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Abstract

Does one make money trading on the deviations between observed bond prices and values pro-

posed by bond-pricing models? We extend Sercu and Wu (1997)’s work to more models and more

data, but we especially refine the methodology. In particular, we provide a normal-return bench-

mark that markedly improves upon the Sercu-Wu ones in terms of noisiness and bias, and we

demonstrate that model errors contribute more to the variance of residuals—actual minus fitted

prices—than pricing errors made by the market. Trading on the basis of deemed mispricing is

profitable indeed no matter what model one uses. But there is remarkably little difference across

models, at least when one re-estimates and trades daily; and with pooling and/or longer holding

periods the results seem to be all over the place, without any relation with various measures of fit

in the estimation stage. We also derive and implement an estimator of how much of the typical de-

viation consists of mispricing and how much is model mis-estimation or mis-specification. Lastly,

we find that pooled time-series and cross-sectional estimation, as applied by e.g. De Munnik and

Schotman (1994), does help in stabilizing the parameter, but hardly improves the trader’s profits.

Keywords: Term Structure of Interest Rates, Bonds

JEL classification: G12; G14



Selecting a bond-pricing model for trading:
benchmarking, pooling, and other issues

I Introduction

Since the late 1970s, term-structure (TS) theory has evolved from qualitative propositions about

shapes of interest-rate curves to very specific, non-linear models that price both bonds and deriva-

tives. Following Sercu and Wu (1997), our test of eight such models center on the question how

much money can be made by trading on the deviations between observed bond prices and val-

ues proposed by bond-pricing models. Sercu and Wu (SW) report that such trading generates

abnormal returns. One improvement, in the present paper, is that we extend their work to a lon-

gitudinally as well as cross-sectionally larger sample and add more models, especially two-factor

models. But the more interesting contributions, we think, concern the methodology and the con-

clusions. First, we come up with just one benchmark, and it is not biased and is more efficient.

SW, in contrast, use three benchmarks of (then) untested validity and efficiency. But when in a

trial run we applied the SW trading rule to a-select portfolios (like buying short-term bonds only,

or long-term bonds only), we found that some of these naive buy-and-hold strategies seemed to

provide abnormal returns too, by SW standards. If a-select portfolios already seem to provide

abnormal returns, then the finding that a selective trading rule is profitable sounds less impres-

sive: the cause may just be a flawed benchmark for the normal return. So this prompted us to

look for a new benchmark-return strategy that avoids such biases and minimizes noise. A second

methodological improvement is that we decompose the deviation between observed prices and a

model’s fitted prices into (i) a pricing error made by the market (and subsequently corrected);

and (ii) a model specification and estimation error that is rightly ignored by the market, and we

are able to show that model errors are more important, in terms of variance, than pricing errors.

A third improvement over SW is that we check whether the results from these various trading

strategies bear any relation to more conventional statistical criteria one could invoke to compare

TS models; we find no such relation. Fourth, we also test whether panel estimation helps. SW

estimate the TS models from single-day cross-sections, ignoring the intertemporal constraints on

the model’s parameters and, thus, arguably demoting these structured TS models to little more
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than clever curves. If the intertemporal constraints are of any value, mixed (or “panel”) models

would do better (De Munnik and Schotman, 1994), but we find no such effect. Lastly, like SW, we

find that there are moderate abnormal profits to be made from using formal models, of the order

of two to four percent per year. Unlike in the earlier SW results, however, no model or group of

models seems to do reliably better, and the rankings across models differ a lot depending on the

criterion.

In the remainder of this introduction we position our work relative to other empirical TS work,

we justify some fundamental choices in the research design, and we outline the paper.

In general, the empirics spawned by (and providing feedback to) theoretical work relate to

either the appropriateness of the models’ assumptions, or the prices it produces, or its delta’s or

hedge ratios.

In the first category one strand of studies, illustrated by Chan, Karolyi, Longstaff and Sanders

(1992), attempts to accept or reject the stochastic form of the factors put forward in TS theory.

Others pragmatically let the data decide on the data-generating process for often-used factors

in TS modelling like the short term interest rate, and also try out additional features like non-

linearities (Aı̈t-Sahalia, 1996a, 1996b; Stanton, 1997; Chapman and Pearson, 1999) or volatility

clustering (Bali, 2003) or regime shifts (Ang and Bekaert, 2002a, 2002b). In a more recent

development, some papers attempt to link the factors to macro-economic variables. See for

instance Ang and Piazessi (2003), Dewachter and Lyrio (2003), and Rudebusch and Wu (2003).

Work related to the prices produced by these models, rather than to the underlying processes,

ranges from analyzing the fit between the term structure to bond prices (as do e.g. Chen and

Scott, 1993; De Munnik and Schotman, 1994; Brown and Dybvig, 1986; Bliss, 1997; and Eom,

Subrahmanyam and Uno, 1998) to determining whether swaps derivative prices calculated from

estimated TSs are close to observed market prices. In practice, deriving sound prices for all types

of instruments at the same time proves to be a difficult task.

Rather than studying underlying processes or fitted prices, one can also verify the correctness

of the deltas or hedge ratios proposed by these models, like e.g. Driessens, Klaassen and Melenberg

(2003) and Gupta and Subrahmanyam (2001).

Our work fits in the second category—prices—but has linkages to the third strand of empirical

work: like studies of hedge ratios, it has a dynamic, intertemporal flavor and adopts the profes-
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sional user’s point of view. So while we do look at the static goodness of fit within cross-sections

(and even provide a new measure of flexibility), this is mainly to see whether statistical goodness

of fit bears any relation to price-change predictability and practical use.

The raw material we work with is a class of highly liquid Belgian government bonds called

Obligations Linéaires / Lineaire Obligaties (OLOs). The advantage of a simple instrument is

that there is absolute clarity with respect to terms and conditions. True, we could also include

derivative products in the analysis. However, the BEF interest-derivatives market was entirely

OTC; thus, there is no organized market, no records of transaction prices nor a coherent data set

of quotes; and the terms and conditions are not standardized.

The models we select are all closed-form as far as zero-bond prices are concerned. This does

limit the range of the work. However, selecting these models makes the estimation procedure

in essence straightforward, as there is no need for numerical approximations. A concomitant

advantage is that all models can be estimated in essentially the same way, non-linear least squares.

While an assessment of whether the estimation procedure influences the performance can be

interesting as well, we prefer to keep this outside this particular paper. Within the range of

closed-form models we limit our selection to a few one- and two-factor models. Our aspiration

is not to cover all possible specifications, but to sample a range of models that differ in terms of

complexity and ability to fit the data.

We close our introduction with an outline of the paper. In Section II we present our shortlist

of TS models; we describe the data; and we provide some statistical measures on how each of

the models fit the bond prices cross-sectionally. In Section III, we determine whether models are

able to detect mispricing. This consists of a review and validity check of various measures of

normal returns, a regression analysis of abnormal returns, and a decomposition of the residual

variance into a pricing error, a model error, and a covariance. Section IV describes the result of

various trading strategies and a discussion of the question whether anything is gained by doing

the estimation in pooled cross-sections. Section IV connects the results from Sections II and III,

and concludes.
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II Statistical Fit

A The models

The models we work with are, in order of complexity, (i) the cubic spline; (ii) two seminal one-

factor models, (iii) four two-factor models. Most of these are widely known, but to identify the

parameter estimates presented below we nevertheless need to agree on a notation. Thus, the key

factor processes or equations are presented below.

The Vasicek model. Vasicek (1977) assumes a mean-reverting Gaussian process for the instanta-

neous interest rate,

dr(t) = α (β − r(t)) dt + σdW (t), (1)

where α > 0 is the mean reversion parameter, β the unconditional mean of r(t), σ the volatility of

the spot rate, and W (t) a standard Brownian motion. The price of risk is assumed to be constant.

The Cox-Ingersoll-Ross Model. The second model, by Cox, Ingersoll and Ross (1985), is general-

equilibrium in nature. It assumes log-utility investors facing a mean-reverting squareroot process

for output, and from these derives a mean-reverting square-root process for the instantaneous

rate and an endogenous price of risk. The process for r is

dr(t) = α (β − r(t)) dt + σ
√

r(t)dW (t) , (2)

where α > 0 is the mean reversion parameter, β the unconditional mean of r(t), σ a measure of

volatility of the spot rate, and W (t) a standard Brownian motion.

The Richard Model. Starting from the Fisher equation, Richard (1978) assumes that the instan-

taneous real interest rate (R) and the expected inflation rate (π) each follow a mean-reverting

squareroot process:

dR(t) = a(R∗ −R)dt + σR

√
R dZR(t), and (3)

dπ(t) = c(π∗ − π)dt + σπ

√
π dZπ(t). (4)

The correlation between ZR and Zπ is assumed to be zero. Actual inflation is expected inflation

plus noise, and the nominal rate is the real rate plus expected inflation:

dP (t)/P (t) = π(t)dt + σP (π,R)dZP (t), and (5)

r(t) = R(T ) + π(t)(1− σ2
P ). (6)
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The Longstaff and Schwartz model. Longstaff and Schwartz (1992) develop a two-factor general

equilibrium model of the term structure that builds upon CIR. They take the short-term interest

rate and the instantaneous variance of the short-term interest rate as the two driving factors. The

mathematical structure is very similar to Richards’, though. Initially, Longstaff and Schwartz

assume two unobservable state variables, X and Y , which follow squareroot processes,

dX = (a− bX)dt + c
√

XdW2(t), and (7)

dY = (d− eY )dt + f
√

Y dW3(t), (8)

and which affect expected returns on investment as follows:

dQ

Q
= (µX + θY )dt + σ

√
Y dW1(t), (9)

where W2 is assumed to be uncorrelated with W1 and W3. Assuming log utility, expected growth

in marginal utility—the instantaneous interest rate—is expected output minus variance of output.

Thus,

r(t) = αx + βy (10)

where α = µc2, β = (θ − σ2)f2, x = X/c2, y = Y/f2, γ = a/c, δ = b, η = d/f2 and ξ = e. The

variance of changes in the short-term interest rate is

V (t) = α2x + β2y. (11)

The Balduzzi, Das, Foresi and Sundaram model. Balduzzi, Das, Foresi and Sundaram (2000)

develop a two-factor model where the first factor r is the short rate and the second factor, θ, is

the mean level of the short rate (in the sense of the long-run level to which the rate is attracted,

everything else being the same). The short rate follows the same process as in the Vasicek setting,

dr(t) = κ(θ − r)dt + σdW1(t). (12)

except that it is attracted not to a constant mean but to a moving target, with

dθ(t) = (a + bθ)dt + ηdW2(t), (13)

with a, b and η constants. The two processes can be correlated: dW1dW2 = ρdt. The prices of

risk are assumed to be constant.
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The Baz and Das model. Baz and Das (1996) extend the Vasicek model by adding a Poisson jump

process N(t) with intensity rate λ. The process for the short-term rate in the extended Vasicek

jump-diffusion process then becomes:

dr(t) = α (β − r(t)) dt + σdW (t) + JdN(t). (14)

with α the mean reversion coefficient, β the long-term mean of the short interest rate, and σ the

instantaneous volatility. The intensity of the jump is defined by J , which is assumed to be a

normal variable with mean θ and a standard deviation of δ. This one-factor model jump-diffusion

model can be easily extended when one assumes two orthogonal factors. To that end two similar

processes can be defined:

dy1(t) = α1 (β1 − y1(t)) dt + σ1dW1(t) + J1dN1(t) (15)

dy2(t) = α2 (β2 − y2(t)) dt + σ2dW2(t) + J2dN2(t), (16)

r(t) = y1(t) + y2(t) (17)

where dy1(t) and dy2(t) are independent.

The Cubic Spline. McCulloch (1975) uses the cubic spline to curve-fit the TS. The price of a

discount bond with remaining life τ is then given by

P (τ) = a1τ + a2τ
2 + a3τ

3 +
K∑

j=1

di [max(τ − kj , 0)]3 (18)

where ki are the K knot points or knots. These divide the maturity range into K + 1 distinct

sections, within each of which the TS follows a cubic and where the cubics smoothly join at the

knots. The choice of the number of knots and their values is rather arbitrary. For comparability

with Sercu and Wu, we set two knots, at 2 and 7 years. The parameters a1, a2, a3, d1 and d2 can

be estimated by an ordinary linear regression.

This finishes our presentation of the models and their notation; the data to which these models

are taken come next.

B Data

The test ground for our selection of term structure models are a class of Belgian government bonds

called Obligations Lineaires / Lineaire Obligaties (OLOs). OLOs have many advantages relative



Selecting bond-pricing models 7

to ordinary Belgian government bonds. OLO maturities nowadays run up to thirty years and

contain no embedded option features. Being registered bonds rather than bearer securities, OLOs

are mainly held by corporations, making tax clientele effects less likely. Furthermore, Belgian

OLOs are actively traded each working day: there are about twenty market makers obliged to

quote on request, with a legal bound on the spread. Transaction costs are therefore low and similar

across bonds. When reaching the maturity date individual OLO-lines have on average an amount

of BEF 200 billion (EUR 5 billion) outstanding. We obtain the OLO mid-prices from the Central

Bank of Belgium. Like the Fed in the US market, the Central Bank of Belgium solicits quotes

from all market makers every day, at 3 p.m., and publishes the average mid-quote. The averages

are not transaction prices but are based on binding quotes.1 Our sample contains 29 OLOs in

total; the number of available issues on any given date varies between 10 and 19. We choose

our sample period to include all trading days between June 1, 1992 to December 13, 1998. The

decision is based on minimum cross-sectional sample size and an even maturity range. Before June

1992, too few OLOs were traded to meaningfully fit the different models. Secondly, on December

13, 1998, for the first time a 30-year OLO gets introduced. Before that date, the longest issues

were OLOs with 20 years to maturity. The first issue of the 30-year OLO creates a serious gap in

time to maturity/duration between the 30-year bond and the bond with the next-longest time to

maturity (then 18 years). Limiting the sample to December 1998 also reduces potential influence

from the introduction of the common currency in the Euro-zone. Table 1 displays maturity dates

and coupon rates of individual bonds in the sample. We also include T-bill data for six maturities

(two and four weeks; and 2, 3, 6 and 12 months) to enhance the estimation of the short end of

the term structure. The T-bills, however, do not enter the performance tests.

C Estimation of the Term Structure Models

Note that we estimate directly from all available raw coupon-bond data, not from a few zero-

coupon interest rates or swap quotes. That is, each coupon-bond price is written as the sum of

1Until the early nineties, when official market makers were brought in, Belgian government bonds could be traded

through a public limit-order book, but even then virtually all of the volume was off the exchange. SW use these

limit-order book prices, but these refer to small transactions and are not time-stamped. The advantage of using

midpoint quotes instead of transaction prices is that we need to worry less about bid-ask bounce, non-synchronized

data or temporal liquidity shocks creating extra noise in transaction data.
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Table 1: Description of the sample
We show time of inclusion in the sample, maturity date and annual coupon. The bonds make up the full set of traded fixed

coupon Belgian government OLO bonds in the market for the June 1992 - December 1998 period.

OLO Code Inclusion in sample Maturity Date Coupon
239 June 1, 1992 June 1, 1999 8.25%
245 June 1, 1992 April 5, 1996 10.00%
247 June 1, 1992 August 2, 2000 10.00%
248 June 1, 1992 January 2, 1998 9.25%
249 June 1, 1992 February 28, 1994 9.50%
251 June 1, 1992 March 28, 2003 9.00%
252 June 1, 1992 June 27, 2001 9.00%
254 June 1, 1992 August 29, 1997 9.25%
257 June 1, 1992 October 1, 2007 8.50%
259 June 18, 1992 June 25, 2002 8.75%
260 July 24, 1992 July 30, 1998 9.00%
262 December 17, 1992 December 24, 2012 8.00%
264 April 22, 1993 April 29, 1999 7.00%
265 April 22, 1993 April 29, 2004 7.25%
266 May 11, 1993 May 25, 1997 6.75%
268 July 22, 1993 July 29, 2008 7.50%
270 November 18, 1993 November 25, 1996 6.25%
273 March 24, 1994 March 31, 2005 6.50%
275 June 27, 1994 October 15, 2004 7.75%
278 December 19, 1994 December 22, 2000 7.75%
279 January 23, 1995 December 26, 1997 7.50%
282 June 26, 1995 March 28, 2015 8.00%
283 September 25, 1995 May 15, 2006 7.00%
285 January 29, 1996 March 28, 2001 5.00%
286 September 23, 1996 March 28, 2007 6.25%
287 April 18, 1997 January 22, 2000 4.00%
288 October 24, 1997 March 28, 2008 5.75%

the present values of its pay-outs, each of these present values being specified as the zero-coupon-

bond pricing equation of the model that is being considered. In the unpooled estimation, our base

case, the procedure is that for each day in the sample we estimate the models cross-sectionally by

non-linear least squares, that is, by minimizing the sum of squared errors between observed bond

prices and fitted values. The optimization method used is a Marquardt procedure.

Averages and medians of the coefficients and of the implied numbers with a ready economic

interpretation, like the long-run asymptotic interest rate, produce acceptable values, as can be

seen in Table 2.

As expected from pure cross-sectional regressions, and as documented before by e.g. Brown

and Dybvig (1985) and De Munnik and Schotman (1994), parameters occasionally turn non-

sensical for some subperiods and some models. For instance, estimated implicit variances can
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be negative. The alternative would be to force specific parameters to behave within theoretical

constraints—for instance, ≥ 0 for the variance. However, all too often the outcome then is that

the parameter is set equal to the bound. Also, estimation then often turns unstable or the models

show absolute inability in fitting the term structure. Nonsensical estimates and unstable solutions

tend to mean that the objective function is hardly affected by the parameter. By allowing the

parameters to free-range, we are mainly assessing whether the functional form of the model pro-

vides a good tool to summarize the term structure. Violations of theoretical constraints do not

necessarily mean that this specific model is less useful. Indeed, one of the themes in this paper is

to investigate the link between practical usefulness, complexity and fit.

D Goodness of fit, cross-sectional and longitudinal

In this section, we explore the characteristics of the regression residual and proceed by ranking the

models according to their ability to fit the coupon bond prices in the market. Summary statistics

on the bond-price residuals can be found in Table 3. The tables are not set up per individual bond

because of the changing time to maturity as time passes on. Instead, we package the bonds into

six simple time-to-maturity portfolios. For every day in the sample, the first portfolio combines

residuals from bonds with time-to-maturity not exceeding 1 year at that time. The other groups

similarly contain bonds from 1 to 2, 2 to 4, 4 to 8, 8 to 15 and over 15 years time to maturity.

A puzzling feature of the average errors per bracket is that, for all time-to-maturity brackets,

all models are unanimous about the direction of mispricing. For example, according to all models,

very short term bonds are typically underpriced, 1-to-2 and 2-to-4-year paper underpriced, and

so on. Even the ad hoc spline, with the fewest restrictions on the TS shape, perfectly agrees with

the average errors of the more structured models. Especially CIR has problems with estimating

the shortest end of the TS, with an average error of minus 13.3 and and average absolute error of

18 basis points. Our concern, initially, had been that no model would be able to capture the short

end of the TS well, characterized as it was by a sharp hump during the 1992 and 1993 turmoil

in the Exchange Rate Mechanism. However, the period was, apparently, too short to matter in

the average. Instead, across all models, the highest Average Absolute Errors (AAEs) are actually

found in the bracket containing bonds with time-to-maturity between eight and fifteen years.

The ranking for overall AAEs and average RMSEs is summarized in table 4, alongside other

rankings that will be introduced later. The top three models in terms of fit for both criteria
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are BDFS, Longstaff-Schwartz and the spline. The worst model with respect to these criteria is

CIR’s, even though the differences are never staggering. Yet that ranking is totally overturned

as soon as we adopt two other measures of goodness of fit that have to do with longitudinal

properties. These measures are (i) the autocorrelation in the residuals, extracted from the daily

cross-sectional regressions and grouped bond by bond into time series; and (ii) the average run

length, i.e. the average number of consecutive days where the residuals of a given bond all have

the same sign. Both are measures of persistence of unexplained bond values. Of course, these

numbers do not tell us whether any high persistence is due to market inefficiency (the market

is slow to realize and correct its mistakes) or model mis-specification (some TS shapes cannot

be captured, and since the shapes persist, the apparent pricing errors persist too) or persistent

mis-estimation; but the same ambiguity exists with respect to the MSE of a regression. Also

noisier estimates would directly lead to less persistent errors, so also from that perspective there

is ambiguity..

The autocorrelations are quite high, ranging from 0.74 (Baz-Das) to 0.93-0.94 (Vasicek and

the spline), with most other models hovering around 0.85; but this is similar to what others found

in quite different data bases (e.g. Chen and Scott, 1993, or De Jong, 2000). In the same vein,

correcting a mistake requires on average anywhere between 7 days (Baz-Das) and 18 (Vasicek).

Also, there is little connection between size and persistence of pricing errors. The spline, which

does well in terms of cross-sectional fitting, produces quite persistent errors while CIR, rather bad

at fitting across bonds, does relatively better in terms of persistence. The distinct performance of

Baz-Das in terms of persistence—the difference with the second best is quite marked—is likewise

hard to explain from the MSEs. By and large, apart from the Vasicek outlier, higher residual

variance tends to go with lower persistence, consistent with the idea that low persistence may just

reflect high noisiness of estimates rather than higher flexibility or better fit.

Still, the size of the autocorrelations and the lengths of runs of same-sign residuals remains

disconcerting. It is hard to believe that all of this would be pure market inefficiency; rather,

inability to capture twists in the TS seems to be at least as plausible an explanation. This second

view could fit in with our earlier observation that all models seem to produce similar errors for

bonds in the same time-to-maturity bracket. Tests of what part of the error is market mistakes

versus model misspecification are the main subject of the next section.
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III Market errors v model errors

In the previous section we established a ranking of the competing models based on the natural

belief that smaller errors between model and observed prices translate in better pricing capabilities

of that model. Especially for the purpose of pricing options, many potential users of a model

would balk if that model misprices the underlying. The fact that there still is a residual would

be acceptable if these were random and shortlived deviations caused by, say, transaction costs

or stale data and causing, in turn, some random estimation error in the coefficients too. The

high autocorrelation of the residuals we observed belies this: the market must have been making

fairly persistent pricing errors, or we must have introduced persistent error in specifying and

estimating the model. In this section we attempt to quantify the relative importance of these two

components.

A Measuring autocorrelation, relevance, and relative variance

In standard microstructure style we let the observed transaction price for bond b deviate from

its true equilibrium value by a pricing error, which we allow to be autocorrelated. The fitted

price produced by a particular model likewise deviates from the true value by a modeling and

estimation error. Thus, the observed residual is a compound of both errors. Conceptually, dis-

tinguishing between these components is relevant and possible because in a reasonably efficient

market the pricing errors should have a tendency to disappear as overpriced bonds are bid down

and underpriced bonds bid up. Thus, pricing errors sooner or later lead to abnormal returns of

the opposite sign, which makes them very relevant for the purpose of bond selection. Modeling

and estimation errors in our computations, in contrast, were not even known to the market at

the time and should not lead any patterns in observed subsequent returns on bonds. They are

irrelevant for the purpose of portfolio selection. It is not our ambition to estimate the components

separately; still, with a minimum of structure we can rank the variances of the modeling error

versus the pricing error; we can also estimate the autocorrelation in the latter. This is achieved

using a regression of holding-period returns on beginning-of-period residuals as in SW. The details

are as follows.

The basic equations are in logs, with p denoting a log trade price, v the true equilibrium price,
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p̂m the log fitted price for model m, and π and µ the pricing error and model error, respectively:

Market price: pb,t = vb,t + πb,t. (19)

where πb,t = ρb πb,t−1 + νb,t, ν white noise; (20)

Model fitted price: p̂b,m,t = vb,t + µb,m,t, . (21)

Equations (19) and (21) allow us to describe the model residual that acts as the regressor in the

SW regression:

RESb,t
def= pb,t − p̂b,m,t,

= πb,t − µb,m,t. (22)

Equations (19) and (20) also provide us with a description of the one-holding-period return:

pb,t+1 − pb,t = vb,t+1 − vb,t + πb,t+1 − πb,t,

= vb,t+1 − vb,t + (ρb − 1)πb,t + νb,t+1. (23)

Similarly, for the h-period holding return we get

pb,t+h − pb,t = vb,t+h − vb,t + (ρh
b − 1)πb,t +

h∑
l=1

ρl−1νb,t+l. (24)

Lastly, define the abnormal return as the observed return minus the change in the equilibrium

prices:

ARb,t,h
def= (pb,t+h − pb,t)− (vb,t+h − vb,t),

= (ρh
b − 1)πb,t +

h∑
l=1

ρl−1νb,t+l. (25)

In our modified SW regression of ARt on the beginning-of-period residual RESt, the slope

can be now decomposed into two factors:

βb,m,h =
cov(ARb,h, RESb,m)

var(RESb,m)
,

= −(1− ρh
b ) γb,m, (26)

where γb,m =
cov(πb, RESb,m)

var(RESb,m)
,

The term (1−ρh
b ) is a speed of adjustment. It is nonnegative, and approaches unity when h →∞

or ρb → 0, that is, when we allow plenty of time for adjustment or when adjustment is complete
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in one day. In that light, γb,m measures the long-run adjustment, the fraction of RESb,m that, on

average, does get reversed in subsequent adjustments. We accordingly dub this ratio the relevance

of the residual. It very literally estimates the coefficient we’d get if pricing errors—the relevant

part in the residual—had actually been observable and if we had regressed them on the residuals.

We expect γ to be a positive number, making the entire β coefficient negative. Also, when ρb is

positive, β should become more negative when h increases. By running the regressions for two

different values of h we can then obtain a point estimate of ρb, and back out γ. One can get a

better estimate of ρ and γ by simultaneously considering all βs for one particular bond b via a

regression of the form

β̂b,m,h =
[
αh

b − 1
] [

M∑
i=1

ζb,iIi,m

]
+ εb,m,h. (27)

In the above, the regressors are the holding period, h, and a dummy, Ii,m, which equals unity

when i = m. The coefficients αb and ζb,m estimate, respectively, the bond’s autocorrelation and

the relevance (γ) of model m for bond b. Ideally, one should take into account the covariances

between the 567 betas, but how to do this is by no means obvious; we content ourselves with

consistent estimates from unweighted NLS, equation per equation,2 without confidence intervals

or t-tests.

While a trader may be content with the value of gamma in itself, to the academic this number

also tells something about the relative variance of the two error terms. Notably, if γ exceeds 1/2,

then irrespective of the sign or size of the covariance, the variance of the pricing error exceeds the

variance of the model error:

γb,m =
var(πb)− cov(πb, µb,m)

var(πb)− 2cov(πb, µb,m) + var(µb,m)
>
< 1/2 iff var(πb)

>
< var(µb,m). (28)

In all of the the above, the residual is the one observed at the beginning of the holding period.

SW also work with residuals lagged once (and more, in fact). One reason is that their prices are

transaction prices, thus inducing bid-ask bounce correlated with the next-day return.3 Our data

2So we have 27 regressions, one per bond, with each 21 observations: seven models, and three hs per model.

3If the last trade at t − 1 is at the bid, then the residual tends to be low, while the subsequent return starting

from that low price tends to be high. This biases β negatively.
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being midpoint quotes, the problem does not arise here. The second reason for introducing a

lag has to do with the practical usefulness for a trader. The trader interested in the information

content of a residual might not be able to instantaneously import all bonds’ quotes, run a com-

plicated non-linear regression, and still buy or sell the very moment a quote is provided. Even

though building-in a full 24-hour delay vastly exaggerates in the other direction, it is the best we

can do with daily data.

To make all this operational, however, we still need to handle the unobservable true price

change. In stock-market microstructure studies this term is often be postulated to be white noise,

which would allow us to move it to the right-hand side, as part of the total regression error. In

bond markets, where volatility is much smaller, changes over time in true expected returns are

probably more important, making the true return less white-noisy. Our quest for a good proxy

of the true price change is discussed in the next section.

B Normal returns and abnormal returns

To approximate the true return on the bond we consider three approaches, two of them already

adopted in SW (1997). Anxious to avoid circularity and modeling errors correlated with the

regressor, we do not use the bond-pricing models themselves to tell us what the bond prices

should have been.4 Instead, the general idea is to consider the return on a portfolio of bonds that

(i) has similar characteristics as the one being investigated, and (ii) is well diversified, so that

pricing errors become minimal:

4SW do consider the percentage change in the own-model fitted price. We reject this because the fitted price is

part of the residual, thus creating correlation between the measurement error and the regressor. For each model

we could, instead, have used each of the six competing models to provide fitted values and hence true-return

proxies; this would have mitigated the problem but not solved it as we have clear evidence that the model errors

are correlated across models (see Section 1.D) .

A rather different approach, suggested by a discussant, is to construct delta-neutral zero-investment portfolios,

with the allegedly underpriced bonds held long and the overpriced bonds short, and setting the weights such that

the entire position is delta-neutral. This approach is subject to estimation errors in levels and deltas and does not

allow a separate analysis of under- and overpriced bonds. The interpretation is ambiguous, too: we are testing,

at the same time, the model’s ability to get the bond’s price as well as its delta(s) right. We tested the model on

passive portfolios and found it to be badly biased: passive, well-diversified portfolios seem to generate abnormal

returns under this approach.
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The duration-based market model. This benchmark return, proposed by Elton and Gruber (1991)

and adopted by SW, is based on the “market model” familiar from stock-market studies. In

the bond-market version the bond’s market sensitivity or beta is not estimated but computed,

notably as the ratio of the duration of the target bond to the duration of the market as a whole.

Estimation errors in the duration are minimal, and pricing errors are largely diversified away by

taking a wide portfolio as the basis. By construction, this benchmark generates a zero abnormal

return for the market as a whole, that is, it is correct on average, across all bonds. Long and short

positions can be studied separately. The drawback is that it only works under the well-known

duration-model assumptions. Non-parallel shifts, like rotation, may (and do) induce serious errors

in the estimated normal returns for short or long bonds separately.

The duration-and-convexity matching portfolio. In this benchmark, proposed by SW, one con-

structs a mimicking portfolio from three equally weighted subportfolios, each consisting of all

available short, middle and long bonds, respectively. The mimicking consists of matching price,

duration and convexity of the target bond. Because three subportfolios are used and the problem

is linear, the weights for each of the subportfolios are uniquely defined. This model has similar

pros and cons as the duration market-model. One difference is that, being a quadratic approxi-

mation rather than a linear one, this model is better suited to deal with large shifts. Also, since

it uses three portfolios, it will price correctly, on average, each of the three subclasses of bonds

rather than just the market-wide average bond. However, it may (and does) still misprice the

very short or very long bonds. Also, the three benchmark portfolios, consisting of just one third

of the (limited) market, are less well diversified than the market portfolio and, therefore, more

subject to measurement error.

The minimum-variance duration-and-convexity matching portfolio. In this third approach we

form a matching portfolio not from three pre-determined portfolios but from all individual bonds

(except, of course, for the bond that is being studied). The weights xi for each traded bond i are

chosen so as to minimize the variance of the portfolio subject to the constraint that the portfolio

weights sum to unity and that the portfolio has the same duration and convexity of the bond that

is to be matched.5 To estimate the covariance matrix of the bonds that enter the portfolio, we use

5We also stop bonds from taking up more than one quarter of the portfolio, so that the mimicking portfolios are

well-diversified; but it turns out that this restriction is never binding.
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60 trading days of historical returns. When a bond does not trade over the full 60-day estimation

period (e.g. when it was issued very recently) it is not included as a possible candidate for the

portfolio. Like the other benchmark portfolios, the minimum-variance replica is bond-specific in

that the weights for the matching instruments depend on the bond that is being matched. In

addition, there now is a constraint that the own-bond weight is zero. Relative to the previous

normal-return model, this approach does look for a portfolio that best resembles the bond to

be studied. Duration and convexity are just taken as two conveniently familiar characteristics

that heavily rely on time to maturity, and also the minvar approach helps guaranteeing that we

pick bonds with similar characteristics. Lastly, since the bond itself is excluded from the menu

available for the mimicking, all circularity is now excluded; with the other benchmarks this is not

quite true as the bond that is being matched is also part of the pre-set baskets that are used in

the mimicking.

Each of the three approaches provides us with a portfolio that resembles, by pre-specified

standards, the bond that is being investigated. Unlike the bond, its match is well-diversified, so

the pricing errors should be much smaller. This is why the return on the matching portfolio is

taken as the proxy for the normal return.6

We have validity-tested the three methods7 by examining the ”abnormal” returns realized

by holding static, a-select portfolios (e.g. an equally weighted portfolio of short-lived bonds).

Abnormal returns on such test portfolios measured against the benchmark candidates should on

average be close to zero. Figure ?? provides plots of the time series of accumulating abnormal

returns generated by the candidate benchmarks for four equally weighted portfolios: the total

sample, and the bonds in the 4-8, 8-15, and >15 year brackets. Specifically, every day, each bond

is matched using a portfolio of all other bonds, and a tracking error is computed for that bond. The

tracking error for all bonds, or for all bonds in a maturity class, is then computed as the average

tracking error for each of those bonds. Lastly, these average tracking errors are cumulated over

6There is a similarity to stock-market event studies, where one uses, for instance, a beta-weighted mixture of

market returns and the risk-free rate as the normal return. Our relative duration plays the same role as the stock’s

beta. Apart from the constraints, our minvar benchmark would be similar to regressing the stock’s excess return on

each and every other stock’s excess return, and building a portfolio with weights equal to the regression coefficients.

7The portfolios used to construct Duration-and-Convexity matches are the T-bills, the 1-to-3-year bonds, and

the >3-year issues, as in SW.
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time. The duration ratio model does well for the all-bond portfolio, by construction, but rather

badly fails the test for subportfolios: after 6 years, the cumulative “abnormal” return on this

simple investment strategy peaks at 8% for the short bonds and drops to minus 14% for the long

bonds. The results for Sercu and Wu’s three-portfolio duration-convexity matched investments

are only marginally better. The minimum-variance benchmark, by contrast, prices all time-to-

maturity-bracket portfolios correctly and performs equally well for the all-sample portfolio, never

drifting farther than one percent from the zero line. We therefore use, in what follows, the

minimum-variance benchmark to calculate abnormal returns.

C Regression Tests

Using the normal-return model validated in the preceding section we can now compute abnormal

returns on each bond. The next step is to regress the abnormal return for bond i between t and

t + h on the relative pricing error observed at the beginning of the holding period (L = 0) or

the day before (L = 1). In the actual computations we used simple percentages rather than log

changes. Thus, if M denotes the value of the match portfolio, the regression is finessed as

ARb,m,h,t
def= Pb,t+h/Pb,t −Mb,t+h/Mb,t+h,

= αb,m,h + βb,m,h
Pb,t−1−L − P̂b,m,t−1−L

Pb,t−1−L
+ εi,t. (29)

Recall from (26) that in the regressions with L = 0, βb,m,h equals −(1−ρh
b )·γb,m, where (1−ρh

b ) ≥ 0

is the adjustment speed over de holding period (h days) and γ ∈ [0, 1] measures the relevance

of the model’s fitted price. The version with L = 1 provides a lower bound for the relevance of

the residual from the point of view of a trader who cannot act instantaneously upon observing a

quote. For both L = 0 and L = 1 we vary the holding period in the abnormal return from 1- to

10- and 20-day periods, meaning about two and four weeks. We run these 2 × 3 regressions for

each individual bond×model combination and test two specific hypotheses H1: β = 0 (that is,

no relevance or no adjustment); and H2: β = −1 (perfect relevance—no model errors—and full

adjustment within the holding period).

Table 5 summarizes the regression results (average, mean, significance and sign of the esti-

mates) for 1-, 10- and 20-day holding periods, and for L = 0 (top part) and L = 1 (bottom part).

For virtually all regressions with respect to one-day holding periods we see negative estimates of

β for both immediate and one-day-lagged trading. Most of these are also significant; the rare



Selecting bond-pricing models 18

positive estimates, in contrast, are never significant. Thus, statistically there is an information

content and the market does react to it. Algebraically, however, the average immediate one-day

reaction coefficients are low—between -0.052 (CIR) and -0.083 (LS)—and the next-day reactions

are up to one-half lower again.

If these low one-day immediate reaction coefficients reflect sluggishness in the market rather

than a low relevance coefficient, then a low β is good news for a trader. In an attempt to extract

from this β coefficient the relevance coefficient γ, we increase the holding period for AR to 10 and

20 days. Average slope coefficients for a two-week holding period are now much more seizable,

ranging between -0.20 (BDFS) and -0.28 (LS); and adding another 2 weeks further boosts the

coefficients to at least -0.28 (Baz and Das) and occasionally even -0.37 (spline). Thus, the news is

good from the trader’s point of view. First, 30 percent or more of the observed price discrepancy

is relevant in the sense that it gets reflected in the price within one month. And second, the

adjustment seems to be slow: even a trader that has to wait a full day before reacting loses a

mere 3-5 percent of that 30-plus. On the downside, note that the 20-day return is noisier, too:

the relative importance of the initial mispricing shrinks because, over a longer horizon, there are

so many other influences affecting the price. This noisiness is reflected in the variability of the

20-day β coefficients across bonds. One indicator of this variability is the number of instances

with the wrong (positive) sign for the 20-day-AR regressions; another indicator is the difference

between median and mean γ’s per model, which can be rather large and all over the place.

Recall that we can extract from the betas an estimated autocorrelation for the bond’s pricing

error. At 0.89, the average across all bonds is quite high. The median is similar: 0.92. This

is higher than the autocorrelation for the residuals, which suggests that modeling errors are less

autocorrelated than pricing errors. Also shown in the panel for L = 0 is, for each model, the

average and median implied gamma. These are noisy estimates, being extrapolations for h →∞

from the three numbers for h = {1, 10, 20}, so we rely on means and medians. Average gammas

are all below 0.50, and only one median exceeds 0.50 (for the spline), implying that the variance

of modeling and estimation errors tends to exceed that of pricing errors.

For the trader, the potentially good news is that, even though model errors dominate pricing

errors in terms of variance, still a good part of any observed residual eventually gets reversed in

later returns. The economic relevance of all this is still unclear as the initial signals are quite

small: 30-40 percent of a 15-bp mispricing is not a large gain. Thus, we need to know how often
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large gains occur, whether it is worthwhile focusing on large gains only, and so on. These issues

are addressed in the next section.

IV Measuring the economic relevance: trading-rule tests

A Base-Case Trading Rules: set-up and results

We construct contrarian portfolios by buying underpriced bonds and selling overpriced bonds.

Contrarian strategies are based on the deviation of observed asset prices from their fundamental

values. The further an observed asset deviates from its fundamental value, the larger should

be the correction and, therefore, the higher the weight that should be assigned to the asset in

the contrarian portfolio. In implementing this trading strategy, we set up two basic portfolios,

a “buy” portfolio, where weights are assigned to undervalued assets, and a “sell” portfolio that

contains overpriced assets. When we construct such a time-(t−1) short or long portfolio p (where

p = s (sell) or b (buy)) on the basis of the pricing errors observed at t − 1 − L, with L = 0 for

instant trading and L = 1 for delayed trading, then we set the weight for bond i as follows:

wp,i,t−1−L =
RES i,t−1−LDp,i,t−1−L

Np,t∑
i=1

RES i,t−1−LDp,i,t−1−L

, p = b, s , (30)

where RES i,t−1−L is the residual for bond i as estimated from the time-(t− 1−L) cross-section;

Db,i,t−1−L = 1 if RES i,t−1−L is positive and 0 otherwise; Ds,i,t−1−L = −1 if RES i,t−1−L is negative

and 0 otherwise; and Np,t the number of assets in portfolio p. Note that wp,i,t−1−L ≥ 0 and
Nt∑
i=1

wp,i,t−1−L = 1. The abnormal return of a contrarian strategy can then be measured as

ARp,t,L =
Nt∑
i=1

wp,i,t−1−LDpARi,t, , (31)

where p = (b, s), Dp is equals 1 when p = b and –1 when p = s. This is our base-case setup.

In variants discussed in the next section we ignore the smaller signals RES and/or trade less

frequently than daily.

Table 6 displays percentage profits from contrarian strategies, cumulative over 6.5 years, for

L = 0 or 1. All the outcomes are statistically very significant, so t-stats are omitted. Our

discussion is centered on the combined payoffs from buying and selling (“b + s”, in the table),

which are obtained by adding the accumulated gains from the long and short positions and
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expressing them as a fraction of the initial notional value. (Since “b + s” is a zero-investment

strategy, the resulting percentages are not returns in the usual sense.) The table also provides

cumulative abnormal returns for buy and sell separately, but there is little to say about these

except that they are usually quite similar, and always statistically indistinguishable.8

At this stage we are interested in the base-case numbers only, starting with one-day holding

periods and instantaneous trading. Although the pricing models seemed rather different in terms

of fit, persistence of mispricing, and reaction coefficients, all models produce very similar “b + s”

CARs, ranging from 21% to 23% over 6.5 years—about 3% per annum. The results are not due

to one or two freak episodes; rather, they accumulate steadily over time throughout the period,

as can be seen from Figure ?? where the evolution of contrarian profits over time is illustrated

for immediate trading. Nor are the results due to a few bonds or to one or two maturity classes:

when we group the CARs of individual bonds into the six time-to-maturity brackets used before,

we find that each of the brackets contributes positively.

When introducing a one-day lag between signal recognition and the actual trading, CARs drop

markedly, by about 11% cumulative: a one-day interval between the signal and the execution of

trades yields CARs between 11% and 12.5% in total, i.e. about 1.5% p.a. True, it is unlikely

that professional investors need 24 hours to import the data and run a regression, so that the

realistically feasible profits are probably closer to the no-lag profits than to the once-lagged result.

Still, the “L = 0” results are too optimistic. In the next tests, we try and jazz up the base case

by being more selective: should we really react to each signal, no matter how small? Also, how

much is lost if we trade every 10 or 20 days rather than daily? It turns out that a good dose of

selectivity recuperates half of the revenue that would be lost by waiting a full day. We present

that evidence below, after a discussion of the trading-cost issue.

The above results are before costs. There are no records of detailed spreads per market maker

or best quotes at any moment, but in those days spreads were of the order of magnitude of 6 bp

(of the price). Given an annual churn rate of about 25, two-costs would amount to about 1.5%

p.a. for a buy or a sell strategy and 3% for b + s, which would reduce the base-case strategies to

mere break-even propositions at L = 0, and loss propositions at L = 1. However, the selective

8The buy results do dominate the sell returns in most cases, but in view of the enormous dependencies across

the experiment it is probably dangerous to attach much importance to this observation.
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applications return far more, as documented below. More fundamentally, many banks trade

for liquidity reasons. So their transaction costs are inevitable and, therefore, irrelevant for our

purpose. Given that they have to buy or sell, the message is that it is worth pausing two seconds

to run a simple spline regression before the trade. For a portfolio manager who faces random in-

and outflows every day, a quick look at the residuals would have added about 1.5% to the annual

return.

B Filtering out the smaller discrepancies or revising less often

In the preceding section, the bond weights were proportional to the estimated discrepancy; still,

we might be able to improve the results by altogether eliminating the bonds with the smallest

residuals. Two obvious reasons are that the expected gain is small anyway (a relevant consider-

ation when trading is costly) and that noise is probably important relative to the signal. More

subtly perhaps, if mispricing takes time to disappear, mispricing may also take time to build up;

if so, it is better for the trader to wait until the discrepancy is peaking before moving in.

When building our selective portfolios, we again construct two groups, one containing bonds

with negative residuals and one including bonds with positive residuals. In each group and for

each trading day, we now rank the bonds in terms of the size of the absolute residual. We try out

two variants of filtering: the first rule keeps only the bonds with the 50% biggest absolute pricing

errors in each group, while the second filter is even more selective and considers only bonds in the

top quart of absolute pricing errors. Individual bond weights are then again weighted as indicated

in equation (30), except that, of course, more of the Ds are set equal to zero.

In Panel A in Table 6, the second and third lines in each cell provide the CARs from the

contrarian strategy based upon the 50% and the 25% loudest signals of each day. Introducing

the mild filter (called ”50% biggest” in the table) has a positive but unspectacular effect for most

models; there are even slightly negative effects for the Vasicek model and the spline. The Richard

model benefits most (at lag 0), with CARs increasing by 5%, but for L = 1 the effect is far smaller.

The jump model by Baz and Das still remains the best performing model, with CARs now up

to 27% for lag 0 and 17% for lag 1. When introducing the strong filter (called ”25% biggest” in

the table), in contrast, outcomes do change dramatically, in some instances almost doubling the

CARs for the base case. In contrast to the introduction of a weaker filter, now also the Vasicek

model and spline function gain from using the stronger filter. The BDFS model and Richard
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model benefit most: CARs increase with 14% for immediate trading and now attain a level of

36% (almost 5% p.a.). Note as well that CARs remain on average very high even for longer lags.

Many private investors would not bother to evaluate and rebalance their portfolios each and

every day. Thus, in this section we also investigate to what extent a reduction in the frequency

of trading erodes the abnormal returns of the contrarian strategies and filter rules. In a first

experiment we consider a holding period of two weeks. After the trade is made based on the

contrarian strategy weights, the portfolio holding remains unchanged for two weeks. At the end

of the two-week period, we then identify the then prevailing over- and underpricing and adjust

the portfolio accordingly. In a second variant, we consider a holding period of one month. As

in the previous sections, we investigate, next to immediate trading, the influence of a one-day

difference (lag 1) between the mispricing signal and the actual trade.

Earlier, we showed that mispricing tends to gradually disappear, but with the largest adjust-

ments in the days immediately after the detection of the pricing errors. By rebalancing only one

every tenth trading day, for instance, we miss nine out of the ten best days; and in a filtered

version of the trading rule, we also hold on to positions that would have been liquidated already

if rebalancing had been done on a daily basis. Thus, when considering longer holding periods,

and therefore less frequent rebalancing, CARs must inevitably erode. The good news, as shown

in Panels B and C of Table 6, is that the effects of rebalancing every two weeks and each month

are not dramatic: for the base case without filter, CARs remain positive, in the 8-10% range.

Predictably, CARs for monthly revisions are lower than for two-week periods. The difference be-

tween starting the period immediately (L=0) and leaving one day in-between (L=0) is relatively

small. Again, introducing filters seriously enhances the CARs. By and large, the best performing

models are the two-factor models. The spline comes out a clear last, this time.

C To pool or not to pool?

A last variant we discuss is about the estimation stage rather than the trading rule itself. Schotman

(1996) remarks that day-by-day cross-sectional regressions generate a lot of variability in the

parameters and hence in the implied deltas, which would trigger many (probably pointless) trades

for the derivatives desk. One recommended solution is to combine several consecutive cross

sections. We implement this with 5- and 20-day pooling. In the economic models we constrain the

parameters to be equal across cross-sections if they are assumed to be intertemporally constant.
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The risk-free rate, an implied number, notably is left to vary from day to day, and so is the other

factor in the two-factor models. For the spline, there is no good theoretic reason to fix some

parameters; indeed, when we fix all parameters the results are so atrocious that we do not bother

to show them. Lastly, the pooled estimations for the Baz-Das model usually failed utterly to

converge. In short, we are now down to five competing models.

The results, as summarized in Table 7, are not encouraging. The general rule is that pooling

worsens the returns, and pooling 20 days is worse than 5. There are a few exceptions: BDFS

tends to improve marginally, and the combination of filtering 50% with pooling 5 days beats

the base-case estimation about half of the time. But in the absence of a good reason why these

exceptions would be externally valid, the general conclusion seems to be that pooling does not

help for current purposes.

V Conclusion

In this paper we fit a set of term structure models to government bonds.9 One central question

was whether a fixed-income-desk trader who faces an in- or outflow can more or less randomly

pick a bond in a desirable time-to-maturity bracket, or instead should take a few minutes or

seconds to run a cross-sectional regression. We find she should. In contrast, a trader who wants

to swap an overpriced bond for an underpriced one should be selective and heed only clear signals,

because for these non-liquidity-driven trades transaction costs are not irrelevant. Still, also for

this purpose the regression residuals are useful. Another reliable finding is that there is no

good case to be made for pooling, at least for our purpose; rather, the indications are mostly

against such pooling. A third result is that duration- or duration-and-convexity matched control

strategies are not reliable, at least when they work with pre-set portfolios covering a wide time-

to-maturity spectrum. What is needed, instead, is a control portfolio with very similar bonds,

like the minimum-variance portfolio we adopt here.

Which model to select, if profitability is the criterion? The models are conspicuous in the

similarity of their cumulative abnormal returns, at least for the base case of daily rebalancing.

9The Belgian data set is not particular in any way: the findings that Sercu and Wu obtained from similar set of

Belgian data, have been confirmed by German data.
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For filtered applications and less frequent revisions the results are more divergent, but it remains

unclear to what extent this is a reliable result or just a reflection of the higher randomness one

expects when there are far fewer trades. While applications in other data may shed light on this, we

think that, for anyone hoping for a reliable ranking, the omens are not good. Table 8 summarizes

some performance measures, both statistical and economic ones, along with the models’ rankings

for each of the criteria. A comparison of the spline and the Baz-Das model serves to make our case.

In terms of MSE the spline looks near-perfect and Baz-Das way below average; yet these rankings

switch almost perfectly when we look at another measure of (in)flexibility, the persistence of the

deviations between observed and fitted values. True, low persistence may reflect noisier estimates

(a bad) rather than measuring flexibility (a good), thus resolving the apparent contradiction. But

there seems to be no easy way to explain the contradiction when we consider economic content

rather than statistical fit. On the basis of the regressions one would have anticipated a great future

for the spline-based trading rule, as the spline’s residuals seemed to come out way ahead in terms

of predicting subsequent abnormal returns. Yet the spline does bad in the trading experiments.

And Baz-Das does very well there, even though its regression coefficients were about the worst

among all models. Thus, identifying an unambiguously outstanding model seems to be a bit of

search for the Holy Grail.

One possible explanation why we get such blurred results would be that the signals, the

residuals, are highly correlated across models. If that would be true, of course the diagnoses

would be very similar across models, and so would be the investment results. But this is not,

in fact, the case: correlations of residuals per bond across all models range mostly between 0.20

and 0.40. So the picture really is that all models to some extent pick up genuine mispricing

(hence the correlations across models) but overlay it with rather similar and substantial amounts

of specification and estimation error, with none of the models really sticking out in that respect.

The diagnoses can be rather different across bonds, but still are not consistently superior or inferior

across models. The relevance parameters (γ) confirm this. Their averages for all bonds are rather

similar across models: about 32-42 percent of prima facie errors are ultimately set right, and the

differences between these average gamma’s per model look even shakier if one takes into account

the variability between the bonds’ individual estimated gammas for one given model. All models,

in the end, fit a rather flexible nonlinear function through the same set of cross-sections. While

some shapes must occasionally go better with specific models, it is not necessarily surprising that

no functional form systematically beats the other ones in a long series of cross-sections.
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Table 3: Summary numbers on bond-price residuals from pure cross-sectional estimation, grouped
by time-to-maturity.

Key: Bond-price residuals for each model are grouped into time-to-maturity brackets. The summary statistics we
show are the Average Error (Avg) and the Average Absolute Pricing Error (AAE) per time-to-maturity bracket.
All numbers are in basis points and par value for bonds equals 100.

vasicek cir rich ls bdfs b-d spline

>3m ≤1y avg -2.9 -13.3 -4.4 -3.7 -3.8 -1.4 -4.1
AAE 8.3 18.0 9.3 7.3 7.3 7.8 6.9

>1y ≤2y avg 3.1 2.6 0.3 -0.8 0.7 2.7 2.0
AAE 8.6 11.4 7.1 6.4 6.9 8.2 8.2

>2y ≤4y avg 1.0 2.1 1.6 1.4 1.3 -4.3 1.9
AAE 10.5 10.9 9.1 7.4 8.6 14.2 8.7

>4y ≤8y avg -4.6 -1.7 0.3 -1.2 -2.2 -4.3 -2.5
AAE 14.2 16.5 14.3 13.5 13.6 14.2 12.5

>8y ≤15y avg 7.4 5.3 2.7 3.2 4.1 8.1 2.8
AAE 24.0 24.2 21.6 21.0 21.6 24.3 18.6

>15y avg -10.3 -9.0 -5.4 -5.0 -5.6 -12.4 -1.2
AAE 16.1 13.5 12.6 12.0 11.1 19.8 7.5

overall avg 0.19 0.30 0.58 0.17 0.18 0.33 0.26
AAE 15.6 16.9 14.3 13.3 13.7 15.8 12.4

Table 4: Size and persistence of errors, across models

Key: We show two measures of unexplained variability in prices, the Average Absolute Error (AAE) and the
Average Root Mean Square, the average standard deviation of the residuals. Both are measured in basis points.
Also shown are the autocorrelation, averaged across bonds, of the time series of residuals per bond extracted from
each cross section, and the average run length (in days), where a run is defined as a sequence of days where the
residuals have the same sign.

vasicek cir rich ls bdfs b-d spline

statistics
AAE 15.6 16.9 14.3 13.3 13.7 15.8 12.4
ARMSE 17.5 20.5 16.0 14.6 12.0 17.1 13.9
autocorr 0.94 0.85 0.74 0.85 0.86 0.73 0.93
avg runl 17.6 12.2 7.7 14.9 13.9 7.4 17.7

ranking of models
AAE 5 7 4 2 3 6 1
RMSE 6 7 4 3 1 5 2
autocorr 7 3 2 4 5 1 6
avg runl 6 3 2 5 4 1 7
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Table 8: Various measures of performance, across models

Key: We show two measures of unexplained variability in prices, the Average Absolute Error (AAE) and the
Average Root Mean Square, the average standard deviation of the residuals. Both are measured in basis points.
Also shown are the autocorrelation, averaged across bonds, of the time series of residuals per bond extracted from
each cross section, and the average run length (in days), where a run is defined as a sequence of days where the
residuals have the same sign. Next come the regression coefficients of abnormal returns on initial mispricing, for 1-
or 20-day holding periods and with or without lag (L = {1, 0}). Lastly we show some CARs, for daily and monthly
revision frequencies and for trading rules where we act only upon the 50 or 25 percent strongest signals. In the
second part of the table we show the ranks of the models rather than the statistics.

vasicek cir rich ls bdfs b-d spline

statistics

AAE 15.6 16.9 14.3 13.3 13.7 15.8 12.4
ARMSE 17.5 20.5 16.0 14.6 12.0 17.1 13.9

autocorr 0.94 0.85 0.74 0.85 0.86 0.73 0.93
avg runl 17.6 12.2 7.7 14.9 13.9 7.4 17.7

β, 1d, L = 0 -0.058 -0.052 -0.062 -0.083 -0.064 -0.056 -0.076
β, 20d, L = 0 -0.311 -0.362 -0.311 -0.353 -0.298 -0.279 -0.373
β, 20d, L = 1 -0.260 -0.322 -0.256 -0.269 -0.242 -0.229 -0.303

CAR, daily, 50%, L = 0 20.0 25.0 28.0 25.8 25.4 27.0 20.8
CAR, monthly, 25%, L = 0 11.8 11.4 13.0 12.4 12.4 13.2 10.4
CAR, daily, 50%, L = 1 10.8 16.2 15.8 15.6 15.4 17.2 10.8
CAR, monthly, 50%, L = 1 10.6 10.2 11.6 11.0 11.0 11.8 9.0

ranking of models

AAE 5 7 4 2 3 6 1
RMSE 6 7 4 3 1 5 2

autocorr 7 3 2 4 5 1 6
avg runl 6 3 2 5 4 1 7

β, 1d, L = 0 5 7 4 1 3 6 2
β, 20d, L = 0 3 2 4 3 6 7 1
β, 20d, L = 1 4 1 5 3 6 7 2

CAR, daily, 50%, L = 0 7 5 1 3 4 2 6
CAR, monthly, 25%, L = 0 5 6 2 3 3 1 7
CAR, daily, 50%, L = 1 6 2 3 4 5 1 6
CAR, monthly, 50%, L = 1 5 6 2 3 4 1 7




