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Abstract

In this paper, we propose a simple strategy to construct D-, A-, G- and V-optimal
two-level multi-attribute designs for rating-based conjoint studies. Our approach
combines orthogonal designs and balanced or partially balanced incomplete block
designs. In order not to overload respondents with complicated tasks, the designs
hold one or more attributes at a constant level. The designs are variance-balanced
meaning that they yield an equal amount of information on each of the part-worths.
Some examples are provided to illustrate the method.

Keywords: two-level conjoint designs, D-, A-, G- and V-optimality, orthogonal de-
signs, balanced and partially balanced incomplete block designs

1 Introduction

A conjoint experiment tries to elucidate consumer preferences for the attributes of a
good, that is a product or a service. This is usually done by asking respondents to rate
a set of profiles or alternatives of the good. A profile involves a combination of levels
of a set of predefined attributes of the good. Some of the administered profiles describe
existing goods, whereas others describe hypothetical and possibly prospective goods. The
objective of a conjoint experiment is to elicit as much information as possible on the
utilities people derive from the attribute levels. These utilities are also called part-worths
and correspond to the parameters of a statistical model. By means of accurate parameter
estimates, precise predictions are aimed to depict consumers’ purchasing behavior in a
given market. Companies can then develop new goods that lead to a substantial rise in
clientele.
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To obtain precise parameter estimates, an efficient conjoint design needs to be con-
structed. The conjoint designs we set up in this paper are intended for screening out
the vital few important attributes from a group of many potential ones. The different
attributes involved in the conjoint designs have two levels each. In most conjoint studies,
see e.g. Danaher (1997), Pullman et al. (2002) and references therein, the conjoint design
consists of blocks or sets of an equal number of profiles. Each of these sets is evaluated
by a different respondent. To be able to estimate all part-worths, each respondent is
administered a different set of profiles.

The incorporation of large numbers of attributes in the design of conjoint experiments
requires some special attention. As Green (1974) and Schwabe et al. (2003) have argued,
respondents may get overloaded when they have to assimilate profiles that embrace more
than four different attribute levels. Therefore, to overcome respondent fatigue, we only
vary the levels of maximum four attributes in each of the profile sets assigned to the
respondents. The profiles are still combinations of levels for all attributes, but the levels
of one or more attributes do not vary between the profiles in a set. Each respondent
thus rates a set of profiles in which the levels of one or more attributes are held constant.
These constant attributes need not necessarily be the same in each profile set. To keep
the profile sets comprehensible for the respondents, we confine ourselves to a maximum
of ten constant attributes in the design.

Because each of the profile sets has a number of attributes at a constant level, the con-
joint designs addressed in this paper show some similarities to split-plot designs. Split-plot
designs are heavily used in industry when the levels of some of the experimental factors
are difficult or costly to change or control. These factors are called whole plot factors and
are kept at a constant level for several observations in the design. The other factors whose
levels may vary are called sub-plot factors. Analogous to our type of conjoint design is
that a split-plot design consists of blocks or groups of runs with the whole plot factors
acting at a constant level. These blocks are termed whole plots. A split-plot design differs
from our conjoint design in that the whole plot factors are naturally the same in each
whole plot, whereas the constant attributes in a conjoint design may vary from set to set.
We refer to the work of Goos and Vandebroek (2001; 2004) and Goos (2002; 2006a) for
more details on split-plot designs.

Our approach to construct multi-attribute conjoint designs exploits the same linear
model that is used for generating split-plot designs. In the split-plot setting, the model
includes a random effect representing the whole plot variation. In our conjoint setting,
the random effect is attributable to a respondent who rates a set of profiles. The reason
is that respondents are assumed to be heterogeneous, meaning that profile ratings from
the same respondent are more similar than profile ratings from different respondents. A
random effect for each respondent accommodates this heterogeneity. Respondents are
thereby supposed to be randomly selected from a prespecified market population. In the
conjoint setting, we refer to the model as the linear random respondent effects model.
Also Brazier et al. (2002) and Kessels et al. (2004) adopted this model for conjoint appli-
cations. Because the conjoint designs in this paper are set up for detecting the significant
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attributes from a large number of attributes, only main-effects models are considered.

Our design construction approach is conceptually easy to understand and generates
designs with sets of 2, 4 and 8 profiles. In principle, our approach can produce designs with
profile sets of sizes equal to a power of two. However, we restrict ourselves to a maximum
size of eight as respondents can easily become fatigued by having to evaluate more than
eight profiles. Related to conjoint designs with sets of two profiles are paired comparison
designs (Grossmann et al. 2002 & 2005; Grasshoff et al. 2004; Street et al. 2001; Street
and Burgess 2004). These designs also comprise sets of two profiles, but in contrast with
conjoint designs, each respondent evaluates all the sets. This is done by specifying the
preferred profile in each set, and possibly also the preference strength.

Street et al. (2001) demonstrated that holding the levels of one or more attributes
constant in two-level paired comparison designs leads to information losses when main-
effects models are considered. This result also applies to conjoint designs. Keeping the
rating tasks manageable for the respondents thus comes at a loss of information on the
part-worths. Since all part-worths are assumed to be on the same footing, we look for
conjoint designs that spread the information losses evenly over each part-worth. In other
words, we want to set up conjoint designs that provide an equal amount of information
on each part-worth. These conjoint designs are called variance-balanced conjoint designs.

To allow for variance balance in the conjoint designs, the constant attributes have to
differ between the profile sets in such a way that each attribute is constant in an equal
number of sets. In case of more than one constant attribute, we obtain an appropriate
pattern of constant attributes using a balanced or partially balanced incomplete block
design (BIBD or PBIBD). The levels in these one-factor block designs, called treatments,
each occur the same number of times, which paves the way for the production of variance-
balanced conjoint designs. To ensure the optimality of the designs, meaning that they
yield maximum information on each part-worth, we choose the design profiles so that they
form an orthogonal array. These designs offer the advantage that parameter estimates
are statistically independent of each other.

The combination of orthogonal designs and BIBDs or PBIBDs has also been employed
by Green (1974) to develop multi-attribute choice experiments for an equal and unequal
number of levels for the attributes. Yet, the resulting designs are not guaranteed to be
optimal as Grossmann et al. (2002) have shown. In choice experiments, respondents are
administered a series of choice sets that each comprise several profiles. The respondents
then indicate their preferred profile in every choice set. The underlying model is usually
nonlinear, which requires the specification of prior parameter values before deriving the
design. However, Green (1974) assumed zero prior values, hereby simplifying the nonlin-
ear design problem to a linear one. Because of this assumption, the designs generated can
also be utilized for conjoint experiments.

In one of his examples, Green (1974) constructed designs for partial profiles. These
profiles are described by only a subset of the attributes. The levels of the other attributes
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are left unspecified. A BIBD is used to determine which of the attributes constitute the
profiles. An orthogonal design is then assigned to each combination of attributes selected
by the BIBD to form the profiles for these attributes. This approach yields variance-
balanced designs when the attributes have two levels each. It best resembles our strategy
since the attributes provided by the BIBD are the non-constant attributes in our con-
joint setting. However, we also determine the levels of the other attributes, the constant
attributes in our setting, so as to construct conjoint designs for full profiles. Comparing
ratings from different profiles is impossible otherwise.

Based on a different approach, Street and Burgess (2004) generated optimal two-level
paired comparison designs that can also be employed as variance-balanced conjoint de-
signs for sets of two profiles. In this case, the paired comparison designs are set up for
full profiles in which the levels of one or more attributes are held constant. They are
referred to as constant difference pairs. Street and Burgess (2004) propose the use of
generators and orthogonal designs to construct the pairs. They exploited the nonlinear
Bradley-Terry model for choice experiments. Because zero prior parameter values are as-
sumed, the model comes down to the linear model. The construction of variance-balanced
constant difference pairs is illustrated in an empirical study by Severin (2000).

The outline of the remainder of the paper is as follows. Section 2 reviews the random
respondent effects model used in conjoint design. In Section 3 we discuss the optimal-
ity conditions and in Section 4 we refine these conditions to deal with large numbers of
attributes. We explain our design construction approach in Section 5 and describe the
information content of the resulting designs in Section 6. Section 7 concludes the paper
and highlights some further research possibilities.

2 The random respondent effects model

The model used to set up and analyze two-level multi-attribute conjoint experiments is
the random respondent effects model. In this model, it is assumed that respondents are
heterogeneous and randomly selected from a prespecified population. Each respondent
i, i = 1, ..., b, rates a different block or set of profiles to estimate all parameters. For
convenience, the profile sets assigned to the b respondents have the same size m. As a
result, the total number of experimental profiles amounts to n = bm. Our approach to
properly design two-level conjoint studies considers the cases where m equals either 2,
4 or 8. Subsequently, the rating Uij for profile j, j = 1, ...,m, by respondent i is modelled
as

Uij = x′ijβ + γi + εij. (1)

In the model, xij is a (k + 1) × 1 vector with a one as first element and the attribute
levels describing profile j that is rated by respondent i as the remaining k elements. The
attributes are quantitative or categorical factors that have two levels each. One level is
coded as −1 and the other level as +1. Consequently, each of the individual attribute
levels occupies one entry in the vector xij. Moreover, only main-effects models are consid-
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ered so that the number of attributes involved in the design amounts to k. β = [β0, ..., βk]
′

is the (k + 1)× 1 unknown parameter vector with β0 the intercept and β1, ..., βk the part-
worths or weights attached to the attribute levels. γi represents the random effect of
respondent i and εij is a random error term.

In matrix notation, model (1) becomes

U = Xβ + Zγ + ε, (2)

where U is a vector of n profile ratings, the vector γ = [γ1, ..., γb]
′ contains the b random

respondent effects and ε is a random error vector. The matrices X and Z have dimensions
n × (k + 1) and n × b, respectively. X is given by [X′

1, ...,X
′
b]
′, where Xi = [xi1, ...,xim]′

collects the m profiles rated by respondent i. Z = Ib ⊗ 1m, where ⊗ is the Kronecker
product and 1m an m× 1 vector of ones. It is assumed that

E(ε) = 0n and Cov(ε) = σ2
εIn, (3)

E(γ) = 0b and Cov(γ) = σ2
γIb, (4)

and Cov(γ, ε) = 0b×n, (5)

where σ2
ε is the variance within respondents and σ2

γ is the variance between respondents.
Under these assumptions, the variance-covariance matrix V of the profile ratings U is
Ib ⊗Vm, with

Vm = σ2
εIm + σ2

γ1m1′m = σ2
ε

(
Im +

ρ

1− ρ
1m1′m

)
. (6)

In this expression, ρ = σ2
γ/(σ2

ε + σ2
γ). This ratio measures the proportion of the total

variance that is accounted for by the differences between respondents. It represents the
degree of correlation between the ratings from a single respondent.

The vector of the unknown fixed model parameters β can be estimated using the
generalized least squares estimator

β̂ = (X′V−1X)−1X′V−1U, (7)

with (X′V−1X)−1 the variance-covariance matrix of β̂, the inverse of which is the infor-
mation matrix on β.

3 Design optimality

Our strategy to construct efficient multi-attribute conjoint designs is based on the informa-
tion matrix X′V−1X for the random respondent effects model (2). Goos and Vandebroek
(2001) showed that the information matrix of a design X with profile sets of size m can
be written as

X′V−1X = σ−2
ε

{
X′X− ρ

1 + ρ(m− 1)

b∑
i=1

(X′
i1m)(X′

i1m)′
}

. (8)
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For notational ease, we define the matrices A and B as

A = X′X and B =
b∑

i=1

(X′
i1m)(X′

i1m)′, (9)

so that the information matrix X′V−1X is of the form A− f(ρ)B.

The designs we derive are optimal with regard to four criteria that are functions of
the information matrix (8) irrespective of the value of ρ. These criteria are the D-, A-,
G- and V-optimality criteria. The D- and A-optimality criteria both are concerned with
a precise estimation of the parameters β in model (2). A D-optimal design minimizes
the determinant of the variance-covariance matrix (X′V−1X)−1 or, equivalently, maxi-
mizes the determinant of the information matrix (8). An A-optimal design minimizes the
trace of the variance-covariance matrix. The G- and V-optimality criteria are concerned
with making precise response predictions. Because conjoint experiments particularly fo-
cus on producing precise predictions, these criteria are vital in design construction. The
G-optimality criterion seeks designs that minimize the maximum prediction variance over
the region of interest, whereas the V-optimality criterion seeks designs that minimize the
average prediction variance over the region of interest.

To obtain conjoint designs that are D-, A-, G- and V-optimal, we construct the profile
sets in such a way that the information matrix (8) is diagonal with elements that are as
large as possible. The approach was motivated by Goos (2006b) who presented conditions
for designing optimal two-level main-effect split-plot experiments. To find the conjoint
design X corresponding to a diagonal information matrix X′V−1X with the largest pos-
sible diagonal elements, both matrices A and B in (9) should be diagonal. The diagonal
elements of A should be as large as possible, whereas those of B should be as small as
possible.

In our construction method we present in Section 5, X will turn out to be an orthogo-
nal array such as a full 2k or fractional 2k−p factorial design or a Plackett-Burman design.
As a result, A = nIk+1. Ideally, the profiles in the orthogonal design X are arranged in
sets so that B is a zero matrix. However, because we are concerned with experiments with
large numbers of attributes where some levels are held constant to simplify the respon-
dents’ task, this is impossible. Also, the first element of B corresponds to the intercept
and equals bm2 for every imaginable design. How best to assign these constant attribute
levels is discussed in the next section.

4 Large numbers of attributes

In order not to overload the respondents with a heavy rating task, we hold one or more
attributes at a fixed level in each of the profile sets. In other words, we introduce per-
fect level overlap for one or more attributes in each profile set. These attributes are the
constant attributes and may differ from set to set. We denote the number of constant
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attributes by kc. The remaining kv = k − kc attributes, the levels of which may vary, are
the non-constant attributes. The concepts of constant and non-constant attributes are
illustrated with the conjoint design in Table 1. This design consists of b = 12 sets with
m = 2 profiles each. It has k = 6 attributes, two of which are constant so that kc = 2
and kv = 4. The levels of the constant attributes are highlighted in grey. As can be seen,
the constant and non-constant attributes may differ between the profile sets.

Table 1: Optimal variance-balanced conjoint design with b = 12 sets of m = 2 profiles,
kc = 2 constant attributes and kv = 4 non-constant attributes.

Attributes
Set 1 2 3 4 5 6
1 −1 −1 −1 −1 −1 −1
1 −1 +1 +1 −1 +1 +1
2 −1 −1 −1 +1 +1 +1
2 −1 +1 +1 +1 −1 −1
3 +1 −1 +1 −1 −1 +1
3 +1 +1 −1 −1 +1 −1
4 +1 −1 +1 −1 +1 −1
4 +1 +1 −1 +1 −1 +1
5 −1 −1 −1 −1 −1 +1
5 +1 −1 +1 +1 −1 −1
6 −1 −1 −1 +1 +1 −1
6 +1 −1 +1 −1 +1 +1
7 −1 +1 +1 −1 −1 −1
7 +1 +1 −1 +1 −1 +1
8 −1 +1 +1 +1 +1 +1
8 +1 +1 −1 −1 +1 −1
9 −1 −1 −1 −1 −1 −1
9 +1 +1 −1 +1 +1 −1
10 −1 −1 −1 +1 +1 +1
10 +1 +1 −1 −1 −1 +1
11 −1 +1 +1 −1 +1 −1
11 +1 −1 +1 +1 −1 −1
12 −1 +1 +1 +1 −1 +1
12 +1 −1 +1 −1 +1 +1

Keeping the levels of one or more attributes fixed in the profile sets of a conjoint design
reduces the amount of information that can be collected from the experiment. Also Street
et al. (2001) observed that imposing perfect level overlap in two-level main-effect paired
comparison designs leads to information losses with respect to the part-worths of the
constant attributes in each of the profile sets. Without perfect level overlap constraints,
most information is obtained when the levels of each attribute are maximum balanced,
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meaning that they occur with equal frequency in each profile set. Note that this is the
opposite of perfect level overlap.

If no constant attributes were involved, maximum level balance would imply that
X′

i1m = [m 01×k]
′, i = 1, ..., b, so that all elements of the matrix B in (9) are zero, except

for the single element corresponding to the intercept in the upper left entry. This would
maximize the information in the experiment. When kc constant attributes are imposed
on the design, X′

i1m = [m s′i]
′, i = 1, ..., b, where si is a k × 1 vector containing at least

kc nonzero elements. As a result of that, B has additional nonzero elements that cause
the loss of information. To minimize the number of nonzero elements in B, the profiles
in X forming an orthogonal array should be grouped such that maximum level balance
is still preserved for the non-constant attributes in each profile set. In that case, si has
exactly kc nonzero elements. In the conjoint design of Table 1, the profiles represent a
Plackett-Burman design and their grouping is characterized by maximum level balance
for the non-constant attributes.

It is possible that the optimal designs do not spread the information losses from per-
fect level overlap evenly over all part-worths. Stated differently, the diagonal elements
for the part-worths of the matrix B in (9), and thus of the information matrix (8), may
not be the same. Still, we assume that all part-worths are equally important so that we
look for optimal designs that yield the same amount of information on each part-worth.
Each attribute should therefore be constant in an equal number of profile sets. Optimal
designs that meet this requirement are called variance-balanced. The conjoint design of
Table 1 is optimal and variance-balanced. As can be seen, each attribute acts as a con-
stant attribute in four profile sets.

The fact that each attribute in the conjoint design of Table 1 is constant in an even
number of profile sets is not surprising. This is generally the case for optimal variance-
balanced conjoint designs. As we choose X to be an orthogonal array and arrange the
profiles so that the levels of each non-constant attribute sum to zero in each profile set,
the levels of each constant attribute necessarily sum to zero over the profile sets. This
implies an even number of profile sets for each constant attribute to offset a −1 for a
constant attribute in a profile set by a +1 for the same constant attribute in another
profile set.

Now, with this framework in mind, we describe our strategy to set up optimal two-
level variance-balanced conjoint designs in which a number of attributes are constant
in each profile set. Compared with optimal designs without constant attributes, these
designs give up some statistical efficiency to keep the rating tasks doable. Also, to show
manageable profile sets, we disregard designs with more than kc = 10 constant attributes
or more than kv = 4 non-constant attributes. To develop the optimal variance-balanced
conjoint designs, we need to determine
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1. the constant attributes in each profile set,

2. the levels of these constant attributes and

3. the levels of the non-constant attributes.

In the next section, we discuss our design construction approach taking into account this
sequence of steps.

5 Design construction approach

In our design construction approach, we distinguish between kc = 1 and kc > 1 constant
attributes. For both cases, we run through the three steps as listed above. We explain our
strategy by some example designs that appear in Appendix A. Optimal variance-balanced
conjoint designs for kc = 1 and kc > 1 appear in Appendix A.1 and Appendix A.2, re-
spectively.

5.1 Optimal variance-balanced conjoint designs for kc = 1

The optimal variance-balanced designs with kc = 1 constant attribute in Appendix A.1
are the smallest ones that can be created for kv = 2, 3 or 4 non-constant attributes and
m = 2, 4 or 8 profiles per set. To construct these designs, we cover the three steps as
follows.

5.1.1 Steps 1 & 2: Determining the constant attributes and their levels

When kc = 1, determining the constant attributes and their levels is fairly straightforward.
To allow for variance balance, each attribute should be constant in an equal number of
profile sets. Also, each attribute should be constant in an even number of profile sets
to have as many −1’s as +1’s for their levels. In the optimal variance-balanced conjoint
designs of Tables A.1, A.2, A.4, A.5, A.7 and A.8 each attribute is constant in two profile
sets and in the designs of Tables A.3 and A.6 each attribute is constant in four profile
sets.

5.1.2 Step 3: Determining the levels of the non-constant attributes

To determine the levels of the non-constant attributes, we draw on orthogonal subdesigns.
For kv = 2, 3 or 4 non-constant attributes and m = 2, 4 or 8 profiles per set, we constructed
the smallest possible orthogonal subdesigns with an even number of profile sets. As such,
we can match these subdesigns with the constant attributes to produce the conjoint
designs of Appendix A.1. We illustrate the use of orthogonal subdesigns for each case.
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The optimal variance-balanced conjoint designs in Tables A.1 and A.2 have kv = 2
non-constant attributes and profile sets of sizes m = 2 and m = 4, respectively. The
design in Table A.1 is built on the orthogonal subdesign in Table 2a and the design in
Table A.2 is built on the orthogonal subdesign in Table 2b. The subdesign in Table 2a
consists of two profile sets of size m = 2 and the subdesign in Table 2b consists of two
profile sets of size m = 4. The former subdesign and each of the profile sets in the latter
subdesign represent the full 22 factorial design.

Table 2: Orthogonal subdesigns with the levels of kv = 2 non-constant attributes. The
subdesigns consist of two profile sets each.

a) m = 2
NC attr

Set 1 2
1 −1 −1
1 +1 +1
2 −1 +1
2 +1 −1

b) m = 4
NC attr

Set 1 2
1 −1 −1
1 +1 +1
1 −1 +1
1 +1 −1
2 −1 −1
2 +1 +1
2 −1 +1
2 +1 −1

The subdesigns in Tables 2a and 2b are incorporated thrice in the conjoint designs of
Tables A.1 and A.2, respectively. Since this is the required minimum to have each of the
k = 3 attributes act as a constant attribute, the conjoint designs are the smallest ones
that can be produced. They both involve six respondents, but can be replicated to set
up larger conjoint designs in which the number of respondents is a multiple of six. The
resulting designs are still optimal and variance-balanced. Note that we have not shown
an optimal variance-balanced conjoint design with kv = 2 non-constant attributes and
sets of m = 8 profiles. This is because the profile sets in such design would contain only
duplicated profiles which makes no sense in a conjoint study.

The optimal variance-balanced conjoint designs with kc = 1 constant attribute in
Tables A.3, A.4 and A.5 have kv = 3 non-constant attributes and profile sets of sizes
m = 2, 4 and 8, respectively. The orthogonal subdesigns needed for their construction
appear in Tables 3a, 3b and 3c. The subdesign in Table 3a embraces four profile sets
of size m = 2 and the subdesigns in Tables 3b and 3c embrace two profile sets of sizes
m = 4 and m = 8. The full 23 factorial design was exploited to build the subdesigns. It is
included once in the subdesigns of Tables 3a and 3b and twice in the subdesign of Table 3c.

The subdesigns are incorporated four times in the conjoint designs of Tables A.3, A.4
and A.5 to allow each of the k = 4 attributes to act as a constant attribute. As such,
the conjoint designs are the smallest possible ones. For the design in Table A.3 sixteen
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Table 3: Orthogonal subdesigns with the levels of kv = 3 non-constant attributes. Sub-
design a) consists of four profile sets, while subdesigns b) and c) consist of two profile
sets.

a) m = 2
NC attr

Set 1 2 3
1 −1 −1 −1
1 +1 +1 +1
2 −1 −1 +1
2 +1 +1 −1
3 −1 +1 −1
3 +1 −1 +1
4 −1 +1 +1
4 +1 −1 −1

b) m = 4
NC attr

Set 1 2 3
1 −1 −1 −1
1 +1 +1 +1
1 −1 −1 +1
1 +1 +1 −1
2 −1 +1 −1
2 +1 −1 +1
2 −1 +1 +1
2 +1 −1 −1

c) m = 8
NC attr

Set 1 2 3
1 −1 −1 −1
1 +1 +1 +1
1 −1 −1 +1
1 +1 +1 −1
1 −1 +1 −1
1 +1 −1 +1
1 −1 +1 +1
1 +1 −1 −1
2 −1 −1 −1
2 +1 +1 +1
2 −1 −1 +1
2 +1 +1 −1
2 −1 +1 −1
2 +1 −1 +1
2 −1 +1 +1
2 +1 −1 −1

respondents are needed and for the designs in Tables A.4 and A.5 eight respondents are
needed. To build larger optimal variance-balanced conjoint designs with kc = 1 constant
attribute and kv = 3 non-constant attributes, replications of the design tables should be
made.

The last optimal variance-balanced conjoint designs with kc = 1 constant attribute
are the ones in Tables A.6, A.7 and A.8 containing kv = 4 non-constant attributes and
profile sets of sizes m = 2, 4 and 8, respectively. The designs are constructed using the
orthogonal subdesigns listed in Tables 4a, 4b and 4c. Table 4a shows two possible subde-
signs of four profile sets of size m = 2 and Table 4b shows two possible subdesigns of two
profile sets of size m = 4. The subdesign in Table 4c has two profile sets of size m = 8.
The combinations of the two possible subdesigns in Tables 4a and 4b and the subdesign
in Table 4c represent the full 24 factorial design. The subdesigns in Tables 4a and 4b each
constitute an orthogonal fraction of this design.

We produced the conjoint design in Table A.6 by implementing the two possible sub-
designs in Table 4a one after the other. In the same way, we constructed the conjoint
design in Table A.7 from the two subdesigns in Table 4b. Other replication structures
of the subdesigns are also possible since the optimality of the designs is not affected by
the choice of subdesigns used. The three conjoint designs are the smallest possible ones
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Table 4: Orthogonal subdesigns with the levels of kv = 4 non-constant attributes. Sub-
designs i. and ii. of a) consist of four profile sets, while subdesigns i. and ii. of b) and
subdesign c) consist of two profile sets.

a) m = 2
NC attr

Set 1 2 3 4
i. 1 −1 −1 −1 −1

1 +1 +1 +1 +1
2 −1 −1 +1 +1
2 +1 +1 −1 −1
3 −1 +1 −1 +1
3 +1 −1 +1 −1
4 −1 +1 +1 −1
4 +1 −1 −1 +1

ii. 1 −1 −1 −1 +1
1 +1 +1 +1 −1
2 −1 −1 +1 −1
2 +1 +1 −1 +1
3 −1 +1 −1 −1
3 +1 −1 +1 +1
4 −1 +1 +1 +1
4 +1 −1 −1 −1

b) m = 4
NC attr

Set 1 2 3 4
i. 1 −1 −1 −1 −1

1 +1 +1 +1 +1
1 −1 −1 +1 +1
1 +1 +1 −1 −1
2 −1 +1 −1 +1
2 +1 −1 +1 −1
2 −1 +1 +1 −1
2 +1 −1 −1 +1

ii. 1 −1 −1 −1 +1
1 +1 +1 +1 −1
1 −1 −1 +1 −1
1 +1 +1 −1 +1
2 −1 +1 −1 −1
2 +1 −1 +1 +1
2 −1 +1 +1 +1
2 +1 −1 −1 −1

c) m = 8
NC attr

Set 1 2 3 4
1 −1 −1 −1 −1
1 +1 +1 +1 +1
1 −1 −1 +1 +1
1 +1 +1 −1 −1
1 −1 +1 −1 +1
1 +1 −1 +1 −1
1 −1 +1 +1 −1
1 +1 −1 −1 +1
2 −1 −1 −1 +1
2 +1 +1 +1 −1
2 −1 −1 +1 −1
2 +1 +1 −1 +1
2 −1 +1 −1 −1
2 +1 −1 +1 +1
2 −1 +1 +1 +1
2 +1 −1 −1 −1

since five subdesigns are needed to allow each of the k = 5 attributes to act as a con-
stant attribute. The design in Table A.6 requires twenty respondents and the designs in
Tables A.7 and A.8 require ten respondents. The designs can be replicated when larger
conjoint experiments with kc = 1 constant attribute and kv = 4 non-constant attributes
are desirable.

5.2 Optimal variance-balanced conjoint designs for kc > 1

The optimal variance-balanced conjoint designs with kc > 1 constant attributes in Ap-
pendix A.2 appear in the right panels of the tables. The other panels are meant to clarify
our design construction approach. The conjoint design in the right panel of Table A.9
is the same design as in Table 1 for kc = 2 constant attributes, kv = 4 non-constant
attributes and m = 2 profiles per set. The next two designs in Tables A.10 and A.11
extend the starting example to m = 4 and m = 8 profiles per set, respectively. We first
explain the main idea of our strategy using these three conjoint designs and then discuss
the other conjoint designs of Appendix A.2.

5.2.1 Step 1: Determining the constant attributes

If kc > 1, it may be quite cumbersome to look for combinations of constant attributes
that lead to perfect level overlap of each attribute in an equal number of profile sets.
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This is particularly true when kc is large and not a divisor of k. Therefore, we advocate
the use of balanced or partially balanced incomplete block designs (BIBDs or PBIBDs)
to determine patterns of constant attributes that result in variance-balanced conjoint de-
signs. BIBDs and PBIBDs describe how to arrange the levels of a single qualitative factor,
called treatments, in groups or blocks of a certain size. Each treatment thereby occurs an
equal number of times in the entire design. In BIBDs, the number of times two different
treatments occur together in a block is the same for all pairs of treatments. This is not
true for PBIBDs which makes there are more and smaller PBIBDs than BIBDs for a given
number of treatments and block size.

We refer to the work of Cochran and Cox (1957) and Cox (1958) for a general account
of BIBDs and PBIBDs. The former authors depict some tables of BIBDs whereas the
latter author describes a simple method to set up PBIBDs. More discussions and tables
of BIBDs are provided by Abel and Greig (1996) and Mathon and Rosa (1996). PBIBDs
are fully elaborated in the work of Shah and Sinha (1989) and Street and Street (1996),
and catalogs of these designs can be found in the work of Clatworthy (1973) and on a
website by Sinha (see the References).

In Tables 5a, 5b, 5c and 5d, three PBIBDs and one BIBD are listed for six treat-
ments and block sizes of two. Each of these designs can be exploited to construct optimal
variance-balanced conjoint designs with kc = 2 constant attributes and kv = 4 non-
constant attributes. Each block in the PBIBDs and the BIBD determines which of the
six attributes should be constant in a prespecified number of profile sets. So each block
defines kc = 2 constant attributes for a certain number of profile sets. Because each of
the six treatments appears the same number of times in the PBIBDs and the BIBD, each
of the k = 6 attributes is constant in an equal number of profile sets.

The conjoint designs in Tables A.9, A.10 and A.11 are built on the PBIBD of Table 5a.
This is illustrated in the left panels of the tables. The PBIBD has three blocks of size two
indicating three combinations of two constant attributes. The first block of the PBIBD
tells us that Attributes 1 and 4 should be constant in some of the profile sets. This is
done in Profile sets 1 to 4 for each of the conjoint designs. The second block determines
Attributes 2 and 5 to be constant. These constant attributes are exploited in Profile
sets 5 to 8. According to the last block, Attributes 3 and 6 should be constant. This is
accomplished in Profile sets 9 to 12. So each block of constant attributes is embedded in
four profile sets in each of the conjoint designs. How to decide on the number of profile
sets in which the same attributes are constant is laid out in the next section.

5.2.2 Steps 2 & 3: Determining the levels of the constant and non-constant
attributes

The optimal variance-balanced conjoint designs in Appendix A.2 are all developed from
PBIBDs and are the smallest ones that can be produced. For the conjoint designs in
Tables A.9, A.10 and A.11, we showed that the constant attributes are dictated by the
three blocks in the PBIBD of Table 5a. The question now is at what levels these attributes
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Table 5: a) PBIBD with 3 blocks, b) PBIBD with 9 blocks, c) PBIBD with 12 blocks and
d) BIBD with 15 blocks. Each design has 6 treatments and block sizes of 2.

a) PBIBD
Block Levels

1 1 4
2 2 5
3 3 6

b) PBIBD
Block Levels

1 1 2
2 1 4
3 1 6
4 2 3
5 2 5
6 3 4
7 3 6
8 4 5
9 5 6

c) PBIBD
Block Levels

1 1 2
2 1 3
3 1 5
4 1 6
5 2 3
6 2 4
7 2 6
8 3 4
9 3 5
10 4 5
11 4 6
12 5 6

d) BIBD
Block Levels

1 1 2
2 1 3
3 1 4
4 1 5
5 1 6
6 2 3
7 2 4
8 2 5
9 2 6
10 3 4
11 3 5
12 3 6
13 4 5
14 4 6
15 5 6

have to be set and how often they have to be held fixed. To answer this question, we
use intermediate designs, so-called constant attribute designs that are orthogonal for the
constant attributes. These constant attribute designs appear in the middle panel of each
design table.

To construct the constant attribute designs, we exploit the full 2kc factorial design
or an orthogonal fraction of the full 2kc factorial design. The sample size of the full 2kc

factorial design or the orthogonal fraction then determines the number of profile sets for
each combination of constant attributes. The constant attribute designs for the conjoint
designs in Tables A.9, A.10 and A.11 utilize the full 22 factorial design for each combina-
tion of constant attributes. This means that 22 = 4 profile sets have the same attributes
constant with levels that fit the full 22 factorial design.

The last problem to solve before the design construction is complete is the determi-
nation of the levels of the non-constant attributes. Therefore, we call on the orthogonal
subdesigns for the kv non-constant attributes given by the tables in Section 5.1.2. In the
conjoint design of Table A.9, the two possible subdesigns of Table 4a are implemented.
Since three subdesigns can be accommodated, one subdesign is implemented once and
the other twice. They nicely fit in the four profile sets from the full 22 factorial design
corresponding to a combination of constant attributes. Similarly, in the conjoint design of
Table A.10 each of the subdesigns in Table 4b is implemented thrice and in the conjoint
design of Table A.11 the subdesign in Table 4c is implemented six times.
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In some cases if kc = 2, the two non-orthogonal fractions of the full 22 factorial design
in Table 6 provide another way to determine the levels of the constant attributes. These
fractions require only two profile sets for each combination of constant attributes and thus
allow for smaller conjoint designs when kc = 2. They both have one attribute at a fixed
level so that they need to be jointly implemented to offset the fixed level of −1 by the fixed
level of +1. As a result, the fractions can only be employed if the number of blocks in the
BIBD or PBIBD is even and the orthogonal subdesigns for the kv non-constant attributes
enclose two profile sets. The use of the fractions is illustrated in the conjoint designs of
Tables A.12 and A.13 for kc = 2 constant attributes, kv = 2 non-constant attributes and
m = 2 and m = 4 profiles per set, respectively. The PBIBD specifies four combinations of
constant attributes, the levels of which are determined by the non-orthogonal fractions.
The subdesigns in Tables 2a and 2b fill out the levels of the non-constant attributes.

Table 6: Non-orthogonal fractions of the full 22 factorial design for constructing constant
attribute designs for kc = 2 constant attributes.

Cst attr
Set 1 2

i 1 −1 −1
2 −1 +1

ii 1 +1 −1
2 +1 +1

To further illustrate our design construction approach, we discuss the optimal variance-
balanced conjoint designs in Tables A.14 and A.15. They both have m = 2 profiles per
set. The design in Table A.14 has kc = 3 constant attributes and kv = 3 non-constant
attributes and the design in Table A.15 has kc = 4 constant attributes and kv = 4 non-
constant attributes. To fix the levels of the constant attributes, minimum-size orthogonal
fractions of the full 2kc factorial design are incorporated. These fractions are the smallest
possible ones that allow the estimation of all kc main effects. If 3 ≤ kc ≤ 10, minimum-size
orthogonal fractions for the kc constant attributes can be constructed using the genera-
tors in Table 7. We selected these generators from Appendix 4A on pages 193–194 of Wu
and Hamada (2000). Other generators that yield larger orthogonal fractions can also be
retrieved in this appendix.

The orthogonal fraction has a size of 2kc−p, where 2−p refers to the fraction of the
full 2kc factorial design. The full 2kc−p factorial design is used to determine the levels of
the first kc − p constant attributes. The levels of the remaining p constant attributes are
specified by the generators. For example, in case kc = 3, the generator is 3 = 12 meaning
that the level of the third constant attribute is obtained by multiplying the levels of the
first and second constant attribute. In this way, one orthogonal fraction is constructed.
Other orthogonal fractions of the full 2kc factorial design can be produced by using one
or more generators with a minus sign. For kc = 3, 3 = −12 is the generator of the second
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Table 7: Generators for constructing minimum-size orthogonal fractions for kc attributes.

kc Size Generators
3 23−1 = 4 3 = 12
4 24−1 = 8 4 = 123
5 25−2 = 8 4 = 12, 5 = 13
6 26−3 = 8 4 = 12, 5 = 13, 6 = 23
7 27−4 = 8 4 = 12, 5 = 13, 6 = 23, 7 = 123
8 28−4 = 16 5 = 123, 6 = 124, 7 = 134, 8 = 234
9 29−5 = 16 5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234
10 210−6 = 16 5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, 10 = 34

and only remaining orthogonal fraction.

We derive from Table 7 that there are also two minimum-size orthogonal fractions for
kc = 4 constant attributes. In the constant attribute design of Table A.14 each of two
minimum-size orthogonal fractions for kc = 3 constant attributes is used twice and in the
constant attribute design of Table A.15 each of two minimum-size orthogonal fractions
for kc = 4 constant attributes is used thrice. The orthogonal fractions for kc = 3 involve
23−1 = 4 profile sets for each combination of constant attributes and the orthogonal frac-
tions for kc = 4 involve 24−1 = 8 profile sets. The levels of the non-constant attributes in
the conjoint designs are set by means of the subdesign in Table 3a for kv = 3 and the two
possible subdesigns in Table 4a for kv = 4.

6 Information content of the optimal variance-bal-

anced conjoint designs

For our study, we examine the designs in Appendix A that have k = 4 attributes. These
are the designs in Tables A.3, A.4 and A.5 of Appendix A.1 for kc = 1 constant attribute
and kv = 3 non-constant attributes and the designs in Tables A.12 and A.13 of Appendix
A.2 for kc = 2 constant attributes and kv = 2 non-constant attributes. The designs with
kc = 1 constant attribute have profile sets of sizes m = 2, 4 and 8, respectively, and the
designs with kc = 2 constant attributes have profile sets of sizes m = 2 and m = 4. We
compare the information content of these designs with that of the optimal conjoint designs
in which no constant attributes are used. These latter conjoint designs are nothing but
orthogonally blocked two-level designs. They can be constructed using the generators in
Appendix 3A on pages 150–151 and Appendix 4B on pages 199–203 of Wu and Hamada
(2000).

In general, the information matrix (8) for optimal variance-balanced conjoint designs
is diagonal with maximal diagonal elements that are equal for the part-worths. In Ap-
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pendix B, we computed the information matrix for the design in Table A.12. Based on
these computations, we derived the amount of information on the intercept and part-
worths for the other conjoint designs. The results for all five conjoint designs appear in
Table 8.

For a given design setting, the optimal conjoint design without constant attributes
leads to the same amount of information on the intercept as provided by the optimal
conjoint design with constant attributes. However, as we mentioned in Sections 3 and 4,
the amount of information on each part-worth of the optimal designs without constant
attributes is larger. Because the levels of each attribute are maximum balanced in each
of the profile sets, the part-worth elements of the matrix B in (9) are zero. As a result,
the amount of information on each part-worth of the optimal designs without constant
attributes is equal to n, the number of design profiles. For each of the five design cases
in Table 8, we compared the value of n with the values for the part-worths in the table
for 10 degrees of correlation ρ ∈ {0; 0.1; ...; 0.9}. As such, we computed the percentage
information losses for each part-worth from imposing constant attributes. We plotted
them in Figure 1.

Table 8: Amount of information on the intercept and part-worths of the optimal variance-
balanced conjoint designs for a) kc = 1 and kv = 3 contained in Tables A.3, A.4 and A.5
and for b) kc = kv = 2 contained in Tables A.12 and A.13.

Conjoint design Information on
Table m b n the intercept each part-worth

a) kc = 1 A.3 2 16 32 32(1− ρ)/(1 + ρ) 8(1− ρ)/(1 + ρ) + 24
kv = 3 A.4 4 8 32 32(1− ρ)/(1 + 3ρ) 8(1− ρ)/(1 + 3ρ) + 24

A.5 8 8 64 64(1− ρ)/(1 + 7ρ) 16(1− ρ)/(1 + 7ρ) + 48
b) kc = 2 A.12 2 8 16 16(1− ρ)/(1 + ρ) 8(1− ρ)/(1 + ρ) + 8

kv = 2 A.13 4 8 32 32(1− ρ)/(1 + 3ρ) 16(1− ρ)/(1 + 3ρ) + 16

A close look at Figure 1 reveals that, given m = 2 or m = 4 and a value of ρ, the
information losses for each part-worth of the conjoint designs with kc = 2 constant at-
tributes are twice the information losses of the conjoint designs with kc = 1 constant
attribute. We verified with some additional computations that in general, if the number
of attributes, k, is fixed in a series of optimal two-level variance-balanced conjoint designs,
the information losses are proportional to the number of constant attributes, kc, used.

Figure 1 also shows that, given kc and ρ, the information losses for each part-worth
increase with m. As the profile sets of the conjoint designs get larger or the number of
respondents drops, the information losses from constant attributes increase. This can also
be concluded from c8 < c4 < c2 < 1, where cm = (1−ρ)/(1+(m−1)ρ) (see Appendix B).
It implies that for a given number of design profiles, n, sets with m = 2 profiles are more
efficient than sets with m = 4 profiles, which in their turn, are more efficient than sets
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Figure 1: % Information losses for each part-worth from using kc = 1 and kc = 2 constant
attributes for degrees of correlation ranging from 0 to 0.9. The five designs of Table 8 are
considered.

with m = 8 profiles. For example, the designs in Tables A.3 and A.4 have equal sample
sizes and equal numbers of profiles in which each attribute is constant. However, because
the former design is constructed for m = 2 and the latter for m = 4, the information
losses of the latter design are larger.

A last observation from Figure 1 is that, given m and kc, the information losses for
each part-worth increase with ρ. The more heterogeneous respondents are, the more in-
formation one loses by keeping the levels of one or more attributes constant. The increase
of the losses with ρ is fairly linear if m = 2, but becomes quadratic for larger values of m.
Note that if ρ = 0, respondents are assumed to be homogeneous so that the grouping of
the profiles in sets, and thus also the matrix B in (9), does not matter anymore.

7 Conclusion

In this chapter, we presented a simple approach to construct optimal two-level conjoint
designs that involve a large number of attributes. To reduce the cognitive burden on the
respondents, the designs hold the levels of one or more attributes constant in each of the
profile sets. The designs have sets of 2, 4 or 8 profiles and are optimal with respect to the
D-, A-, G- and V-optimality criteria for estimating main-effects models.
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The optimal conjoint designs have a diagonal information matrix collecting maximum
information. In addition, the conjoint designs are variance-balanced meaning that they
yield an equal amount of information on each of the part-worths. Also, the conjoint de-
signs do not depend on the extent to which respondents are heterogeneous, as expressed
by the degree of correlation. This makes them very practical to use. Prior to construct-
ing the conjoint designs, we advise practitioners to think carefully about the number of
constant attributes they want. Compared with optimal conjoint designs without constant
attributes, optimal conjoint designs with constant attributes lead to information losses
that are proportional to the number of constant attributes.

If more than one constant attribute is desirable, our design construction method draws
on BIBDs and PBIBDs to provide patterns of constant attributes that allow for variance
balance. To ensure optimality, we choose the levels of the kc constant attributes and the
levels of the kv non-constant attributes such that they are orthogonal for each combina-
tion of constant attributes. We first determine the levels of the kc constant attributes by
incorporating the full 2kc factorial design or an orthogonal fraction of it. We then set the
levels of the kv non-constant attributes by using a prespecified orthogonal subdesign for
the kv non-constant attributes.

The design examples provided in Appendix A are the smallest ones supported by our
approach. There are generally three ways to obtain larger conjoint designs. A first op-
tion is to choose a larger BIBD or PBIBD that defines more combinations of constant
attributes. A second possibility is to employ larger orthogonal designs to fix the levels of
the kc constant attributes. Lastly, a small conjoint design may be replicated.

As an additional justification of our method, it is interesting to note that the op-
timal variance-balanced conjoint designs with sets of two profiles are similar to the
variance-balanced constant difference pairs constructed by Severin (2000). For exam-
ple, the optimal paired comparison design with four attribute level differences in the work
of Severin (2000, page 142) is equivalent to the duplicated conjoint design of our start-
ing example in Table 1. In other words, Severin’s (2000, page 142) design has the same
structure as the conjoint design in Table 1 but contains twice as many profile sets.

Finally, more work is needed to extend our method for constructing optimal two-level
variance-balanced conjoint designs with sets of 3, 5, 6 or 7 profiles. Also the production
of conjoint designs using models with main effects plus interactions might be considered.
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Appendix A. Optimal variance-balanced conjoint de-

signs

A.1. Designs with one constant attribute: kc = 1

Table A.1: Smallest optimal variance-balanced conjoint design with sets of m = 2 profiles,
kc = 1 constant attribute and kv = 2 non-constant attributes.

Attributes Attributes Attributes
Set 1 2 3 Set 1 2 3 Set 1 2 3
1 −1 −1 −1 3 −1 −1 −1 5 −1 −1 −1
1 −1 +1 +1 3 +1 −1 +1 5 +1 +1 −1
2 +1 −1 +1 4 −1 +1 +1 6 −1 +1 +1
2 +1 +1 −1 4 +1 +1 −1 6 +1 −1 +1

Table A.2: Smallest optimal variance-balanced conjoint design with sets of m = 4 profiles,
kc = 1 constant attribute and kv = 2 non-constant attributes.

Attributes Attributes Attributes
Set 1 2 3 Set 1 2 3 Set 1 2 3
1 −1 −1 −1 3 −1 −1 −1 5 −1 −1 −1
1 −1 +1 +1 3 +1 −1 +1 5 +1 +1 −1
1 −1 −1 +1 3 −1 −1 +1 5 −1 +1 −1
1 −1 +1 −1 3 +1 −1 −1 5 +1 −1 −1
2 +1 −1 −1 4 −1 +1 −1 6 −1 −1 +1
2 +1 +1 +1 4 +1 +1 +1 6 +1 +1 +1
2 +1 −1 +1 4 −1 +1 +1 6 −1 +1 +1
2 +1 +1 −1 4 +1 +1 −1 6 +1 −1 +1
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Table A.3: Smallest optimal variance-balanced conjoint design with sets of m = 2 profiles,
kc = 1 constant attribute and kv = 3 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4
1 −1 −1 −1 −1 9 −1 −1 −1 −1
1 −1 +1 +1 +1 9 +1 +1 −1 +1
2 −1 −1 −1 +1 10 −1 −1 −1 +1
2 −1 +1 +1 −1 10 +1 +1 −1 −1
3 +1 −1 +1 −1 11 −1 +1 +1 −1
3 +1 +1 −1 +1 11 +1 −1 +1 +1
4 +1 −1 +1 +1 12 −1 +1 +1 +1
4 +1 +1 −1 −1 12 +1 −1 +1 −1
5 −1 −1 −1 −1 13 −1 −1 −1 −1
5 +1 −1 +1 +1 13 +1 +1 +1 −1
6 −1 −1 −1 +1 14 −1 −1 +1 −1
6 +1 −1 +1 −1 14 +1 +1 −1 −1
7 −1 +1 +1 −1 15 −1 +1 −1 +1
7 +1 +1 −1 +1 15 +1 −1 +1 +1
8 −1 +1 +1 +1 16 −1 +1 +1 +1
8 +1 +1 −1 −1 16 +1 −1 −1 +1

Table A.4: Smallest optimal variance-balanced conjoint design with sets of m = 4 profiles,
kc = 1 constant attribute and kv = 3 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4
1 −1 −1 −1 −1 5 −1 −1 −1 −1
1 −1 +1 +1 +1 5 +1 +1 −1 +1
1 −1 −1 −1 +1 5 −1 −1 −1 +1
1 −1 +1 +1 −1 5 +1 +1 −1 −1
2 +1 −1 +1 −1 6 −1 +1 +1 −1
2 +1 +1 −1 +1 6 +1 −1 +1 +1
2 +1 −1 +1 +1 6 −1 +1 +1 +1
2 +1 +1 −1 −1 6 +1 −1 +1 −1
3 −1 −1 −1 −1 7 −1 −1 −1 −1
3 +1 −1 +1 +1 7 +1 +1 +1 −1
3 −1 −1 −1 +1 7 −1 −1 +1 −1
3 +1 −1 +1 −1 7 +1 +1 −1 −1
4 −1 +1 +1 −1 8 −1 +1 −1 +1
4 +1 +1 −1 +1 8 +1 −1 +1 +1
4 −1 +1 +1 +1 8 −1 +1 +1 +1
4 +1 +1 −1 −1 8 +1 −1 −1 +1
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Table A.5: Smallest optimal variance-balanced conjoint design with sets of m = 8 profiles,
kc = 1 constant attribute and kv = 3 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 Set 1 2 3 4
1 −1 −1 −1 −1 5 −1 −1 −1 −1
1 −1 +1 +1 +1 5 +1 +1 −1 +1
1 −1 −1 −1 +1 5 −1 −1 −1 +1
1 −1 +1 +1 −1 5 +1 +1 −1 −1
1 −1 −1 +1 −1 5 −1 +1 −1 −1
1 −1 +1 −1 +1 5 +1 −1 −1 +1
1 −1 −1 +1 +1 5 −1 +1 −1 +1
1 −1 +1 −1 −1 5 +1 −1 −1 −1
2 +1 −1 −1 −1 6 −1 −1 +1 −1
2 +1 +1 +1 +1 6 +1 +1 +1 +1
2 +1 −1 −1 +1 6 −1 −1 +1 +1
2 +1 +1 +1 −1 6 +1 +1 +1 −1
2 +1 −1 +1 −1 6 −1 +1 +1 −1
2 +1 +1 −1 +1 6 +1 −1 +1 +1
2 +1 −1 +1 +1 6 −1 +1 +1 +1
2 +1 +1 −1 −1 6 +1 −1 +1 −1
3 −1 −1 −1 −1 7 −1 −1 −1 −1
3 +1 −1 +1 +1 7 +1 +1 +1 −1
3 −1 −1 −1 +1 7 −1 −1 +1 −1
3 +1 −1 +1 −1 7 +1 +1 −1 −1
3 −1 +1 +1 −1 7 −1 +1 −1 −1
3 +1 +1 −1 +1 7 +1 −1 +1 −1
3 −1 +1 +1 +1 7 −1 +1 +1 −1
3 +1 +1 −1 −1 7 +1 −1 −1 −1
4 −1 −1 −1 −1 8 −1 −1 −1 +1
4 +1 −1 +1 +1 8 +1 +1 +1 +1
4 −1 −1 −1 +1 8 −1 −1 +1 +1
4 +1 −1 +1 −1 8 +1 +1 −1 +1
4 −1 +1 +1 −1 8 −1 +1 −1 +1
4 +1 +1 −1 +1 8 +1 −1 +1 +1
4 −1 +1 +1 +1 8 −1 +1 +1 +1
4 +1 +1 −1 −1 8 +1 −1 −1 +1
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Table A.6: Smallest optimal variance-balanced conjoint design with sets of m = 2 profiles,
kc = 1 constant attribute and kv = 4 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 5 Set 1 2 3 4 5
1 −1 −1 −1 −1 −1 11 −1 +1 +1 −1 +1
1 −1 +1 +1 +1 +1 11 +1 −1 +1 +1 −1
2 −1 −1 −1 +1 +1 12 −1 +1 +1 +1 −1
2 −1 +1 +1 −1 −1 12 +1 −1 +1 −1 +1
3 +1 −1 +1 −1 +1 13 −1 −1 −1 −1 +1
3 +1 +1 −1 +1 −1 13 +1 +1 +1 −1 −1
4 +1 −1 +1 +1 −1 14 −1 −1 +1 −1 −1
4 +1 +1 −1 −1 +1 14 +1 +1 −1 −1 +1
5 −1 −1 −1 −1 +1 15 −1 +1 −1 +1 −1
5 +1 −1 +1 +1 −1 15 +1 −1 +1 +1 +1
6 −1 −1 −1 +1 −1 16 −1 +1 +1 +1 +1
6 +1 −1 +1 −1 +1 16 +1 −1 −1 +1 −1
7 −1 +1 +1 −1 −1 17 −1 −1 −1 −1 −1
7 +1 +1 −1 +1 +1 17 +1 +1 +1 +1 −1
8 −1 +1 +1 +1 +1 18 −1 −1 +1 +1 −1
8 +1 +1 −1 −1 −1 18 +1 +1 −1 −1 −1
9 −1 −1 −1 −1 −1 19 −1 +1 −1 +1 +1
9 +1 +1 −1 +1 +1 19 +1 −1 +1 −1 +1
10 −1 −1 −1 +1 +1 20 −1 +1 +1 −1 +1
10 +1 +1 −1 −1 −1 20 +1 −1 −1 +1 +1
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Table A.7: Smallest optimal variance-balanced conjoint design with sets of m = 4 profiles,
kc = 1 constant attribute and kv = 4 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 5 Set 1 2 3 4 5
1 −1 −1 −1 −1 −1 6 −1 +1 +1 −1 +1
1 −1 +1 +1 +1 +1 6 +1 −1 +1 +1 −1
1 −1 −1 −1 +1 +1 6 −1 +1 +1 +1 −1
1 −1 +1 +1 −1 −1 6 +1 −1 +1 −1 +1
2 +1 −1 +1 −1 +1 7 −1 −1 −1 −1 +1
2 +1 +1 −1 +1 −1 7 +1 +1 +1 −1 −1
2 +1 −1 +1 +1 −1 7 −1 −1 +1 −1 −1
2 +1 +1 −1 −1 +1 7 +1 +1 −1 −1 +1
3 −1 −1 −1 −1 +1 8 −1 +1 −1 +1 −1
3 +1 −1 +1 +1 −1 8 +1 −1 +1 +1 +1
3 −1 −1 −1 +1 −1 8 −1 +1 +1 +1 +1
3 +1 −1 +1 −1 +1 8 +1 −1 −1 +1 −1
4 −1 +1 +1 −1 −1 9 −1 −1 −1 −1 −1
4 +1 +1 −1 +1 +1 9 +1 +1 +1 +1 −1
4 −1 +1 +1 +1 +1 9 −1 −1 +1 +1 −1
4 +1 +1 −1 −1 −1 9 +1 +1 −1 −1 −1
5 −1 −1 −1 −1 −1 10 −1 +1 −1 +1 +1
5 +1 +1 −1 +1 +1 10 +1 −1 +1 −1 +1
5 −1 −1 −1 +1 +1 10 −1 +1 +1 −1 +1
5 +1 +1 −1 −1 −1 10 +1 −1 −1 +1 +1
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Table A.8: Smallest optimal variance-balanced conjoint design with sets of m = 8 profiles,
kc = 1 constant attribute and kv = 4 non-constant attributes.

Attributes Attributes
Set 1 2 3 4 5 Set 1 2 3 4 5
1 −1 −1 −1 −1 −1 6 −1 −1 +1 −1 +1
1 −1 +1 +1 +1 +1 6 +1 +1 +1 +1 −1
1 −1 −1 −1 +1 +1 6 −1 −1 +1 +1 −1
1 −1 +1 +1 −1 −1 6 +1 +1 +1 −1 +1
1 +1 −1 +1 −1 +1 6 −1 +1 +1 −1 −1
1 +1 +1 −1 +1 −1 6 +1 −1 +1 +1 +1
1 +1 −1 +1 +1 −1 6 −1 +1 +1 +1 +1
1 +1 +1 −1 −1 +1 6 +1 −1 +1 −1 −1
2 −1 −1 −1 −1 +1 7 −1 −1 −1 −1 −1
2 −1 +1 +1 +1 −1 7 +1 +1 +1 −1 +1
2 −1 −1 −1 +1 −1 7 −1 −1 +1 −1 +1
2 −1 +1 +1 −1 +1 7 +1 +1 −1 −1 −1
2 +1 −1 +1 −1 −1 7 −1 +1 −1 −1 +1
2 +1 +1 −1 +1 +1 7 +1 −1 +1 −1 −1
2 +1 −1 +1 +1 +1 7 −1 +1 +1 −1 −1
2 +1 +1 −1 −1 −1 7 +1 −1 −1 −1 +1
3 −1 −1 −1 −1 −1 8 −1 −1 −1 +1 +1
3 +1 −1 +1 +1 +1 8 +1 +1 +1 +1 −1
3 −1 −1 −1 +1 +1 8 −1 −1 +1 +1 −1
3 +1 −1 +1 −1 −1 8 +1 +1 −1 +1 +1
3 −1 +1 +1 −1 +1 8 −1 +1 −1 +1 −1
3 +1 +1 −1 +1 −1 8 +1 −1 +1 +1 +1
3 −1 +1 +1 +1 −1 8 −1 +1 +1 +1 +1
3 +1 +1 −1 −1 +1 8 +1 −1 −1 +1 −1
4 −1 −1 −1 −1 +1 9 −1 −1 −1 −1 −1
4 +1 −1 +1 +1 −1 9 +1 +1 +1 +1 −1
4 −1 −1 −1 +1 −1 9 −1 −1 +1 +1 −1
4 +1 −1 +1 −1 +1 9 +1 +1 −1 −1 −1
4 −1 +1 +1 −1 −1 9 −1 +1 −1 +1 −1
4 +1 +1 −1 +1 +1 9 +1 −1 +1 −1 −1
4 −1 +1 +1 +1 +1 9 −1 +1 +1 −1 −1
4 +1 +1 −1 −1 −1 9 +1 −1 −1 +1 −1
5 −1 −1 −1 −1 −1 10 −1 −1 −1 +1 +1
5 +1 +1 −1 +1 +1 10 +1 +1 +1 −1 +1
5 −1 −1 −1 +1 +1 10 −1 −1 +1 −1 +1
5 +1 +1 −1 −1 −1 10 +1 +1 −1 +1 +1
5 −1 +1 −1 −1 +1 10 −1 +1 −1 −1 +1
5 +1 −1 −1 +1 −1 10 +1 −1 +1 +1 +1
5 −1 +1 −1 +1 −1 10 −1 +1 +1 +1 +1
5 +1 −1 −1 −1 +1 10 +1 −1 −1 −1 +1
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A.2. Designs with more than one constant attribute: kc > 1

Table A.9: Smallest optimal variance-balanced conjoint design with sets of m = 2 profiles,
kc = 2 constant attributes and kv = 4 non-constant attributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 −1 −1 −1 −1
1

−1 — — −1 — — −1 +1 +1 −1 +1 +1
2 −1 −1 −1 +1 +1 +1
2

−1 — — +1 — — −1 +1 +1 +1 −1 −11 4
3 +1 −1 +1 −1 −1 +1
3

+1 — — −1 — —
+1 +1 −1 −1 +1 −1

4 +1 −1 +1 +1 +1 −1
4

+1 — — +1 — —
+1 +1 −1 +1 −1 +1

5 −1 −1 −1 −1 −1 +1
5

— −1 — — −1 —
+1 −1 +1 +1 −1 −1

6 −1 −1 −1 +1 +1 −1
6

— −1 — — +1 —
+1 −1 +1 −1 +1 +12 5

7 −1 +1 +1 −1 −1 −1
7

— +1 — — −1 —
+1 +1 −1 +1 −1 +1

8 −1 +1 +1 +1 +1 +1
8

— +1 — — +1 —
+1 +1 −1 −1 +1 −1

9 −1 −1 −1 −1 −1 −1
9

— — −1 — — −1
+1 +1 −1 +1 +1 −1

10 −1 −1 −1 +1 +1 +1
10

— — −1 — — +1
+1 +1 −1 −1 −1 +13 6

11 −1 +1 +1 −1 +1 −1
11

— — +1 — — −1
+1 −1 +1 +1 −1 −1

12 −1 +1 +1 +1 −1 +1
12

— — +1 — — +1
+1 −1 +1 −1 +1 +1
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Table A.10: Smallest optimal variance-balanced conjoint design with sets of m = 4 pro-
files, kc = 2 constant attributes and kv = 4 non-constant attributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 −1 −1 −1 −1
1 −1 +1 +1 −1 +1 +1
1

−1 — — −1 — — −1 −1 −1 −1 +1 +1
1 −1 +1 +1 −1 −1 −1
2 −1 −1 +1 +1 −1 +1
2 −1 +1 −1 +1 +1 −1
2

−1 — — +1 — — −1 −1 +1 +1 +1 −1
2 −1 +1 −1 +1 −1 +11 4
3 +1 −1 −1 −1 −1 +1
3 +1 +1 +1 −1 +1 −1
3

+1 — — −1 — —
+1 −1 −1 −1 +1 −1

3 +1 +1 +1 −1 −1 +1
4 +1 −1 +1 +1 −1 −1
4 +1 +1 −1 +1 +1 +1
4

+1 — — +1 — —
+1 −1 +1 +1 +1 +1

4 +1 +1 −1 +1 −1 −1
...

...
...

...
9 −1 −1 −1 −1 −1 −1
9 +1 +1 −1 +1 +1 −1
9

— — −1 — — −1 −1 −1 −1 +1 +1 −1
9 +1 +1 −1 −1 −1 −1
10 −1 +1 −1 −1 +1 +1
10 +1 −1 −1 +1 −1 +1
10

— — −1 — — +1 −1 +1 −1 +1 −1 +1
10 +1 −1 −1 −1 +1 +13 6
11 −1 −1 +1 −1 +1 −1
11 +1 +1 +1 +1 −1 −1
11

— — +1 — — −1 −1 −1 +1 +1 −1 −1
11 +1 +1 +1 −1 +1 −1
12 −1 +1 +1 −1 −1 +1
12 +1 −1 +1 +1 +1 +1
12

— — +1 — — +1 −1 +1 +1 +1 +1 +1
12 +1 −1 +1 −1 −1 +1
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Table A.11: Smallest optimal variance-balanced conjoint design with sets of m = 8 pro-
files, kc = 2 constant attributes and kv = 4 non-constant attributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 −1 −1 −1 −1
1 −1 +1 +1 −1 +1 +1
1 −1 −1 −1 −1 +1 +1
1 −1 +1 +1 −1 −1 −1
1

−1 — — −1 — — −1 −1 +1 −1 −1 +1
1 −1 +1 −1 −1 +1 −1
1 −1 −1 +1 −1 +1 −1
1 −1 +1 −1 −1 −1 +1
2 −1 −1 −1 +1 −1 +1
2 −1 +1 +1 +1 +1 −1
2 −1 −1 −1 +1 +1 −1
2 −1 +1 +1 +1 −1 +1
2

−1 — — +1 — — −1 −1 +1 +1 −1 −1
2 −1 +1 −1 +1 +1 +1
2 −1 −1 +1 +1 +1 +1
2 −1 +1 −1 +1 −1 −11 4
3 +1 −1 −1 −1 −1 −1
3 +1 +1 +1 −1 +1 +1
3 +1 −1 −1 −1 +1 +1
3 +1 +1 +1 −1 −1 −1
3

+1 — — −1 — —
+1 −1 +1 −1 −1 +1

3 +1 +1 −1 −1 +1 −1
3 +1 −1 +1 −1 +1 −1
3 +1 +1 −1 −1 −1 +1
4 +1 −1 −1 +1 −1 +1
4 +1 +1 +1 +1 +1 −1
4 +1 −1 −1 +1 +1 −1
4 +1 +1 +1 +1 −1 +1
4

+1 — — +1 — —
+1 −1 +1 +1 −1 −1

4 +1 +1 −1 +1 +1 +1
4 +1 −1 +1 +1 +1 +1
4 +1 +1 −1 +1 −1 −1

...
...

...
...

continued on next page
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continued from previous page
PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

9 −1 −1 −1 −1 −1 −1
9 +1 +1 −1 +1 +1 −1
9 −1 −1 −1 +1 +1 −1
9 +1 +1 −1 −1 −1 −1
9

— — −1 — — −1 −1 +1 −1 −1 +1 −1
9 +1 −1 −1 +1 −1 −1
9 −1 +1 −1 +1 −1 −1
9 +1 −1 −1 −1 +1 −1
10 −1 −1 −1 −1 +1 +1
10 +1 +1 −1 +1 −1 +1
10 −1 −1 −1 +1 −1 +1
10 +1 +1 −1 −1 +1 +1
10

— — −1 — — +1 −1 +1 −1 −1 −1 +1
10 +1 −1 −1 +1 +1 +1
10 −1 +1 −1 +1 +1 +1
10 +1 −1 −1 −1 −1 +13 6
11 −1 −1 +1 −1 −1 −1
11 +1 +1 +1 +1 +1 −1
11 −1 −1 +1 +1 +1 −1
11 +1 +1 +1 −1 −1 −1
11

— — +1 — — −1 −1 +1 +1 −1 +1 −1
11 +1 −1 +1 +1 −1 −1
11 −1 +1 +1 +1 −1 −1
11 +1 −1 +1 −1 +1 −1
12 −1 −1 +1 −1 +1 +1
12 +1 +1 +1 +1 −1 +1
12 −1 −1 +1 +1 −1 +1
12 +1 +1 +1 −1 +1 +1
12

— — +1 — — +1 −1 +1 +1 −1 −1 +1
12 +1 −1 +1 +1 +1 +1
12 −1 +1 +1 +1 +1 +1
12 +1 −1 +1 −1 −1 +1
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Table A.12: Smallest optimal variance-balanced conjoint design with sets of m = 2 pro-
files, kc = 2 constant attributes and kv = 2 non-constant attributes.

PBIBD Cst attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 1 2 3 4

1 −1 −1 −1 −1
1

−1 −1 — — −1 −1 +1 +11 2
2 −1 +1 −1 +1
2

−1 +1 — — −1 +1 +1 −1
3 +1 −1 −1 −1
3

+1 — — −1
+1 +1 +1 −11 4

4 +1 −1 +1 +1
4

+1 — — +1
+1 +1 −1 +1

5 −1 −1 −1 −1
5

— −1 −1 —
+1 −1 −1 +12 3

6 −1 +1 −1 +1
6

— +1 −1 —
+1 +1 −1 −1

7 −1 −1 +1 −1
7

— — +1 −1
+1 +1 +1 −13 4

8 −1 +1 +1 +1
8

— — +1 +1
+1 −1 +1 +1
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Table A.13: Smallest optimal variance-balanced conjoint design with sets of m = 4 pro-
files, kc = 2 constant attributes and kv = 2 non-constant attributes.

PBIBD Cst attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 1 2 3 4

1 −1 −1 −1 −1
1 −1 −1 — —

−1 −1 +1 +1
1 −1 −1 −1 +1
1 −1 −1 +1 −11 2
2 −1 +1 −1 −1
2 −1 +1 — —

−1 +1 +1 +1
2 −1 +1 −1 +1
2 −1 +1 +1 −1
3 +1 −1 −1 −1
3

+1 — — −1
+1 +1 +1 −1

3 +1 −1 +1 −1
3 +1 +1 −1 −11 4
4 +1 −1 −1 +1
4

+1 — — +1
+1 +1 +1 +1

4 +1 −1 +1 +1
4 +1 +1 −1 +1
5 −1 −1 −1 −1
5

— −1 −1 —
+1 −1 −1 +1

5 −1 −1 −1 +1
5 +1 −1 −1 −12 3
6 −1 +1 −1 −1
6

— +1 −1 —
+1 +1 −1 +1

6 −1 +1 −1 +1
6 +1 +1 +1 −1
7 −1 −1 +1 −1
7

— — +1 −1
+1 +1 +1 −1

7 −1 +1 +1 −1
7 +1 −1 +1 −13 4
8 −1 −1 +1 +1
8

— — +1 +1
+1 +1 +1 +1

8 −1 +1 +1 +1
8 +1 −1 +1 +1
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Table A.14: Smallest optimal variance-balanced conjoint design with sets of m = 2 pro-
files, kc = 3 constant attributes and kv = 3 non-constant attributes.

PBIBD Constant attribute design Conjoint design
Attrs Attributes Attributes
cst Set 1 2 3 4 5 6 1 2 3 4 5 6

1 −1 −1 +1 −1 −1 −1
1

−1 −1 +1 — — — −1 −1 +1 +1 +1 +1
2 −1 +1 −1 −1 −1 +1
2

−1 +1 −1 — — — −1 +1 −1 +1 +1 −11 2 3
3 +1 −1 −1 −1 +1 −1
3

+1 −1 −1 — — —
+1 −1 −1 +1 −1 +1

4 +1 +1 +1 −1 +1 +1
4

+1 +1 +1 — — —
+1 +1 +1 +1 −1 −1

5 −1 −1 −1 −1 −1 −1
5

−1 — — — −1 −1 −1 +1 +1 +1 −1 −1
6 −1 −1 −1 +1 +1 +1
6

−1 — — — +1 +1 −1 +1 +1 −1 +1 +11 5 6
7 +1 −1 +1 −1 −1 +1
7

+1 — — — −1 +1
+1 +1 −1 +1 −1 +1

8 +1 −1 +1 +1 +1 −1
8

+1 — — — +1 −1
+1 +1 −1 −1 +1 −1

9 −1 −1 −1 −1 −1 +1
9

— −1 — −1 — +1
+1 −1 +1 −1 +1 +1

10 −1 −1 −1 +1 +1 −1
10

— −1 — +1 — −1
+1 −1 +1 +1 −1 −12 4 6

11 −1 +1 +1 −1 −1 −1
11

— +1 — −1 — −1
+1 +1 −1 −1 +1 −1

12 −1 +1 +1 +1 +1 +1
12

— +1 — +1 — +1
+1 +1 −1 +1 −1 +1

13 −1 −1 −1 −1 −1 −1
13

— — −1 −1 −1 —
+1 +1 −1 −1 −1 +1

14 −1 −1 −1 +1 +1 +1
14

— — −1 +1 +1 —
+1 +1 −1 +1 +1 −13 4 5

15 −1 +1 +1 −1 +1 −1
15

— — +1 −1 +1 —
+1 −1 +1 −1 +1 +1

16 −1 +1 +1 +1 −1 +1
16

— — +1 +1 −1 —
+1 −1 +1 +1 −1 −1
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Appendix B. Derivation of the information matrix

In this appendix, we derive the information matrix of the optimal variance-balanced con-
joint design in Table A.12 of Appendix A.2. Based on this example, we provide a general
method to compute the information matrix of any optimal variance-balanced conjoint
design.

The conjoint design in Table A.12 has b = 8 sets of m = 2 profiles, kc = 2 constant
attributes and kv = 2 non-constant attributes. It is built on a PBIBD that identifies four
combinations of constant attributes. Each attribute is constant in four profile sets. To
compute the information matrix of the design, we go back to the work of Goos and Vande-
broek (2001) which provides the basis for the information matrix (8). Under assumptions
(3), (4) and (5), V is block diagonal, so that

X′V−1X =
b∑

i=1

X′
iV

−1
m Xi, (B.1)

where

V−1
m = σ−2

ε

(
Im − ρ

1 + ρ(m− 1)
1m1′m

)
. (B.2)

According to (B.1), the information matrix of the design in Table A.12 is the sum of b = 8
information matrices, one for each of the profile sets. We now compute the information
matrix for each profile set and sum the matrices to obtain the total information matrix
of the design. The design has profile sets of size m = 2 so that

V−1
2 = σ−2

ε

(
I2 − ρ

1 + ρ
121

′
2

)
. (B.3)

To derive the information matrices of the individual profile sets, we write each profile
set in terms of its constant and non-constant attributes. Therefore, we denote the levels
of the two constant attributes in profile set i by wi112 and wi212, where wi1 and wi2

equal either −1 and +1, and we denote the levels of the two non-constant attributes by
the two-dimensional vectors si1 and si2. Because Profile sets 1 and 2 have the first two
attributes constant, we can write them as Xi = [12, wi112, wi212, si1, si2] , where i = 1, 2.
The information matrix for each of the two profile sets then is

X′
iV

−1
2 Xi =




1′2V
−1
2 12 wi11

′
2V

−1
2 12 wi21

′
2V

−1
2 12 1′2V

−1
2 si1 1′2V

−1
2 si2

wi11
′
2V

−1
2 12 w2

i11
′
2V

−1
2 12 wi1wi21

′
2V

−1
2 12 wi11

′
2V

−1
2 si1 wi11

′
2V

−1
2 si2

wi21
′
2V

−1
2 12 wi1wi21

′
2V

−1
2 12 w2

i21
′
2V

−1
2 12 wi21

′
2V

−1
2 si1 wi21

′
2V

−1
2 si2

s′i1V
−1
2 12 wi1s

′
i1V

−1
2 12 wi2s

′
i1V

−1
2 12 s′i1V

−1
2 si1 s′i1V

−1
2 si2

s′i2V
−1
2 12 wi1s

′
i2V

−1
2 12 wi2s

′
i2V

−1
2 12 s′i2V

−1
2 si1 s′i2V

−1
2 si2




= σ−2
ε




2c2 2wi1c2 2wi2c2 c21
′
2si1 c21

′
2si2

2wi1c2 2c2 2wi1wi2c2 wi1c21
′
2si1 wi1c21

′
2si2

2wi2c2 2wi1wi2c2 2c2 wi2c21
′
2si1 wi2c21

′
2si2

c2s
′
i112 wi1c2s

′
i112 wi2c2s

′
i112 s′i1si1 − t11 s′i1si2 − t12

c2s
′
i212 wi1c2s

′
i212 wi2c2s

′
i212 s′i2si1 − t21 s′i2si2 − t22




,

(B.4)
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where c2 = (1 − ρ)/(1 + ρ), t11 = ρ
1−ρ

c2(s
′
i112)(1

′
2si1), t12 = ρ

1−ρ
c2(s

′
i112)(1

′
2si2), and t21

and t22 are obtained similarly to t12 and t11, respectively. Because the levels of the non-
constant attributes are balanced in the profile sets, s′i112 = 1′2si1 = s′i212 = 1′2si2 = 0. As
a result, filling out the entries of the formal information matrix (B.4) for profile set i = 1
yields the information matrix

X′
1V

−1
2 X1 = σ−2

ε




+2c2 −2c2 −2c2 0 0
−2c2 +2c2 +2c2 0 0
−2c2 +2c2 +2c2 0 0

0 0 0 +2 +2
0 0 0 +2 +2




, (B.5)

and for profile set i = 2 the information matrix is

X′
2V

−1
2 X2 = σ−2

ε




+2c2 −2c2 +2c2 0 0
−2c2 +2c2 −2c2 0 0
+2c2 −2c2 +2c2 0 0

0 0 0 +2 −2
0 0 0 −2 +2




. (B.6)

Summing these two matrices results in

2∑
i=1

X′
iV

−1
2 Xi = σ−2

ε




+4c2 −4c2 0 0 0
−4c2 +4c2 0 0 0

0 0 +4c2 0 0
0 0 0 +4 0
0 0 0 0 +4




. (B.7)

The diagonal elements for the part-worths in (B.7) reveal that, since c2 < 1, less infor-
mation is obtained on the constant attributes than on the non-constant attributes. If we
had not included the constant attributes in the profile sets, the diagonal elements for the
part-worths would have been all equal to four, the number of profiles in the two profile
sets. Also, the two non-diagonal elements would have vanished.

The next pairs of profile sets in the design of Table A.12 have Attributes 1 and 4,
2 and 3, and 3 and 4 as constant attributes. Hence, we denote Profile sets 3 and 4
as Xi = [12, wi112, si1, si2, wi212], where i = 3, 4. We denote Profile sets 5 and 6 as
Xi = [12, si1, wi112, wi212, si2], where i = 5, 6 and we denote Profile sets 7 and 8 as Xi =
[12, si1, si2, wi112, wi212], where i = 7, 8. By the same procedure as described above, the
information matrices for each of these pairs are

4∑
i=3

X′
iV

−1
2 Xi = σ−2

ε




+4c2 +4c2 0 0 0
+4c2 +4c2 0 0 0

0 0 +4 0 0
0 0 0 +4 0
0 0 0 0 +4c2




, (B.8)
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6∑
i=5

X′
iV

−1
2 Xi = σ−2

ε




+4c2 0 0 −4c2 0
0 +4 0 0 0
0 0 +4c2 0 0

−4c2 0 0 +4c2 0
0 0 0 0 +4




, (B.9)

8∑
i=7

X′
iV

−1
2 Xi = σ−2

ε




+4c2 0 0 +4c2 0
0 +4 0 0 0
0 0 +4 0 0

+4c2 0 0 +4c2 0
0 0 0 0 +4c2




. (B.10)

Summing over the information matrices (B.7), (B.8), (B.9) and (B.10) for the four
pairs of profile sets yields the total information matrix of the conjoint design:

X′V−1X =
8∑

i=1

X′
iV

−1
2 Xi,

= σ−2
ε diag[16c2 8c2 + 8 8c2 + 8 8c2 + 8 8c2 + 8].

(B.11)

The amount of information on each of the part-worths is thus the same so that the con-
joint design in Table A.12 is variance-balanced. The information component 8c2 for each
part-worth refers to the information on each attribute when it is constant. In the de-
sign each attribute is constant in 8 profiles. The other information component, 8, for
each part-worth points at the information on each attribute when it is non-constant.
Each attribute is also non-constant in 8 profiles. If there were no constant attributes in
the design, the diagonal elements for the part-worths would have been equal to 16, the
number of profiles in the design. The information on the intercept always amounts to 16c2.

An information matrix similar to the one in (B.11) can be derived for any of the op-
timal variance-balanced conjoint designs presented in this chapter. In the cases m = 4
and m = 8, the value for c2 in the formulas is no longer appropriate and needs to be
replaced by c4 = (1 − ρ)/(1 + 3ρ) and c8 = (1 − ρ)/(1 + 7ρ), respectively. Note that
c8 < c4 < c2 < 1. In general, to obtain the amount of information on each part-worth,
two information components must be computed because of the partitioning in constant
and non-constant attributes. The first information component contains cm multiplied
by the number of profiles in which each attribute is constant. The second information
component equals the number of profiles in which each attribute is non-constant. The
amount of information on the intercept is obtained by multiplying the sample size by cm.
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