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Abstract: 

The generalized assignment problem (GAP) consists of finding a maximal profit assignment of n 
jobs over m capacity constrained agents, whereby each job has to be processed by only one agent. 
This contribution approaches the GAP from the polyhedral point of view. A good upper bound is 
obtained by approximating the convex hull of the knapsack constraints in the GAP-polytope using 
theoretical work of Balas. Based on this result, we propose a procedure for finding close-to-optimal 
solutions, which gives us a lower bound. Computational results on a set of 60 representative and 
highly capacitated problems indicate that these solutions lie within 0.06% of the optimum. After 
applying some preprocessing techniques and using the obtained bounds, we solve the generated 
instances to optimality by branch and bound within reasonable computing time. 

1. Introduction 

In this paper, we report a new algorithmic result for the classical Generalized 
Assignment Problem (GAP). The GAP-polytope is defmed in the unit hypercube and the 
optimization problem can be formulated as: 

subject to: 

fXji = 1 
i=l 

I,ajiX ji :0;; bi 
j~1 

Xji E {O,l} 

where: 

j = index of job, 

i = index of agent, 

for j = 1, .. . ,n 

for i=l, ... ,m 

j = 1, ... ,n 
for. 

l = 1, ... ,m 

X ji = 1 if job j is processed by agent i ; 0 otherwise, 

P ji = profit of processing job j by agent i, 

a ji = resource consumption of job j processed by agent i, 

bi = resource availibility of agent i. 

(1) 

(2) 

(3) 
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Constraints (1) force each job to be processed by only one of the agents, while constraints 
(2) express the capacity restrictions on each agent. Constraints (3) enforce the ordinary 
dichotomy conditions on the decision variables. Fisher, Jaikumar and Van Wassenhove 
(1986) show that this problem is NP-hard, since the basic NP-hard two-partition problem 
is reducible to GAP. 

The GAP appears as a subproblem in important real-life applications of mathematical 
programming. Examples include resource scheduling, design of communications networks 
(Grigordiadis, Tang and Woo, 1974), routing and distribution problems (Campbell and 
Langevin, 1995). 

Several codes have been developed to tackle this problem. An excellent overview can be 
found in Cattrysse and Van Wassenhove (1992). Most algorithms are based on relaxation 
methods, set partitioning techniques and branch and bound procedures. The fastest and 
most powerful algorithms are from Ross and Soland (1975), Martello and Toth (1990), 
Fisher, Jaikumar and Van Wassenhove (1986) and Cattrysse, Salomon and Van 
Wassenhove (1994). 

This contribution approaches the GAP from the polyhedral point of view and our 
procedure is outlined in the following sections. First, in section 2, we describe the cutting
plane algorithm that is used to get a good upper bound (UB). Based on this result, we 
propose in section 3 a LP-based methodology to obtain a new lower bound (LB). 
Computational experiments indicate that the bounds are quite tight. After applying some 
tailor-made preprocessing techniques reducing the size of the problem instances,· 
optimality is reached by using a classical branch and bound (B&B) procedure in section 4. 
The report concludes with a formal discussion of computational results and gives some 
directions for future research. 

2. Upper Bound calculations 

In order to obtain a UB, defme GAP as the LP relaxation of GAP. We construct a cutting
plane algorithm using strong valid inequalities derived from the m 0/1 knapsack 

constraints (2) in GAP. Strong valid inequalities and facet defining inequalities were 
studied simultaneously by Balas (1975), Hammer, Johnson and Peled (1975) and Balas 
and Zemel (1978). Crowder, Johnson and Padberg (1983) applied these techniques 
successfuly on large-scale 0/1 programming problems. Consider an arbitrary capacity 
constraint i and define the solution space for this constraint as: 

We assume a ji , bi integer and order. the coefficients monotonically such that 

ali?:: au?:: a Ji ···?:: ani with ali S; bi · Si is called an independence system and 

dim(CONV(SJ) = n . Let N = {l, .. ,n}, M = {l, .. ,m} and Xj' = {Xjl'" .,xjm }. 

A cover Ci isa subset of N for which I, a ji > bi • This cover is minimal if all of its subsets 
jeCI 

are independent, ·or equivalently, if for each k E Cp I, aji - aki :::; bi • A cover Ci leads to 
jeC; 

the valid inequality: 

L,Xji S; \Ci \- 1 
jeCI 
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Generally, an inequality of this type can be strenghtened by lifting it to its full 
dimensionality in order to produce a facet. Using a sequential lifting procedure, one has 
to solve IN\Ci I knapsack problems to determine the lifting coefficients (e.g. using 
dynamic programming). Balas (1975) however, proposed the following procedure: 

(1) Find a strong cover Ci ~ N not yet considered; i.e., a set Ci ~ N such that 

(i) Gi is a minimal cover 
(ii) if E(G) ¢ N, then I, aft:O; b, 

jeIC,-{j1 })u{J,} 

where a = max {a.,}, a. = max {a·i } , 
Ji jeCI ) 11 jeN-E(C;) J 

if there is none, stop. Otherwhise go to (2) 

(2) Let aOi = IG,I-l and define the coefficients a ji and the index sets N~, i.e.: 

a j , = h for allj EN:', h = O,l, ... ,q; 

N~ = N -E(C),N; = E(C)-U~~2N:.; 

N~ ={JEE(C): Laji :<:;aji < Laj ,}, h=2, ... ,q 
jeR" jERh+L 

where Rio is the set of the first h elements of Ci , for h = 2, ... ,q+l, q = ICi l-1 . 

Then the inequality 

(4) 

is a valid cut (i.e., is satisfied by all x E vert(GAP)); and·if 

I,a j , + ap , :s; bi 
jeCi-R11+1 

holds for all pEN;" h = 1, ... ,q ,then (4) defines a facet of GAP. 

This procedure enables us to determine immediately all the lifting coefficients a ji . One 

can only apply this proposition, after having determined a strong cover to start lifting 
from. In order to find a cover, we first have to solve the following separation problem. 

Given a fractional solution ei = {XjiJj = 1, ... , n}, we want to find a cover Ci for each 

agent i. We represent the unknown set Ci by the vector Qi = {QIi,q2.,..,qni}EBN and 

obtain the optimization problem Fi (Nemhauser and Wolsey, 1988): 

Min I,(1-X;)Qji 
jeN 

subject to: 

I,Qjiaji :::: bi + 1 
jeN 

qji E {0,1} j=l, ... ,n 

From above, separation involves solving a 011 knapsack problem, using a B&B procedure 
or a dynamic programming recursion. In our code, we use the Gilmore-Gomory B&B
procedure implemented by Schrage (1987). After the cover is found, it is adjusted to make 
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it minimal. Then condition (ii) from the procedure of Balas for a strong cover is tested. 
Starting from the solution to the LP relaxation GAP, we solve a separation problem to 
determine a minimal cover C i and apply the procedure of Balas subsequently for each 
agent i. The resulting inequalities which cut off the current fractional solution are added 
to the problem and the extended formulation is reoptimized. We repeat this process until 
no inequality can be created which cuts off the current fractional solution. At this point, 
the objective function value of the LP-solution gives the UB. 

3. Lower Bound calculations 

To compute the LB, we develop an iterative LP-based procedure. Starting from the 
solution to the LP relaxation which generates the UB, all variables equal to one are fixed 
(assigned to that agent) and a reduced problem is created. The cutting-plane algorithm is 
then applied again to obtain the UB of the reduced problem. We repeat this process until 
the LP-solution resulting from the UB-calculation on the reduced problem only contains 
fractional assignments. At this moment, the reduced problem is solved by branch and 
bound (B&B). This method by iteratively reducing the problem provides us with close-to~ 

. optimal solutions. This heuristic can be formalized in the following five steps: 

1. Set LB = O. Let the current problem formulation CP be GAP . 

2. Compute the UB onCP as outlined in section 2. If the associated LP-solution 

e = {x ji I i = 1, ... , m; j = 1, ... , n} contains no decision variables xji with value 1, 

then goto step 4. If all variables are integral, let ~ be the objective value and goto step 
5. Otherwise, let: 

J" = {i E N: :3 i E M such that x ji = I in e} 
X = {X;i: X;i = I in e} 

X is the set of decision variables which are at their upperbound in the LP- solution e, 
resulting from the UB-calculation. Having a X;i = I in a LP relaxation means that job j 

is being assigned uniquely to agent i. J' contains all indices of jobs j, which have been 

assigned uniquely in e. Save e and continue with step 3. 

3. Delete all cuts from CP which were generated during the UB-calculation in step 2. 

Recall the solution e from step 2 and alter CP by applying following substeps for each 

X~i EX: 

a) Detect and delete constraint j E J' oftype (1) in which X~i occurs and eliminate 

the set of variables Xj' belonging to constraintj from CP. 

b) Since X~i = lin e and eliminated in (a), set bi = bi - a~i 

c) Set LB = LB+c;, 

Notice that each time we pass through step 3, we end up with the original formulation 

GAP in which at every turn sets Xj. are being deleted for each j E J' . The capacity 

limits are being adjusted appropriately in (b). Define this altered problem as the new 

CP . Continue with step 2. 

4. Put a dichotomy condition on all variables in the CP and solve with B&B. Let ~ be the 
optimal objective value. Continue with step 5. 

5. Set LB = LB + ~. We obtain an upper bound. 
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4. Solution Scheme to Optimality 

Optimality can be achieved by B&B, incorporating the information of the obtained 
bounds. However, even with tight bounds, strongly capacitated GAP's tend to have large 
B&B trees. In order to reduce the size of these, we propose two powerful preprocessing 
techniques in sequence. 

4.1 Preprocessing 1 

A number of integer variables in GAP can be taken out from consideration, using 
following basic theorem from Nemhauser and Wolsey (1988): 

Theorem 1: 

Let Rej , be the reduced cost of variable Xji in the solution e, corresponding to the UB 

calculation on GAP . If x ji = 0 and nonbasic in the solution e and RC ji ;;:: UB - LB , 

then there exists an optimal solution to the GAP with Xji = 0 . 

With good bounds, theorem 1 allows us to eliminate a set of variables from the original 

formulation G.t;.dJ'. If p equals the number variables' vlrJch are left after applyiJ.~g 

preprocessing 1, then [1- _P- 1 * 100 expresses by how much we were able to reduce 
n*m 

the original problemsize. 

4.2 Preprocessing 2 

After preprocessing 1, it may occur that there exist constraints of type (1) with only one 
variable X~i left. In an optimal solution, this variable has to be equal to one, since i is the 

only agent where job j can be assigned to. This allows us to make· some further reductions 

in the problemsize. Now, let LB' = LB and D = o. Consider: 

R* = {Constraints j E N with only one variable x ji left} 

And perform for each x ji E T* each of the following tree operations: 

(a) Eliminate constraint j E R*, corresponding to Xji and delete Xji from the formulation. 

(b) Set bi = bi - a ji • 

(c) Set LB' = LB'- C ji and D = D + c ji 

When going through preprocessing 1 and 2, we are left with an adapted GAP formulation 

with P -IT*I variables. We define this reduced problem as GAP"d. LB' is the adapted 

lower bound for GAPred . Before putting dichotomy conditions on the variables and turning 

to B&B to solve GAP"d' we calulate UB' on the relaxation GAPred , as outlined in section 2. 

Using UB' and LB', we proceed by B&B to solve GAPred . If cp is the optimal objective value, 

then cp + D is the optimal objective value of our original formulation GAP. Figure 1 
summarizes the approach, as outlined in foregoing sections. 
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Figure 1: Solution scheme 

5. Computational Results 

The procedure is implemented using the NDP486 FORTRAN compiler V4.3.0 and linked 
with the LINDO library version 5.1 from Schrage (1987). All experiments were run on an 
IBM compatible 48666 Mhz machine. We tested our procedure on a set of representative 
problems, which were provided in Cattrysse, Salomon and Van Wassenhove (1994). These 
datasets are Y.llown to be computationally difficult and give rise to higl>ly capacitated 

1 . m - • 

- I,I,a, z I,b, ) GAP's. They have followmg characteristics: 
mj .. li • .J 1 i .. i 

• mE {5,8,10} and the ratio!!:.... E {3,4,5,6}. For each of the 12 possible combinations, 5 
m 

testsets were generated, yielding 60 problems in total, coded by problem C[m] [nHl-2-3-4-
5] . 

• the data were all drawn from a discrete uniform distribution (DU) with: 

C ji - DU(15, 25) 

a ji - DU(5, 25) 

(0.8) n bi - - Ia ji 
m j=l 

There doesn't seem to be unanimity in the literature concerning maximIzmg or 
minimizing the objective value in computational experiments on GAP. Fisher, Jaikumar 
and Van Wassenhove (1986) and Martello and Toth (1990) generate instances on which 
they minimize the objective value, while Ross and Soland (1975) and Cattrysse and al. 
(1994) consider maximization problems. In order to make some comparisons with the 
recent procedures, we present computational results for maximization. We discuss results 
by means of summarizing tables. However, these averages are somewhat biased because 
of differences between 5 instances for one combination of n and m. Therefore, it is 
suggested to consult the detailed tables which were joined as an appendix. 

Table I contains averages of the following statistics for each of the 12 types of datasets: 

• [UB L~ LB ] * 100 : relative deviation between UB and LB 



• [UB - Opt] * 100 : relative deviation of UB from the optimum 
Opt 

• [Op~~ LB] * 100 : relative deviation of LB from the optimum 
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Our heuristic for the LB deviates on average 0.06% from the optimal solution. The bounds 
obtained by applying the procedure of Balas to get the UB deviate on average 0.38% from 
the optimum. 

Table I: Average deviations from the optimum (in percent) 

Problem 

In table II, we measure the quality of our bounds (DT). Our UB is compared with the LP
relaxation, with the UB from Cattrysse, Salomon and Van Wassenhove (1994) (CSV). and 
with UB from Fisher, Jaikumar and Van Wassenhove (1986) (FJV). The LB is compared 
with the LB from CSV and with the heuristic solution of Martello and Toth (1990) (MT). 
The numbers present the relative deviations from the optimum for all bounds. The CSV
bounds dominate the other known results from the literature. Our LB is better than the 
LB from CSV. Our UB is not as tight as CSV, though is still very good when it is 
compared to the other procedures. 

Table II: Quality of LB's and UB's (relative deviations from optimum) 

Table IlIa contains average CPU-times in seconds. Note that these numbers are 
cumulative. The CSV-procedure was implemented on an IBM387 16 Mhz. Although 
comparison of running times on different machines is difficult, IBM experts estimate the 
speed ratio between an IBM486 66 Mhz and an IBM387 16 Mhz at II. 
On average 180.7 seconds are needed to solve an instance to optimality. The CSV 
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procedure needed 788 seconds (i.e. 8665/11) on average to reach optimality. This implies 
that our CPU-times to reach the optimal solution are about 4 times faster than CSV. 
This is due to the tightening effect of the cuts and the preprocessing techniques. Note 
that still 69% oftotal CPU time is put into the B&B process. 

Table IlIa: Average CPU times in seconds (values are cumulative) 

Problem Upper LOwer Optimum % total CPU for % total % total 
Bound Bound UB CPUt'or CPUt'or 

UB B&B 
C0515 0.60 3.00 5.80 0.103 0.414 0.483 
C0520 0.20 1.80 3.80 0.053 0.421 0.526 
C0525 1.00 2.20 4.00 0.250 0.300 0.450 
C0530 0.80 2.00 12.40 0.065 0.097 0.839 
C0824 1.80 20.60 46.60 0.039 0.403 0.558 
C0832 3.20 7.60 25.80 0.124 0.171 0.705 
C0840 4.00 10.20 46.80 0.085 0.132 0.782 
C0848 3.40 35.20 904.60 0.004 0.035 0.961 
C1030 4.00 22.20 47.20 0.085 0.386 0.530 
C1040 4.80 525.80 843.80 0.006 0.617 0.377 
C1050 5.40 13.80 73.80 0.073 0.114 0.813 
C1060 11.60 20.40 153.80 0.075 0.057 0.867 

Average 3.40 55.40 180.70 0.020 0.290 0.690 

Table IIIb contains CPU-times to obtain the bounds. The CSV procedure needs about 26 
seconds less to complete the bounding procedure. As noted before, we regain this loss of 
time by significantly reducing CPU times to obtain optimality. 

Table IIIb: Comparison of average CPU-times for bounding procedure* 

=~~ A_ ~ 

Time ~o ob~ain LB and UB 
~ ~ 

Problem CSV' DT '. 
C0515 0.89 3.00 
C0520 1.95 1.80 
C0525 3.29 2.20 
C0530 6.70 2.00 
C0824 2.78 20.60 
C0832 8.57 7.60 
C0840 10.00 10.20 
C0848 33.08 35.20 
C1030 13.33 22.20 
C1040 33.97 525.80 
C1050 65.58 13.80 
C1060 175.54 20.40 

Average 29.64 55.40 

* Based on benchmark runs, an IBM486 66 Mhz is about 11 times faster than an IBM387 16 Mhz. To obtain 
comparable times, the entries in the CSV-column were divided by 11. 

6. Conclusions and Directions for Future Research 

Approaching the GAP from the polyhedral point of view seems to bear fruit in generating 
good bounds and finding close-to-optimal solutions on a set of computationally hard 
problems. It has the additional advantage to be time-efficient. Our bounds are 
competitive with those of CSV. At the moment, the authors are making an extensive time 
comparison between several algorthms on one machine. A further sharpening of the 
lowerbound would reduce the branching time considerably, though this is a NP-hard 
problem on itself. 
Our procedure is LP-based and the generated heuristic solutions may be interesting 
vectors to be shot off in a column generation approach where the GAP appears as a 
subproblem. Several applications lend themselves to this purpose. 
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Appendix 

Table IV: Detailed computational results (absolute values) 

Problem VB LB Opt [UBL~LB]*l00 [UB-OPtJ*100 [OP~~LB]*l00 
Opt 

C0515·1 337 336 336 0.30 0.30 0.00 
C0515·2 329 327 327 0.61 0.61 0.00 
C0515·3 342 339 339 0.88 0.88 0.00 
C0515·4 344 341 341 0.88 0.88 0.00 
C0515·5 331 326 326 1.53 1.53 0.00 
C0520·1 . 437 434 434 0.69 0.69 0.00 
C0520·2 441 435 436 1.38 1.15 0.23 
C0520·3 421 420 420 0.24 0.24 0.00 
C0520·4 422 419 419 0.72 0.72 0.00 
C0520·5 428 428 428 0.00 0.00 0.00 
C0525·1 581 580 580 0.17 0.17 0.00 
C0525·2 567 564 564 0.53 0.53 0.00 
C0525·3 574 573 573 0.17 0.17 0.00 
C0525·4 572 570 570 0.35 0.35 0.00 
C0525·5 567 564 564 0.53 0.53 0.00 
C0530·1 658 656 656 0.30 0.30 0.00 
C0530·2 649 643 644 0.93 0.78 0.16 
C0530·3 679 672 673 1.04 0.89 0.15 
C0530·4 649 647 647 0.46 0.31 0.15 
C0530·5 667 664 664 0.45 0.45 0.00 
C0824·1 565 563 563 0.36 0.36 0.00 
C0824·2 560 558 558 0.36 0.36 0.18 
C0824·3 564 563 564 0.18 0.00 0.00 
C0824·4 570 568 568 0.35 0.35 0.00 
C0824·5 567 559 559 1.43 1.43 0.00 
C0832-1 764 761 761 0.39 0.39 0.00 
C0832·2 761 759 759 0.26 0.26 0.00 
C0832·3 759 758 758 0.13 0.13 0.00 
C0832·4 756 752 752 0.53 0.53 0.00 I 
C0832·5 750 747 747 0.40 0.40 0.00 
C0840·1 944 940 942 0.43 0.21 0.21 
C0840·2 951 949 949 0.21 0.21 0.00 
C0840·3 969 968 0.10 0.10 0.00 
C0840·4 945 945 945 0.00 0.00 0.00 
C0840·5 953 949 951 0.42 0.21 0.21 
C0848·1 1136 1130 1133 0.53 0.26 0.27 
C0848·2 1138 1134 1134 0.35 0.35 0.00 
C0848·3 1143 1138 1141 0.44 0.18 0.26 
C0848·4 1123 1116 1117 0.63 0.54 0.09 
C0848·5 1131 1124 1127 0.62 0.35 0.27 
C1030·1 711 706 709 0.71 0.28 0.42 
C1030·2 720 717 717 0.42 0.42 0.00 
C1030·3 714 712 712 0.28 0.28 0.00 
C1030·4 724 723 723 0.14 0.14 0.00 
C1030·5 713 705 706 1.13 0.99 0.14 
C1040·1 959 958 958 0.00 0.00 0.00 
C1040·2 968 962 963 0.62 0.52 0.10 
C1040·3 963 958 960 0.52 0.31 0.21 
C1040·4 948 944 947 0.42 0.11 0.32 
C1040·5 952 946 947 0.63 0.53 0.11 
C1050·1 1141 1139 1139 0.18 0.18 

~ C1050·2 1180 1177 1178 0.25 0.17 
C1050·3 1195 1195 1195 0.00 0.00 0.00 
C1050-4 1174 1171 1171 0.26 0.26 0.00 
C1050·5 1174 1171 1171 0.26 0.26 0.00 
C1060·1 1452 1449 1451 0.21 0.07 0.14 
C1060·2 1451 1449 1449 0.14 0.14 0.00 
C1060·3 1435 1433 1433 0.14 0.14 0.00 
C1060·4 1447 1446 1447 0.07 0.00 0.07 
C1060·5 1448 1445 1446 0.21 0.14 0.07 

Average in percentage 0.44 0.38 0.06 
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Table VI: Detailed CPU-times in seconds 

; Problem timeUB timeLB ; time Opt %UB %LB 
, 

%Opt 
C0515-1 1 1 1 0.00 0.00 0.00 
C0515-2 1 1 2 0.50 0.00 0.50 
C0515-3 1 1 2 0.50 0.00 0.50 
C0515-4 0 2 4 0.00 0.50 0.50 
C0515-5 0 10 20 0.00 0.50 0.50 
C0520-1 0 2 6 0.00 0.33 0.67 
C0520-2 0 3 5 0.00 0.60 0.40 
C0520-3 1 2 3 0.33 0.33 0.33 
C0520-4 0 2 5 0.00 0.40 0.60 
C0520-5 0 0 0 0.00 0.00 0.00 
C0525-1 1 2 3 0.33 0.33 0.33 
C0525-2 1 1 2 0.50 0.00 0.50 
C0525-3 1 2 3 0.33 0.33 0.33 
C0525-4 1 2 5 0.20 0.20 0.60 
C0525-5 1 4 7 0.14 0.43 0.43 
C0530-1 1 2 5 0.20 0.20 0.60 
C0530-2 1 3 25 0.04 0.08 0.88 
C0530-3 1 1 16 0.06 0.00 0.94 
C0530-4 1 3 7 0.14 0.29 0.57 
C0530-5 0 1 9 0.00 0.11 0.89 
C0824-1 1 8 9 0.11 0.78 0.11 
C0824-2 2 4 7 0.29 0.29 0.43 
C0824-3 2 3 4 0.50 0.25 0.25 
C0824-4 2 6 11 0.18 0.36 0.45 
C0824-5 2 82 202 0.01 0.40 0.59 
C0832-1 2 5 24 0.08 0.13 0.79 
C0832-2 2 10 19 0.11 0.42 0.47 
C0832-3 3 7 10 0.30 0.40 0.30 
C0832-4 4 6 43 0.09 0.05 0.86 
C0832-5 5 10 33 0.15 0.15 0.70 
C0840-1 5 22 168 0.03 0.10 0.87 
C0840-2 4 8 17 0.24 0.24 0.53 
C0840-3 1 4 5 0.20 0.60 0.20 
C0840-4 5 5 6 0.83 0.00 0.17 
C0840-5 5 12 38 0.13 0.18 0.68 
C0848-1 2 7 1087 0.00 0.00 0.99 
C0848-2 6 12 196 0.03 0.03 0.94 
C0848-3 3 14 2418 0.00 0.00 0.99 
C0848-4 3 8 454 0.01 0.01 0.98 
C0848-5 3 135 368 0.01 0.36 0.63 
C1030-1 9 62 104 0.09 0.51 0.40 
C1030-2 4 18 50 0.08 0.28 0.64 
C1030-3 2 7 14 0.14 0.36 0.50 
C1030-4 3 7 11 0.27 0.36 0.36 
C1030-5 2 17 57 0.04 0.26 
C1040-1 9 11 11 0.82 0.18 0.00 
C1040-2 2 51 169 0.01 0.29 0.70 
C1040-3 7 493 757 I 0.01 0.64 0.35 
C1040-4 4 12 406 0.01 0.02 0.97 
C1040-5 2 2062 2876 0.00 0.72 0.28 
C1050-1 9 17 61 0.15 0.13 0.72 
C1050-2 5 22 38 0.13 0.45 0.42 
C1050-3 2 3 3 0.67 0.33 0.00 
C1050-4 5 14 42 0.12 0.21 0.67 
C1050-5 6 13 225 0.03 0.03 0.94 
C1060-1 6 12 141 0.04 0.04 0.91 
C1060-2 3 13 89 0.03 0.11 0.85 
C1060-3 12 20 179 0.07 0.04 0.89 
C1060-4 21 30 81 0.26 0.11 0.63 
C1060-5 16 27 279 0.06 0.04 0.90 

Total 204 3324 10842 

Average 3.40 55.40 180.70 0.02 I 0.29 I 0.69 



Table VIII: Detailed quality of obtained bounds 

MT: Martello and Toth 
CVS: Catrysse, Salomon and Van Wassenhove 
LP: LP-relaxation 

Pl'oblem LP-UB l\1T-LB 
C0515-1 2.26 8.74 
C0515-2 3.79 2.51 
C0515-3 3.15 3.35 
C0515-4 2.76 1.79 
C0515-5 2.99 2.52 
C0520-1 2.31 1.64 
C0520-2 2.50 4.31 
C0520-3 1.22 3.19 
C0520-4 2.23 1.70 
C0520-5 0.89 0.00 
C0525-1 0.50 1.22 
C0525-2 0.93 3.49 
C0525-3 0.82 0.17 
C0525-4 0.74 0.88 
C0525-5 1.25 1.62 
C0530-1 0.97 0.61 

C0530-2 1.70 1.90 
C0530-3 1.33 2.12 

C0530-4 0.78 1.25 
C0530-5 1.01 1.53 
C0824-1 1.00 1.99 
C0824-2 1.26 2.39 
C0824-3 0.86 2.17 
C0824-4 2.09 2.34 
C0824-5 2.56 2.01 
C0832-1 0.95 1.06 
C0832-2 1.01 2.29 
C0832-3 0.97 3.55 
C0832-4 1.48 3.30 
C0832-5 0.98 2.05 

C0840-1 0.67 1.18 
C0840-2 0.64 0.96 

C0840-3 0.43 1.57 
C0840-4 0.54 3.17 

C0840-5 0.71 2.15 
C0848-1 0.49 0.89 
C0848-2 0.69 3.28 
C0848-3 0.38 2.33 
C0848-4 0.82 2.10 
C0848-5 0.56 2.27 
C1030-1 1.28 1.43 
C1030-2 1.35 3.31 
C1030-3 1.36 1.14 
C1030-4 0.74 1.83 
C1030-5 1.70 3.22 
C1040-1 0.49 1.48 
C1040-2 1.06 2.01 
C1040-3 0.77 1.69 
C1040-4 0.39 2.05 
C1040-5 0.95 1.28 
C1050-1 0.53 1.24 
C1050-2 0.50 1.38 
C1050-3 0.21 0.59 
C1050-4 0.74 1.91 
C1050-5 0.47 1.47 
C1060-1 0.21 1.11 
C1060-2 0.33 0.98 
C1060-3 0.27 1.20 
C1060-4 0.21 0.91 
C1060-5 0.41 1.26 

Average 1.12 1.99 

CSV-UB 
0.30 
0.00 
0.15 
0.00 
0.40 
0.23 
0.00 
0.21 
0.14 
0.00 
0.00 
0.00 
0.00 
0.00 
0.04 
0.11 
0.39 
0.21 
0.08 
0.00 
0.18 
0.00 
0.02 
0.14 
0.32 
0.16 
0.13 
0.07 
0.13 
0.12 
0.12 
0.06 
0.00 
0.00 
0.12 
0.05 
0.16 
0.00 
0.13 
0.01 
0.14 
0.06 
0.15 
0.14 
0.23 
0.00 
0.11 
0.01 
0.00 
0.14 
0.00 
0.03 
0.02 
0.10 
0.12 
0.00 
0.06 
0.03 
0.05 
0.04 

0.09 

12 

CSV·LB Om'-UB OUI'LB 
0.00 0.30 0.00 
0.31 0.61 0.00 
0.00 0.88 0.00 
0.00 0.88 0.00 
0.00 1.53 0.00 
0.00 0.69 0.00 
0.23 1.15 0.23 
0.00 0.24 0.00 
0.72 0.72 0.00 
0.00 0.00 0.00 
0.00 0.17 0.00 
0.00. 0.53 0.00 
0.17 0.17 0.00 
0.00 0.35 0.00 
0.00 0.53 0.00 
0.61 0.30 0.00 
0.00 0.78 0.16 
0.15 0.89 0.15 
0.31 0.31 0.15 
0.00 0.45 0.00 
0.00 0.36 0.00 
0.00 0.36 0.18 
0.00 0.00 0.00 
0.00 0.35 0.00 
0.36 1.43 0.00 
0.00 0.39 0.00 
0.26 0.26 0.00 
0.00 0.13 0.00 
0.00 0.53 0.00 
0.00 0.40 0.00 
0.00 0.21 0.21 
0.00 0.21 0.00 
0.00 0.10 0.00 
0.00 0.00 0.00 
0.00 0.21 0.21 
0.27 0.26 0.27 
0.00 0.35 0.00 
0.44 0.18 0.26 
0.00 0.54 0.09 
0.27 0.35 0.27 
0.42 0.28 0.42 
0.14 0.42 0.00 
0.14 0.28 0.00 
0.0 0.14 0.00 
0.00 0.99 0.14 
0.00 0.00 0.00 
0.21 0.52 0.10 
0.21 0.31 0.21 
0.21 0.11 0.32 
0.32 0.53 0.11 
0.00 0.18 0.00 
0.08 0.17 0.08 
0.00 0.00 0.00 
0.00 0.26 0.00 
0.00 0.26 0.00 
0.00 0.07 0.14 
0.07 0.14 0.00 
0.00 0.14 0.00 
0.00 0.00 0.D7 
0.07 0.14 0.07 
0.10 0.38 0.06 




