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ABSTRACT

The goal of this article is to survey the relevant literature on project scheduling
with possible activity failures from a number of different disciplines, and to dis-
till from these sources the formulation of a general optimization problem, the
further study of which we would like to foster among the scheduling community.
The model has been formulated with R&D projects in mind, but its study may
be useful also for developing scheduling methods in other contexts. We discuss
a number of different aspects of this task selection and scheduling model with
task failures by means of a number of illustrative examples.
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I. INTRODUCTION

Research and Development (R&D) companies, whose core business
relies on innovation, face a daily challenge of planning and surviving
in an uncertain environment. Not only do uncertainties exist
regarding the benefits and costs that their business entails, but
they must also bear the risk of technical failure of their R&D activ-
ities.

In this paper, we focus on a single firm facing an R&D project
with many possible development patterns. The project is composed
of a collection of R&D activities with well-defined precedence rela-
tionships, where each activity is characterized by a cost, a duration
and a probability of success. The successful completion of an activ-
ity corresponds to a technological discovery or a scientific break-
through. Additionally, for obtaining certain results, more than
one alternative may exist, and these alternatives can be pursued
either in parallel or sequentially; the decision maker might also have
discretion over the selection of the alternatives to pursue. The objec-
tive is to schedule the activities in such a way as to maximize the
expected net present value of the project, taking into account the
activity costs, the cash flows generated by a successful project, the
activity durations and the probability of failure of each of the activ-
ities.

The goal of this article is to survey the relevant literature on pro-
ject scheduling with possible activity failures from a number of dif-
ferent disciplines, and to distill from these sources the formulation
of a general optimization problem, the further study of which we
would like to foster among the scheduling community. We discuss a
number of different aspects of this task selection and scheduling
model for R&D projects with task failures by means of a number of
illustrative examples. Although the model has been formulated with
R&D projects in mind, its study may be useful also for developing
scheduling methods in other contexts. The remainder of this article
is organized as follows. Related work is discussed in Section II.
A problem formulation and discussion of some properties is given
in Section III, after which four example projects are briefly discussed
in Section IV, demonstrating some of the open challenges in this
area. Finally, a summary and outlook on further research are given
in Section V.
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II. RELATED WORK

In this section, we provide references to a number of different sources
in the literature related to this paper, subdivided into four categories:
technology management, project scheduling, discrete optimization and
sequential testing, and chemical engineering.

1. Technology management

Parallel development of alternative technologies, where the decision to
be made is whether to fund one or more tasks with the same objec-
tive in each stage of the project, is studied in Abernathy and Rosen-
bloom (1969), Bard (1985) and Krishnan and Bhattacharya (2002),
and a generic representation of multi-stage R&D problems is provided
in Lockett and Gear (1973). In these sources, the project outcome is
modeled as a continuous random variable (for instance production cost
per unit of the product that is designed); in this article, we focus only
on dichotomous outcomes (success or failure). The issue of parallel
versus sequential scheduling of project activities has been addressed,
among others, by Eppinger et al. (1994), Krishnan et al. (1997) and
Roemer and Ahmadi (2004). This topic is also closely related to con-
current engineering, a systematic approach to the integrated, concur-
rent design of products and their related processes (Hill, 2003).
In these latter sources, however, the set of activities to be performed
is fixed, and activity failure is not an issue. In all the aforementioned
sources, the precedence structure of R&D projects is also limited to
sequential R&D stages only.

Teunter and Flapper (2006) investigate issues similar to ours but in
a flow production environment. They state

“So the relevant question, especially for the lengthy tests with uncertain results
that occur in the process industries, is not how, when or which fraction to test,
but at what stage of the testing to start further processing/distribution.”

Teunter and Flapper identify all possible alternatives based on the set
of tests and their durations, for one particular case in a pharmaceuti-
cal company, and evaluate each of the alternatives on a number of per-
formance criteria. Somewhat similar considerations were made by
Ronen and Trietsch (1988) regarding the timing and cost of purchas-
ing orders for materials and components for large projects, but their
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focus is on timeliness and costs, and not on uncertainty in activity
outcomes. Similarly, Zemel et al. (2001) focus on the optimal timing
of support activities for R&D tasks of variable length: a ‘double expen-
diture’ policy is compared with the conservative ‘delayed investment’
policy, under which all the routine engineering activities are delayed
until the risky R&D efforts culminate in a breakthrough.

Dahan (1998) investigates the situation where product or process
developers may conduct prototyping experiments to test the technical
feasibility of design alternatives. Individual tests are Bernoulli exper-
iments with known rewards, costs and success probabilities, and the
author investigates parallel, sequential and so-called ‘hybrid’ policies
(the latter allowing for partial overlap). Dahan (1998) shows that for
high discount rates the optimal policy is a hybrid sequential/parallel
policy, whereas with low discount rates, when time-to-market is not
important, there is no economic advantage to building prototypes in
parallel and therefore a purely sequential policy will be optimal. Dahan
and Mendelson (2001) examine a similar framework and develop a
closed-form solution for the optimal number of tests under three
extreme-value distributions for the expected reward. They model the
R&D process of drug development and focus on the testing of differ-
ent concepts in order to determine which to develop further. This leads
to the finding that the optimal number of parallel tests under uncer-
tainty depends not only on the cost of testing and the scale of uncer-
tainty, but also on the upper-tail shape of that uncertainty.

Nelson (1961) focuses on R&D efficiency, i.e. achieving a given
objective at minimum cost. He motivates a parallel path strategy by the
learning of the characteristics of the activities, i.e. cost, development
duration and performance, for which we get better estimates as devel-
opment advances. Nelson characterizes the optimal number of parallel
development activities and observes that parallelism seems most ben-
eficial when the cost of executing several alternatives is relatively small.

Loch et al. (2001) also look into the testing of a number of design
alternatives, among which the ‘most preferred’ solution needs to be
identified based on a number of tests. Loch et al. (2001) find that par-
allel processing dominates when the cost of delay increases relative to
the cost of testing and development. However, they also highlight that
as the uncertainty in the information provided by the tests increases,
the value of parallel processing decreases.

Ding and Eliashberg (2002) examine the so-called ‘pipeline prob-
lem’: since New Product Development (NPD) projects may fail in
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each stage, multiple projects are started simultaneously in order to
increase the likelihood of having at least one successful product. The
motivation underlying this model is rather similar to the foregoing, in
that in both cases the success probability of the overall undertaking
(either one project or the pipeline) is to be maximized.

2. Project scheduling

To the best of our knowledge, the only treatment of scheduling with
activity failures in the area of project scheduling is given in De Reyck
and Leus (2007), where project success is achieved only if all indi-
vidual activities succeed. The literature on deterministic project sched-
uling, however, is vast and contains numerous methods and algorithms
for producing project schedules; for recent comprehensive overviews
of the literature we refer to Demeulemeester and Herroelen (2002)
and Neumann et al. (2003). For specific surveys of scheduling with
NPV objective, we refer to Herroelen et al. (1997) and Padman et al.
(1997). The incorporation of uncertainty into project planning and
scheduling has also resulted in numerous research efforts, particularly
focusing on uncertainty in the activities’ duration or cost; for a recent
survey, see Herroelen and Leus (2005). None of these literature
reviews, however, discuss models that incorporate technological uncer-
tainty in the form of stochastic-success activities.

3. Discrete optimization and sequential testing

Closely related to the setting of this paper is that of Weitzmann (1979),
who describes an optimal search procedure for obtaining maximum
reward from a number of independent testing efforts; only sequential
testing is considered. Granot and Zuckerman (1991) also examine
sequencing for R&D projects with success or failure in individual
activities but only consider sequential stages, where each stage is inter-
rupted as soon as one activity in that phase is successful; they also look
into learning effects. Denardo et al. (2004) consider R&D projects
that are successful if a successful path of edges from stem to leaf in
a forest is found.

The ‘least-cost fault-detection problem’ has been treated under mul-
tiple similar names by, among others, Boothroyd (1960), Mitten
(1960), and Monma and Sidney (1979); a variant of this problem was
tackled by integer programming in Wagner and Davis (2001). The goal
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is to sequentially perform (testing) activities until one fails (i.e., the
system is ‘defective’) or until all components pass their test (i.e., the
system successfully completes inspection); associated with each activ-
ity/component test is a testing cost and a probability of passing the test.
Extensions toward so-called ‘k-out-of-n’ reliability systems, where the
system works if and only if k or more of its components work, are
studied by Butterworth (1970), Ben-Dov (1981), Boros and Ünlüyurt
(1997) and Chiu et al. (1999); a comprehensive review is provided in
Ünlüyurt (2004). In the literature on reliability systems, the term series
system is often used to refer to an n-out-of-n system, while a parallel
system is a 1-out-of-n system. The setting is rather similar to ours,
apart from the fact that (1) overall success or failure is always deter-
mined only by the number of successful activities while it may be a
more complex function of the individual activity outcomes in this
paper (see Section III); (2) only sequential testing is allowed; and
(3) no discounting is considered (it turns out that (2) and (3) are
closely connected).

4. Chemical engineering

Another interesting source of relevant literature stems from the disci-
pline of chemical engineering, most notably the work by Grossmann
and his colleagues. Schmidt and Grossmann (1996) initiated the work
on scheduling failure-prone NPD testing tasks when also non-sequen-
tial testing is admitted. They point out that in many industries, includ-
ing the chemical and pharmaceutical sectors, a number of the tasks
involved in producing a new product are regulatory requirements such
as environmental and safety tests. The failure of a single required
test may prevent a potential product from reaching the marketplace.
Extensions of this basic model towards the incorporation of resource
constraints (Jain and Grossmann, 1999), correlation between activities’
parameters (Choi et al., 2004) and investment in new resources
(Maravelias and Grossmann, 2004) have also been investigated. Rogers
et al. (2002) study portfolio selection for projects with sequential
stages, where the outcome of each stage is a discrete random variable
whose value evolves in discrete time. Apart from Choi et al. (2004),
the solution methodology is mathematical programming; in order to
be able to produce adequate solutions for medium-sized projects, how-
ever, the cited sources resort to solving approximations of the origi-
nal problem formulation.
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An informal overview of the importance of including the possibil-
ity of technical failure into planning is given in Blau et al. (2000),
who focus especially on the pharmaceutical industry. DiMasi (2001)
also refers to economic, efficacy, safety and ‘other’ reasons for cutting
projects. In this paper, we will mainly refer to ‘technical’ success of
products. More information on success probabilities in the pharma
sector can be found in Zipfel (2003). Finally, a broader overview of
key issues and strategies for optimization in pharmaceutical supply
chains is provided by Shah (2004), and Papageorgiou et al. (2001)
present an optimization model for the pharmaceutical industry that
pursues also more strategic objectives.

III. PROBLEM FORMULATION AND PROPERTIES

In the following paragraphs, we provide a number of definitions, a for-
mal problem statement and a brief discussion of two special cases,
namely single-activity-module projects and single-module projects.

1. Definitions

We consider the planning of one project in isolation, and we wish to
maximize the expected net present value (expected NPV, eNPV) of
this project by constructing a project schedule specifying when to
execute each activity. A project consists of a set of modules
M∞∞=∞∞{0,∞1,∞...,∞∞m} containing one or more activities, each of which
should be executed without interruption; a module i∞∞∈∞∞M is a set of
activities Ni that pursue a similar target. We denote the set of all activ-
ities by N∞∞=∞∞Ui∞∞∈∞∞M∞∞Ni;∞∞∞n∞∞=∞∞|N|∞∞–∞∞1. A is a (strict) partial order on M, i.e.
an irreflexive and transitive relation, which represents technological
precedence constraints. (Dummy) modules 0 and m represent the start
and the end of the project, respectively; they are the (unique) least and
greatest element of the partially ordered set (M,∞∞A), and are assumed
to contain only one (dummy) activity, indexed by 0 and n, respectively.
We associate the directed acyclic graph G∞(M,∞∞A) with the partially
ordered set (M,∞∞A). On the activities within each module i, we also
impose a partial order Bi.

Activity i∞∞∈∞∞N has duration di∞∞∈∞∞�; we assume that di∞∞=∞∞0 for i∞∞=∞∞0,
n and di∞∞>∞∞0 otherwise. Each activity i∞∞∈∞∞N\Nm has a probability of
technical success (PTS) pi; we assume that p0∞∞=∞∞1. We make abstraction
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of resource constraints and duration uncertainty, and consider the out-
comes of the different tasks to be independent. Quantity ci represents
the cost (cash outflow) of activity i∞∞∈∞∞N\Nm, which is a non-positive
integer; this cost is incurred at the start of the activity. Overall project
success generates an end-of-project payoff C∞∞≥∞∞0, which (if the project
succeeds) is received at the start of activity n. The final project pay-
off is only achieved when all modules are successful. Module i∞∞∈∞∞M
is said to be successful if at least one of its constituent activities suc-
ceeds. If we define ui to be the probability of success of module i, then

The probability p of project success equals ∏i∞∞∈∞∞M∞\∞{m}∞∞ui.
For an illustration of these definitions, we refer the reader to Fig-

ure 1. The project consists of five activities, N∞∞=∞∞{0,∞1,∞2,∞3,∞4}, where 0
and n∞∞=∞∞4 are dummies. There are four modules, so m∞∞=∞∞3: N0∞∞=∞∞{0},
N1∞∞=∞∞{1,∞2}, N2∞∞=∞∞{3} and N3∞∞=∞∞{4}, two of which are dummies. The
modules that consist of a single activity are not separately distinguished
in the figure. The module order is A∞∞=∞∞{(0,∞1),∞∞(0,∞2),∞∞(0,∞3),∞∞(1,∞3),∞∞(2,∞3)};
the activity order for module 1 is B1∞∞=∞∞{(1,∞2)} (Figure 1 actually shows
the transitive reduction of A, and also the single element of B1). The
success probabilities for the non-dummy modules are

u1∞∞=∞∞1∞∞–∞∞(1∞∞–∞∞p1)∞(l∞∞–∞∞p2) and u2∞∞=∞∞p3.

Consequently, the project payoff is achieved with probability

p∞∞=∞∞u1u2∞∞=∞∞p3(1∞∞–∞∞(1∞∞–∞∞p1)∞(1∞∞–∞∞p2)).

u pi j
j Ni

= − −( )∏
∈

1 1 .
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We define a state vector as an (n∞∞–∞∞1)-component binary vector
x∞∞=∞∞(x1,∞...,∞xn∞∞–1), with one component associated with each non-dummy
activity in N. The system success function is the boolean mapping
s∞∞:∞∞�n∞∞–∞∞1∞∞→∞∞� characterizing the states in which the project is suc-
cessful, i.e.

As mentioned above, s(x)∞∞=∞∞1 if and only if each module contains at
least one successful activity, so

Quantity si∞∞≥∞∞0 represents the starting time of activity i; we call
(n∞∞+∞∞1)-vector s∞∞=∞∞(s0,∞s1,∞...,∞sn∞∞–∞∞1,∞sn) a schedule. For convenience, we
associate an artificial completion time ei∞(s) with each module i, as
follows (here and later, we omit the arguments if no misinterpretation

is possible): Clearly, if the second

min-operator optimizes over the empty set then ei takes the value +∞.
For a given state vector x, we say that a schedule s is feasible if the fol-
lowing conditions are fulfilled, with d a deadline on the project length:

ei∞∞≤∞∞sj ∀(i,∞k)∞∞∈∞∞A, ∀∞j∞∞∈∞∞k (1)

si∞∞+∞∞di∞∞≤∞∞sj ∀∞k∞∞∈∞∞M, ∀(i,∞j)∞∞∈∞∞Bk (2)

sn∞∞≤∞∞d or sn∞∞=∞∞+∞ (3)

An activity’s starting time equal to infinity corresponds with not exe-
cuting the activity (and therefore not incurring any related expenses,
or in case of activity n, not receiving the project payoff).

We compute the NPV for schedule s and state vector x as

with r a continuous discount rate, applied to take into account the time
value of money. In the context of this article, we assume e–∞0∞·∞∞∞∞=∞∞0.
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2. Problem statement

If we let Xi represent the Bernouilli random variable (r.v.) with para-
meter pi of success (pi∞∞=∞∞1) or failure (pi∞∞=∞∞0) of activity i, then s(X),
with X∞∞=∞∞(X1,...,Xn∞∞–∞∞1), is also a Bernouilli r.v. with success probabil-
ity p. The realization of Xi is known at the end of activity i.

In the setting of this article, and in line with Igelmund and Rader-
macher (1983), Möhring (2000) and Stork (2001), who study project
scheduling with resource constraints and stochastic activity durations,
the execution of a project can best be seen as a dynamic decision
process. A solution is a policy P, which defines actions at decision
times. Decision times are typically t∞∞=∞∞0 (the start of the project) and
the completion times of activities; a tentative next decision time can
also be specified by the decision maker. An action can entail the start
of a set of activities that is precedence feasible (no constraints in (1)
or (2) are violated). A schedule is thus constructed gradually through
time. Next to the input data of the problem instance, a decision at time
t may only use information on realizations of components of X that
has become available before or at time t; this requirement is often
referred to as the non-anticipativity constraint. Project completion
occurs at time sn; note that not all activities need to be completed by
time sn, nor that the realization of all Xi needs to be known.

A scheduling policy P may alternatively be interpreted as a func-
tion that maps given samples x of activity success or
failure to vectors s(x;∞∞P) of feasible activity starting times (schedules).
Our objective is to select a policy P* within a specific class that max-
imizes E∞[f∞(s∞(X;∞∞P),∞∞X)], with E[·] the expectation operator with
respect to X; we write E∞[f∞(P)], for short.

The generality of this problem statement suggests that optimization
over the class of all policies will often be computationally intractable;
a resulting policy is referred to as a globally optimal policy. One there-
fore usually restricts the attention to subclasses that have a simple
combinatorial representation and where decision points are limited in
number. Remark also that in deterministic scheduling, NPV is a non-
regular measure of performance: starting activities as early as possi-
ble is not necessarily optimal.

For the example that was introduced in Section 1, assuming that d is
non-restrictive and that d3∞∞≤∞∞d1, one possible policy P1 is the following:
start the project at time 0 (s0∞∞=∞∞0), and immediately initiate both activ-
ities 1 and 3 (s1∞∞=∞∞s3∞∞=∞∞0). If X3∞∞=∞∞0 then abandon the project:

� �≥
−

≥
+→n n1 1
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set s2∞∞=∞∞s4∞∞=∞∞+∞. Otherwise, observe the outcome of activity 1 and either
complete the project at time s4∞∞=∞∞d1 if X1∞∞=∞∞1, or continue with activity
2 at time s2∞∞=∞∞d1. Subsequently, let s4∞∞=∞∞d1∞∞+∞∞d2 if X2∞∞=∞∞1, otherwise
s4∞∞=∞∞+∞. Represented as a function, P1 can be written as follows:

P1: (x1,∞x2,∞x3)∞∞→∞∞(0,0, d1∞∞+∞∞∞∞∞·∞∞x1∞∞+∞∞∞∞∞·∞∞(1∞∞–∞∞x3),0,
min{d1∞∞+∞∞∞∞∞·∞∞(1∞∞–∞∞x1x3); d1∞∞+∞∞d2∞∞+∞∞∞∞∞·∞∞(1∞∞–∞∞ x2x3)}).

In the context of this article, we let 0∞∞·∞∞∞∞∞=∞∞0.
In Section 3 we look into the special case where each module con-

tains only one activity, while Section 4 deals with the case where the
entire project consists of a single module.

3. Single-activity-module projects

In this section, we investigate the special case where each module con-
tains only one activity, which is equivalent to a ‘series’ reliability sys-
tem; De Reyck and Leus (2007) referred to this setting as the ‘R&D-
Project Scheduling Problem’ (RDPSP), and this section is largely
based on that article. In a series system, all activities need to succeed
in order to achieve the project payoff. Failure of one of the project’s
tasks results in overall project termination, which is actually not
required (one can also continue the payments for remaining tasks),
but it is clearly a dominant decision. A series system is of particular
interest in modeling drug-development projects in the pharmaceutical
industry, in which stringent scientific procedures have to be followed
to ensure patient safety in distinct stages before a medicine can be
approved for production. As stated by Gassmann et al. (2004):

“If a drug candidate fails during the development phase it is withdrawn en-
tirely from further testing. Unlike in the automobile industry, drugs are not
modular products where a faulty stick shift can be replaced without throw-
ing the entire car design away. In pharmaceutical R&D, drug design can-
not be changed.”

Define an elementary policy for a series system as a policy P(s) that
takes a deterministic schedule s as input and adheres to (imitates) s as
long as all completed activities are successful, but abandons the pro-
ject (does not execute the remaining activities) as soon as it is known
that one or more activities have failed. The following result was
implicitly assumed by De Reyck and Leus (2007), but never explic-
itly stated:
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Lemma 1. An optimal elementary scheduling policy is globally opti-
mal for series systems.

The proofs appear in the appendix.
It is shown in De Reyck and Leus (2007) that the series problem is

NP-hard in the ordinary sense, even if r∞∞=∞∞0, ∀i∞∞∈∞∞N\{0,n}∞∞:∞∞di∞∞=∞∞1, and
d∞∞≥∞∞∑i∞∞∈∞∞N\{n}di. In light of this complexity status, an exact algorithm
with better than exponential time complexity is unlikely to exist, and
De Reyck and Leus (2007) devise a branch-and-bound (B&B) algo-
rithm to implicitly enumerate the solution space.

De Reyck and Leus construct a schedule s° for an optimal elemen-
tary policy P° in two phases. For an arbitrary relation R on M, if A∞∞⊆∞∞R
and G(M, R) is acyclic, we say that R is a feasible extension of A.
In the first phase, a feasible extension R of A is produced, which yields
values

for modules i∞∞∈∞∞M\{0,m}, which represents the probability that activ-
ity i is executed, and thus needs to be paid for. Note that the second
equality assumes that modules and activities are indexed similarly, and
that uk∞∞=∞∞pk° for each module k, with Nk∞∞=∞∞{k°}, and normally k∞∞=∞∞k°.
In the second phase, expected cash outflows yi(R)ci are associated with
each activity i, and expected payoff pC with activity n, and a deter-
ministic schedule s is sought that maximizes

subject to

si∞∞+∞∞di∞∞≤∞∞sj ∀(k,∞l)∞∞∈∞∞R, {i}∞∞=∞∞Nk, {j}∞∞=∞∞Nl

sn∞∞≤∞∞d

If all feasible extensions R of A are implicitly or explicitly enu-
merated, it can be shown that we are guaranteed to find a schedule
defining an optimal elementary policy; a corresponding relation R is
called an optimal feasible extension. This enumeration can be embed-
ded in a B&B procedure. The second phase (deterministic scheduling
with expected cash flows) amounts to project scheduling with NPV
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objective without resource constraints (see Herroelen et al., 1997). In
this case, the scheduling problem is easily solved because all inter-
mediate cash flows are non-positive: each activity can be scheduled to
end at the earliest of the starting times of its successors in R. Depend-
ing on whether the corresponding expected NPV is positive or nega-
tive, we set s0∞∞=∞∞0 or sn∞∞=∞∞d, respectively.

We illustrate these computations for series systems by means of an
example project. In Figure 2, the precedence network G(M, A) of the
modules in the project is represented; we associate one activity with
each module, with the same indices, so n∞∞=∞∞m∞∞=∞∞5. We use a discount rate
r∞∞=∞∞0.01 and a project payoff C∞∞=∞∞200; the remaining data are provided
in Table 1. A feasible schedule is represented in Figure 3, the eNPV
of the (optimal) elementary policy based on this schedule is
37.197983.

4. Single-module projects

The ‘parallel’ reliability problem examines the situation where project
payoff C is obtained as soon as a single activity finishes successfully.

423

FIGURE 2
Precedence graph for an example of a series system

TABLE 1
Costs, durations and PTS for the non-dummy activities in the example project

i pi ci di

1 0.8 –∞20 10
2 0.9 –∞15 15
3 0.85 –∞10 5
4 0.85 –∞10 7
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This is an appropriate description of one module in a larger NPD pro-
ject, where alternative technologies or trials are brought together for
reaching the same (module) result. Parallel systems also allow to
model so-called fallback options: alternative plans devised by man-
agement in the event the primary option falters.

In the setting outlined in Section 1, a parallel system actually cor-
responds with three modules: a dummy start and end, and one non-
dummy module containing all non-dummy activities. The following
observation is again straightforward: it is a dominant decision to ter-
minate the project as soon as the payoff is obtained. We define an ele-
mentary policy P°(s°) for parallel systems as a policy that takes a
deterministic schedule s° as input and adheres to s° until the project
payoff is obtained, after which the remaining unstarted activities are
abandoned. The equivalent of Lemma 1 is the following:

Lemma 2. An optimal elementary scheduling policy is globally opti-
mal for parallel systems.

We also have the following result:

Theorem 1. The parallel problem is NP-hard in the ordinary sense,
even if r∞∞=∞∞0, ∀i∞∞∈∞∞N\{0,∞n} : di∞∞=∞∞1, and δ∞∞≥∞∞∑i∞∞∈∞∞N\{∞n}di.

The proof of this theorem describes a reduction of a series system
with r∞∞=∞∞0 to a parallel system with r∞∞=∞∞0, and actually, these two can
be seen to be equivalent (a reduction is also possible in the other direc-
tion). Unfortunately, this is no longer the case for r∞∞>∞∞0. The reason for
this is that C is obtained immediately when one activity is successful
in a parallel system, whereas all activities have to be executed for pay-
off in a series system. As a consequence, project payoff can no longer
simply be associated with the start of activity n in a deterministic

424

FIGURE 3
A feasible schedule
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schedule defining an elementary policy; when r∞∞=∞∞0, however, the exact
timing of obtaining the payoff is irrelevant.

Since there is only one non-dummy module (indexed ‘1’), all the rel-
evant precedence constraints are in order relation B1 on N1. If R is a
feasible extension of B1 then we call schedule s a tree schedule if

si∞∞+∞∞di∞∞≤∞∞sj ∀(i,∞j)∞∞∈∞∞R

and additionally

Disregarding unselected activities (with si∞∞=∞∞∞), the set of activity
pairs with binding starting-time inequalities for such a tree schedule s
contains a spanning tree on N, whence the name of this type of sched-
ule. We conjecture that in the search for a deterministic schedule defin-
ing an elementary policy for parallel systems, one does not lose all
optimal schedules by restricting the search to tree schedules: any arbi-
trary schedule can be rearranged (locally shifting activities earlier or
later in time) to a tree schedule without harmful effects on the objec-
tive function.

Under this conjecture, an optimal schedule for parallel systems can
be produced in two phases, analogously to series systems. The first
step entails computing a feasible extension R of A, leading to the exe-
cution probabilities ∏(j,∞i)∞∞∈∞∞R∞(1∞∞–∞∞pj) for each activity i, and then opti-
mizing the elementary policy’s eNPV subject to starting-time con-
straints for all elements of R. Unfortunately, contrary to the serial case,
this second phase does not simply reduce to a deterministic schedul-
ing problem with NPV objective, because the probability of obtaining
the project payoff at specific activity completion times is not only
dependent on R but also on the scheduling decisions for activities in
parallel and since receipt of C is not always associated with exactly
one activity; this is illustrated by an example described in the next
paragraph. Nevertheless, the solution space can at least be reduced to
a finite and enumerable set.

Consider the three schedules shown in Figure 4 for the non-dummy
activities in N1∞∞=∞∞{1,2} of an example parallel system, with R∞∞=∞∞B1∞∞=∞∞∅.
The probability of obtaining the project payoff at the completion of

∀ ∈ ∃ ∈ ( ) ∈ ∧ + =( ) ∨ ( ) ∈ ∧ + =( )( ) ∨

+ =( ) ∨ + =( ) ∨ = +∞( )
i N j N i j R s d s j i R s d s
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activity 2 for schedule s1 equals p2(1∞∞–∞∞ p1), while for schedule s2 this
is 1∞∞–∞∞(1∞∞–∞∞ p1)(1∞∞–∞∞p2) and for s3 we have p2. Nevertheless, all three
schedules correspond with the same schedule-induced strict order (see
Neumann et al., 2003, for definitions), namely R, on N1. This illus-
trates that the second phase of the sketched solution approach for ser-
ial systems is difficult to extend to parallel systems.

IV. FURTHER CHALLENGES

In this section, we provide four illustrations of project scheduling with
possible task failures and the solution of which remains an open chal-
lenge.

1. Dynamic decision making

We give a brief summary of a very simple project in Figure 5. Real-
ization of the project payoff is activity 5, which has two predecessor
activities 3 and 4, which both need to be successful for 5 to be able
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FIGURE 4
An illustration of a parallel system, assuming a Gantt-chart representation as in

Figure 3; time is again on the horizontal axis (not shown)

(a) schedule s1 (b) schedule s2 (c) schedule s3

FIGURE 5
Project network for the example of Section 1

Activity durations are indicated next to each node
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to occur. Additionally, activity 4 needs a beneficial test result from at
least one of two testing activities 1 and 2. The precedence constraints
between activities and modules are represented by the network in the
figure. As before, success or failure of each activity is uncertain, and
is only known at the end of the activity.

Two possible project schedules are set up for this problem in Fig-
ure 6, one for the case in which activity 1 is successful (a), another
one for the case where activity 1 turns out to fail (b). We cannot make
a definitive choice between these two schedules at time 0 (if this were
true, we would not execute activity 2 in (a)). Rather, we start both
tests 1 and 2 at project initiation, and at the end of activity 1, depen-
dent on its outcome, the appropriate schedule is selected for the
remainder of the schedule. Remark that, although activity 3 can be
started at time 2 even when activity 1 fails, this is generally not rec-
ommendable as the activity costs money, and so paying for it only at
time 4 is preferred. Additionally, if activity 2 is also found to end in
failure, then we better interrupt the project altogether and not suffer
the cost of activity 3 at all (because the payoff will not be achieved
anyway). This example clearly illustrates the need for a dynamic deci-
sion process that cannot be cast into an elementary policy anymore.
We also see that some activities are started as early as possible, while
other are started as late as possible.

2. Impact of the time value of money

Our second example uses the project network that was shown in Fig-
ure 1 in Section 1, in which payoff (activity 4) only requires success
from activity 3 and from the test module consisting of tests labeled as
activities 1 and 2, at least one of which needs to be successful for

427

FIGURE 6
Two different schedules for the example of Section 1

(a) schedule s1 (b) schedule s2
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module success. Additionally, activities 1 and 2 need to be performed
in series (2 could be a repeated version (retrial or rework) of 1), and
all activities have unit durations. Consider the schedule represented in
Figure 7, where activity 3 is scheduled in an ‘intermediate’ position
so that it does not overly delay project completion in case 1 is suc-
cessful, and at the same time its cost is not incurred excessively early
in case of failure for 1. Such a compromise may seem preferable,
because contrary to the first example, we cannot wait for uncertainty
to unfold and produce an outcome for activity 1 before we decide
which (set of) scenario(s) to optimize for. Therefore, in the search for
an optimal solution, one might opt for a schedule that performs accept-
ably well in both cases. The question whether this approach is domi-
nated by either starting 3 at time 0 or at time 1 is open. Note also that
if the activities have unequal durations, a higher number of possibili-
ties arises.

3. Activity selection

A third small example illustrates another dynamic aspect of the deci-
sion process, which actually boils down to the appropriate selection of
activities to be implemented. Consider Figure 8, and suppose that test
1 has a cost of 1 and a probability 0.5 of success, test 2 costs 4.5 and
is successful with probability 0.5, and project payoff is 4. If we neglect
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FIGURE 7
Schedule for Example 2

FIGURE 8
Third example project
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the time value of money (r∞∞=∞∞0), the optimal way to execute this pro-
ject (for a risk-neutral investor) is clearly to perform activity 1 and then
either collect the payoff if the test is successful, or abandon the pro-
ject. In other words, activity 2 is never executed.

4. Risk management

Our fourth example highlights another trade-off that is inherent in the
concept of stochastic activity success. Consider the project in Figure
9, and suppose that activity 1 has a cost of 7 and a probability 0.6 of
success and activity 2 costs 34 and is successful with probability 0.4.
The project payoff is 240, associated with the start of activity 3. If we
assume a discount rate of r∞∞=∞∞0.05, the two schedules depicted in Fig-
ure 10 have approximately the same eNPV of 103.7. The schedules
correspond with quite different risk profiles, however, as illustrated
in Figure 11. The sequential schedule is more conservative and
involves less downside risk, but the expected total project execution
time is larger. The parallel schedule leads to a larger downside risk,
which is compensated for by the possibility of an earlier launch date,
yielding a higher upside potential.
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FIGURE 9
Fourth example project. Activity durations are indicated next to each node

FIGURE 10
Two different schedules for the example of Section 4

(a) Parallel schedule (b) Sequential schedule
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V. SUMMARY AND OUTLOOK ON FURTHER RESEARCH

In this article, we have presented a model for scheduling R&D projects
to maximize the expected net present value when the activities have an
inherent possibility of failure. The link to overall project success was
laid via the intermediate step of activity modules, each of which needs
to be successful in order to achieve the project payoff; a module is suc-
cessful if at least one of its constituent activities leads to success.

The generality of our problem statement suggested that optimization
over the class of all policies will often be computationally intractable.
The decision maker will therefore tend to prefer to restrict the atten-
tion to subclasses that have a simple combinatorial representation. For
series and parallel systems, we have looked into elementary policies
defined by a deterministic schedule and we have shown that this class
contains a globally optimal policy. It would be interesting to investi-
gate to what extent the concept of an elementary policy can be
extended towards general scheduling problems, and what is the per-
formance of this class of policies. An alternative line of study might
look into the development of an extension of priority policies for deter-
ministic scheduling towards scheduling with possible activity failures.

The model we have presented and analyzed is rather stylized, and
will not always be of immediate use for decision support. Decision
makers faced with planning R&D projects in industry will often be
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FIGURE 11
Risk profile of two possible schedules
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confronted with resource constraints and duration uncertainty, an
observation that was also made by Schmidt and Grossmann (1996)
and Jain and Grossmann (1999). The easiest setting with respect to
resource constraints is the single-machine case, which corresponds
with the requirement of sequential testing. From the point of view of
scheduling theory, the examination of both positive and negative inter-
mediate cash flows also constitutes a non-trivial challenge.

Another practically relevant generalization is to make project pay-
off a function of the project completion time. The choice for a non-
increasing function would be appropriate for most innovative projects:
the earlier a new product enters the market, the longer it can benefit
from a monopoly position and first-mover advantages, or the longer
it can exploit a patent. A further open option for model extension is
correlated activity success, an inherent characteristic of many R&D
projects. Quantifying correlations may be difficult, however. Finally,
decision makers may also desire to take into account that some R&D
activities can be performed in different ways, e.g. by allocating more
or less money, resulting in different success probabilities associated
with these multiple activity execution modes.

APPENDIX: PROOFS

Proof (Lemma 1): Let P* be any globally optimal policy. We
will construct a schedule s° and elementary policy Po(so) such
that E∞[f∞(P*)]∞∞=∞∞E∞[f∞(P°(s°))]. If E∞[f∞(P*)]∞∞=∞∞0 then let si°∞∞=∞+∞ for all
i∞∞∞∈∞∞N; we see for this case that E[f(P°(s°))]∞∞=∞∞0. Otherwise (when
E∞[f∞(P°(s°))]∞∞>∞∞0), let s°∞∞=∞∞s∞(l;∞P*), with 1 an (n∞∞–∞∞l)-vector of val-
ues 1: s° is the schedule that is obtained by the application of P* if
all activities are successful. Call Dt(P,∞x) the set of activities that are
started by policy P for scenario x at time t. At time t∞∞=∞∞0, D0(P*,∞x) is
necessarily the same for all scenarios x, in light of the non-anticipativity
constraint, and therefore D0(P*,x)∞∞=∞∞D0(P*, 1)∞∞=∞∞D0(Po,x). Consider
now an arbitrary scenario x, and call tx the time instant at which the
first unsuccessful activity ends.

1. For any time instant t < tx, due to the non-anticipativity requirement,
Dt∞(P*, ∞x)∞∞=∞∞Dt∞(P*, 1)∞∞=∞∞Dt∞(Po, x): P° behaves the same as P*.

2. At time tx, P° abandons the remainder of the project, and so
f∞(s∞(x;∞Po),∞x)∞∞∞≥∞∞∞f∞(s∞(x;∞P*),∞x).
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3. If the project is successful then P° behaves the same as P* over
the entire scheduling horizon.

Consequently, E∞[f∞(P*)]∞∞=∞∞E∞[f∞(P°(s°))], which concludes the proof.
¡

Proof (Lemma 2): The proof follows the same reasoning as for
Lemma 1, but we now choose s°∞∞=∞∞s(0,∞P*), with 0∞∞=∞∞(0,∞0,∞...,∞0) an
(n∞∞–∞∞1)-vector of values 0: s° is the schedule that is obtained by the
application of P* if all activities fail; tx is the time instant at which the
first successful activity ends for scenario x.

1. For any time instant t∞∞<∞∞tx, due to the non-anticipativity require-
ment, Dt∞(P*, x)∞∞=∞∞Dt∞(P*, 0)∞∞=∞∞Dt∞(P°, x), with Dt as defined
before: P° behaves the same as P*.

2. At time tx, P° initiates activity n, collects payoff C, and abandons
the remainder of the project, so f∞(s∞(x;∞P°),∞x)∞∞≥∞∞f∞(s∞(x;∞P*),∞x).

3. If the project payoff is not obtained then P° behaves the same
as P* over the entire scheduling horizon.

Consequently, E∞[∞f∞(P*)]∞∞=∞∞E∞[f∞(P°(s°))], which concludes the proof.
¡

Proof (Theorem 1): We describe a reduction from the series problem
with r∞∞=∞∞0, ∀i∞∞∈∞∞N\{0, n}∞∞:∞∞di∞∞=∞∞1, and d∞∞≥∞∞∑i∞∞∈∞∞N\{n}di∞; we assume that C
is large enough so that each activity is worth being executed. For an
arbitrary such series instance, we construct an instance of the parallel
problem where all non-dummy activities are grouped into module 1;
the module order B1 copies the order A on the modules in the series
problem. We also let all cash flows coincide between the two problems,
but we invert the probabilities: the success probabilities pi

par∞∞=∞∞1∞∞–∞∞pi
ser

for all the non-dummy activities i, with pi
par and pi

ser the probabilities
for the parallel and for the series problem, respectively. ¡
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