt) and absolute returns (|Nast|, |NYSEt|), for l =

1, ..., 100. The 95 % confidence bands for no cross-correlation are plotted as

dashed lines.
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7.2 Estimation

It is plausible to model the time series of weekly Nasdaq and NYSE returns

as a conditionally Student tν BEKK time series process (5.1), since this model

can replicate the empirical characteristics of the series, such as fat tails, ab-

sence of serial correlation in each of the return series and presence of volatility

clustering. In Table 4 the P-values of the consistency factor test statistic us-

ing a M-estimator with bounded Gaussian and (un)bounded Student t4 loss

function are reported for various degrees of freedom. When the test statistic is

estimated under the null that the innovations are Student t4 distributed, the

null of correct specification cannot be rejected for all considered M-estimators.

For this reason, we will continue the econometric analysis of this data set

assuming the returns to be conditionally Student t4 distributed.

Loss function ωρφ
ρt4 ωρt4

M / BIPM M BIPM M BIPM M BIPM
H0 : g∗ = t3 0.00 0.00 0.75 0.46 0.00 0.00
H0 : g∗ = t4 0.82 0.19 0.30 0.61 0.25 0.25
H0 : g∗ = t5 0.62 0.03 0.01 0.29 0.00 0.00
H0 : g∗ = t∞ 0.00 0.00 0.35 0.42 0.00 0.00

Table 4: P-values of the consistency factor test statistic for correct specification

of the density function of the weekly returns on Nasdaq and NYSE indices,

as estimated by the (BIP) M-estimators with bounded Gaussian loss function

and (un)bounded Student t4 loss function.

The Monte Carlo study predicts that the M-estimator with Gaussian loss

function, which is better known as the Gaussian QML estimator, will be ad-

versely affected by the outliers in the data. Table 5 reports the estimated pa-

rameters as well as their estimated asymptotic standard errors for the Gaussian

QML estimator, the M-estimator with bounded Gaussian loss function and the

(BIP) M-estimator with Student t4 loss function. We see that the robust pa-

rameter estimates are similar, but very different from the estimate obtained

using the non robust Gaussian QML estimator. Conform the realized volatility

in the time series, the robustly estimated volatility for the Nasdaq returns is

more reactive to recent variability than the estimated volatility of the NYSE

return (Â11 > Â22). This ranking is opposite for the Gaussian QML estimate.

The robust estimates can thus be considered as more reliable.
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Because of outliers and because the true density function is fat-tailed, the

estimated standard errors for the Gaussian QML estimates are very large. We

find that for all M-estimators, the diagonal elements of the matrices A and B

are not significant. This means that the (i, j)-th element of the conditional

covariance matrices Ht,θ and H̃t,θ depends depends only on its lagged value

and on ri,t−1rj,t−1. Particularly, for i = j, we have that news on one market

has no incremental predictive power on the univariate prediction of expected

volatility on the other market.

Ĉ11 Ĉ12 Ĉ22 Â11 Â12 Â22 B̂11 B̂12 B̂22

Gaussian QML estimator
0.645 0.546 0.270 0.334 -0.034 0.428 0.920 0.009 0.879

(0.330) (1.085) (2.031) (0.797) (0.931) (0.168) (0.440) (0.529) (0.099)
M-estimator with bounded Gaussian loss function

0.648 0.461 0.352 0.433 -0.009 0.395 0.901 0.007 0.905
(0.413) (0.582) (0.094) (0.261) (0.253) (0.138) (0.169) (0.224) (0.042)

M-estimator with Student t4 loss function
0.637 0.464 0.343 0.397 -0.001 0.396 0.915 0.004 0.906

(0.079) (0.080) (0.152) (0.048) (0.075) (0.095) (0.017) (0.016) (0.034)
BIP M-estimator with Student t4 loss function

0.664 0.459 0.362 0.431 0.006 0.408 0.899 0.003 0.899
(0.043) (0.038) (0.049) (0.034) (0.042) (0.046) (0.012) (0.011) (0.012)

Table 5: BEKK parameter estimates for the weekly returns on the Nasdaq and

NYSE composite index. Asymptotic standard errors are given in parentheses.

In Figure 7 we compare the realized returns with the 90% confidence bands

for a conditionally Student t4 BEKK and BIP-BEKK time series process as

estimated by the nonrobust Gaussian QML estimator and by the robust BIP

M-estimator with Student t4 loss function, respectively. We see that there is

much more time-variation in the estimated conditional volatility of the Nasdaq

return series than in the NYSE return series and that it is only in certain

periods of history that an investment in the Nasdaq index is much more risky

than one in the NYSE index.

It is of particular interest to compare the non robustly estimated volatility

and correlation (left plot) with the robust estimates (right plot) for the period

of the 1987 stock market crash and the period of the burst of the internet

bubble in 2000. In each of these periods, large returns of similar magnitude
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occur but the persistence in volatility is different. The stock market crash

in 1987 was not followed by returns of similar size whereas the burst of the

internet bubble corresponds to a prolonged period of high volatility. Thanks

to the property of a limited effect of innovations on future volatility, the BIP-

BEKK model captures well this difference in reaction to shocks. In contrast,

the Gaussian QML prediction based on the BEKK model overestimates the

persistence in the realized return variability in the period subsequent to the

1987 crash.

There is an extensive literature on time variation in correlation between

financial assets and on the propagation of shocks across national and interna-

tional markets (see e.g. Longin and Solnik, 1995). In our case, as can be seen

in the bottom panel in Figure 7, the time series of the estimated conditional

correlation between the Nasdaq and NYSE indices reveals that historically it is

stable around the robust MCD estimate of 0.83 (and not the classical sample

estimate of 0.74). This period of constant correlation has been temporarily

disrupted by the large asymmetric and persistent volatility shock due to the

burst of the internet bubble. Comparing the estimated conditional correlations

for the time points successive to the volatility shocks, we see that, alike in the

unconditional case, outliers deflate the estimated correlation.
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Figure 7: Weekly returns on the Nasdaq and NYSE indices and their condi-

tional correlation. The realized returns are compared with the 90% confidence

bands for a conditionally Student t4 BEKK (left) or BIP-BEKK (right) time

series process, as estimated by the Gaussian QML estimator (left) and BIP

M-estimator with Student t4 loss function (right).
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8 Concluding remarks

This paper introduces a class of M-estimators for multivariate conditionally

heteroscedastic time series models. We prove that under general conditions

M-estimators are consistent under elliptical innovations. We study the effect

of the shape of the loss function and of bounding the news impact curve on

the robustness of the M-estimator to outliers. The popular Gaussian quasi-

maximum likelihood estimator is shown to be very sensitive to outliers in the

data. If the data is suspected to be contaminated by outliers, we recommend to

use a volatility model that has the property of bounded innovation propagation

and to use a M-estimator with Student t4 loss function. The Monte Carlo study

documents the good robustness properties of this approach. The definition of

robust M-estimators includes a consistency factor depending on knowledge of

the true density function. For this reason, we recommend to use the consistency

factor test statistic, discussed in Subsection 4.2, as a validity check.

We apply this new methodology to the weekly returns on the Nasdaq and

NYSE indices for the period 1987-2006. We find that the robust approach

leads to more reliable parameter estimates and, in particular for the period

consecutive to the outlying return, to volatility predictions that capture better

the realized variability in the data. Another important empirical finding is

that, in the absence of large asymmetric volatility shocks, the conditional

correlation between the two indices is almost constant. We find that in contrast

with the shared volatility shock in October 1987, the Nasdaq-specific volatility

shock in the year 2000 has led to a persistent breakdown in the correlation for

that period.

This research can be extended by looking at other classes of robust es-

timators and by considering other multivariate conditional heteroscedasticity

models. We only studied one particular way of bounding the Gaussian and

Student t loss functions and of bounding the impact of news on subsequent

volatility estimates. It could be, as in Mancini et al. (2005), that other choices

yield a better trade-off between efficiency and robustness. In the Monte Carlo

study and empirical application, we focus on the bivariate symmetric BEKK

volatility model. Further research is needed regarding the use and robustness

of M-estimators for other types of multivariate conditional heteroscedasticity

models. In multivariate GARCH models, the tendency is to reduce the dimen-

sionality of the problem using principal component analysis or by specifying

separate univariate GARCH models for the volatility of each series and a time-
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varying process for the conditional correlations. Further research could show

how well robust methods work for these types of models.
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A Consistency of the M-estimator

Denote m (rt; θ, ρ) = log det Ht,θ + σ∗ρ
(
r′t H

−1
t,θ rt

)
. Its first partial derivative

ṁi (rt; θ, ρ) = ∂m (rt; θ, ρ) /∂θi is given by

Tr
[
IN − σ∗ψ(r′t H

−1
t,θ rt)rtr

′
t H

−1
t,θ

] ∂ Ht,θ

∂θi

H−1
t,θ , (A.1)

(Comte and Lieberman, 2003). The square N -dimensional matrix ∂ Ht,θ /∂θi

holds the i-th partial derivative of the corresponding elements of Ht,θ and Tr

is the trace operator. Since ṁi (rt; θ, ρ) is a measurable function of the strictly

stationary and ergodic process {rt}, it is also strictly stationary and ergodic.

By the Ergodic Theorem its time series average, which is the score of the M-

function, will converge to its ensemble mean. We thus find that the asymptotic

limit of the score of the M-function equals

Tr Eθ∗

{[
IN − σ∗ψ(r′t H

−1
t,θ rt)rtr

′
t H

−1
t,θ

] ∂ Ht,θ

∂θi

H−1
t,θ

}
. (A.2)

Under the no dominance assumption A5, convergence in probability will be

uniform.

We will now show that under A1-A6, the limit of the M-function has a

unique extremum in θ∗. Indeed, Maronna (1976) proves that under A1, there

exists a unique solution to the following implicit equation determining X:

Eθ∗
[
σ∗ψ(r′tX

−1rt)rtr
′
t|Irt−1

]
= X. (A.3)

The solution to this equation is called the M-estimator of scatter of rt or also

the pseudo-covariance matrix of rt. Since this estimator is affine equivariant

and since rt is assumed to be elliptically symmetric with conditional scatter

matrix Ht,θ∗ , one can show that X will be proportional to the true conditional

scatter matrix Ht,θ∗ , with proportionality factor c equal to

c =
N

σ∗

{
2πN/2

Γ(N/2)

∫ ∞

0

ψ(t2)tN+1g∗(t2)dt

}−1

, (A.4)

(Chapter 13 in Bilodeau and Brenner, 1999, Chapter 6 in Maronna et al.,

2006). It follows that M-estimators will be consistent since σ∗ in (2.8) is such

that c = 1. By the no observational equivalence assumption A3, it is only for

θ∗ that the conditional covariance matrix equals Ht,θ∗ . We may thus conclude

that for loss functions satisfying A1, the limit of the M-function will have
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an extremum in θ∗. This extremum is unique under the assumption A6 that

there is no θ ∈ Θ for which the score of the M-function is zero while the

conditional expectation under Pθ∗ of the weighted covariance matrix is not

the true conditional covariance matrix Ht,θ∗ . A further sufficient condition to

ensure that the extremum of the limit is the limit of the extremum of the

M-estimator is that the parameter space Θ is compact.

31



References

[1] Aslihan AS, Pinar MC, Leyffer S. 2003. Constrained nonlinear programming
for volatility estimation with GARCH models. SIAM review 45: 485-503.

[2] Bauwens L, Laurent S, Rombouts JVK. 2006. Multivariate GARCH models: a
survey. Journal of Applied Econometrics 21: 79-109.

[3] Bilodeau M, Brenner D. 1999. Theory of Multivariate Statistics. Springer, New
York.

[4] Chan WS, Wei WWS. 1992. A comparison of some estimators of time series
autocorrelation. Computational Statistics and Data Analysis 14: 149-163.

[5] Comte F, Lieberman O. 2003. Asymptotic theory for multivariate GARCH
processes. Journal of Multivariate Analysis 84: 61-84.

[6] Engle RF, Kroner FK. 1995. Multivariate simultaneous generalized ARCH.
Econometric Theory 11: 122-150.

[7] Engle RF, Ng VK. 1993. Measuring and testing the impact of news on volatility.
The Journal of Finance 58: 1749-1778.

[8] Fiorentini G, Sentana E, Calzolari G. 2003. Maximum likelihood estimation
and inference in multivariate conditionally heteroscedastic dynamic regression
models with Student t innovations. Journal of Business and Economic Statistics
21: 532-546.

[9] Franses P, Ghijsels H. 1999. Additive outliers, GARCH and forecasting volatil-
ity. International Journal of Forecasting 15: 1-9.

[10] Hafner CM, Herwartz H. 2003. Analytical quasi maximum likelihood inference
in multivariate volatility models. Econometric Institute Report 21. Erasmus
University Rotterdam.

[11] Hayashi F. 2000. Econometrics. Princeton University Press: Princeton.

[12] Jeantheau T. 1998. Strong consistency of estimators for multivariate ARCH
models. Econometric Theory 14: 70-86.

[13] Longin F, Solnik B. 1995. Is the correlation in international equity returns
constant: 1960-1990? Journal of International Money and Finance 4: 3-26.

[14] Mancini L, Ronchetti E, Trojani F. 2005. Optimal conditionally unbiased
bounded-influence inference in dynamic location and scale models. Journal of
the American Statistical Association 105: 628-641.

32



[15] Maronna RA. 1976. Robust M-estimators of multivariate location and scatter,
The Annals of Statistics 4: 51-67.

[16] Maronna RA, Martin RD, Yohai VJ. 2006. Robust Statistics. Wiley, New York.

[17] Muler N, Yohai VJ. 2002. Robust estimates for ARCH processes, Journal of
Time Series Analysis 23: 79-109.

[18] Muler N, Yohai VJ. 2006. Robust estimates for GARCH models. Preprints
Instituto de Calculo, University of Buenos Aires.

[19] Newey WK, Steigerwald DG. 1997. Asymptotic bias for quasi-maximum-
likelihood estimators in conditional heteroskedasticity models. Econometrica
65: 587-599.

[20] Nocedal J, Wright SJ. 2000. Numerical Optimization. Springer Series in Oper-
ations Research. Springer Verlag, New York.

[21] Park B. 2002. An outlier robust GARCH model and forecasting volatility of
exchange rate returns. Journal of Forecasting 21: 381-393.

[22] Peng L, Yao Q. 2003. Miscellanea. Least absolute deviations estimation for
ARCH and GARCH models. Biometrika 90: 967-997.

[23] Rousseeuw PJ. 1985. Multivariate estimation with high breakdown point. In
Mathematical Statistics and Its Applications (vol. B), Grossmann W, Pflug G,
Vincze I and Wertz W (eds). Dordrecht-Reidel.

[24] Rousseeuw PJ, van Zomeren BC. 1990. Unmasking multivariate outliers and
leverage points. Journal of the American Statistical Association 85: 633-639.

[25] Sakata S, White H. 1998. High breakdown point conditional dispersion esti-
mation with application to S&P 500 daily returns volatility. Econometrica 66:
529-567.

[26] Tiao GC, Box GEP. 1981. Modeling multiple time series with applications.
Journal of the American Statistical Association 76: 802-816.

[27] Van Dijk D, Franses PH, Lucas A. 1999. Testing for ARCH in the presence of
additive outliers. Journal of Applied Econometrics 14: 539-562.

33




