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Abstract

Logistic regression is frequently used for classifying observations into two groups.

Unfortunately there are often outlying observations in a data set, who might affect

the estimated model and the associated classification error rate. In this paper, the

effect of observations in the training sample on the error rate is studied by computing

influence functions. It turns out that the usual influence function vanishes, and that

the use of second order influence functions is appropriate. It is shown that using

robust estimators in logistic discrimination strongly reduces the effect of outliers on

the classification error rate. Furthermore, the second order influence function can

be used as diagnostic tool to pinpoint outlying observations.
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1 Introduction

In discriminant analysis one wants to classify multivariate observations into two different

populations, using the outcome of a discriminant rule. The rule is constructed from a

training sample, being observations for which it it known to which population they belong.

The classical linear discriminant rule of Fisher is well-known and treated in every textbook
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on multivariate analysis. Many applied researchers, however, give preference to logistic

regression as a tool for allocating observations to one out of two populations. It is a flexible

method that can deal with different types of variables. Discriminant analysis resulting

from an estimated logistic regression model is called logistic discrimination. Over the last

decade, several more sophisticated classification methods like support vector machines and

random forests have been proposed (see Friedman et al 2001), but logistic discrimination

remains a benchmark method performing well in many applications.

In this paper the robustness of logistic discriminant analysis is studied. Focus is

on the effect of observations in the training sample on the error rate of the associated

classification rule. Influence functions measuring this effect will be computed for the

normal discrimination model, where logistic discrimination achieves (asymptotically) the

optimal error rate. It is shown that the usual influence function vanishes, and second

order influence functions need to be computed. It turns out that the influence of outlying

observations on the error rate can go beyond all bounds when estimating the logistic

model by Maximum Likelihood (ML), but remains bounded when using an appropriate

robust estimator.

For linear and quadratic discriminant analysis influence functions of the error rate

were computed by Croux and Dehon (2001) and Croux and Joossens (2005). However,

since they worked with non-optimal classification rules, they did not need to use second

order influence functions. Up to our best knowledge, this paper is one of the rare examples

where the use of second order influence functions is natural and appropriate.

The non-robustness of the maximum likelihood estimator for logistic regression is well

studied. Its influence function was computed in Künsch et al (1989), and breakdown

point considerations were made in Christmann (1996) and Croux et al (2002). Tools

for detecting influential observations in logistic regression analysis have been proposed in

the literature (e.g. Pregibon 1981; Cook and Weisberg 1982, Chapter 5; Johnson 1985),

but these diagnostics measure the influence relative to parameter estimates and predicted

probabilities, and not the influence on the error rate. Moreover, they are all based on the

classical ML-estimators computed from the sample with one or two observations deleted.

In presence of multiple outliers, such case-wise deletion diagnostics suffer from the masking

effect, meaning that influential points are not guaranteed to be detected due to bias in
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the diagnostic measure. It is hence recommended to rely on robust estimators.

Several proposals for robust logistic regression estimators have been made (e.g. Preg-

ibon 1982 , Künsch et al. 1989, Carroll and Pederson 1993, Victoria-Feser 2002, Bondell

2005). Cox and Ferry (1991) considered a more robust version of logistic discrimination

by adapting the logistic regression model and estimating it by maximum likelihood. In

this paper we stick to the traditional logistic regression model, although the theoretical

results are valid for any robust estimator possessing an influence function.

The paper is organised as follows: Section 2 reviews the normal logistic discrimina-

tion model and provides definitions of some robust estimators for logistic regression. An

expression for the error rate is derived. The use of second order influence functions is

motivated in Section 3, where the influence functions are derived and graphical presen-

tations are given. Simulation results and an application are presented in Section 4. In

particular, a robust diagnostic tool is proposed to detect influential points for the error

rate. Finally, some conclusions are given in Section 5.

2 Logistic Discrimination and Error Rate

2.1 The normal discrimination model

Theoretical results will be derived at the normal discrimination model (e.g. Efron 1975).

Suppose there are two p-dimensional source populations, both normally distributed with

different means but the same covariance matrix. The variable X can arise from one of

these populations:

X ∼
{

H1 = Np(µ1, Σ) with probability π1,

H0 = Np(µ0, Σ) with probability π0,
(1)

where π0 +π1 = 1. Let the variable Y indicate the source population of the corresponding

X, then

Y =

{

1 with probability π1,

0 with probability π0 = 1 − π1,
(2)

and

X | Y = y ∼ Np(µy, Σ). (3)
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The joint distribution of (X, Y ) is from now on denoted by Hm. It easily follows now,

using Bayes’ rule, that

PHm
(Y = 1 | X = x) = F (α + xtβ), (4)

where F (u) = 1/(1 + exp(−u)) is the logit cumulative distribution function,

β = Σ−1(µ1 − µ0) and α = log(π1/π0) − βt(µ0 + µ1)/2. (5)

The discriminant rule is then as follows: an observation x is assigned to population 1 if

α + xtβ > 0 and to population 0 otherwise.

Given a random sample {(y1, x1), (y2, x2), . . . , (yn, xn)} drawn from the model distribu-

tion Hm, one can estimate the discriminant rule via estimation of the unknown parameters

α and β. In a logistic discrimination procedure, these parameters are directly estimated

via the logit model (4). This is in contrast with linear discriminant analysis (Fisher’s rule)

where the parameters µ1, µ2 and Σ are estimated, from which an estimated discriminant

rule is obtained via (5) (see also Sapra 1991). The advantage of logistic discrimination

is that one only relies on the specification (4) of the conditional distribution Y |X, while

the normality assumption is not used. This makes logistic regression more “robust” with

respect to model misspecification. On the other hand, if the normal discrimination model

perfectly holds, then the linear method is more efficient since it uses the full maximum

likelihood estimators of the joint distribution.

2.2 Logistic regression estimators

In this section we introduce the logistic regression estimators that are used in this paper,

in particular the estimator of Bianco and Yohai (BY, 1996) and a weighted maximum

likelihood estimator. Let γ = (α, βt)t and zi = (1, xt
i)

t for all 1 ≤ i ≤ n. An estimator for

γ computed from the sample Sn = {(y1, x1), . . . , (yn, xn)} is denoted by γ̂n. The maximum

likelihood (ML) estimator γ̂ML

n is given by

γ̂ML

n = argmax
γ

log L(γ; Sn) = argmin
γ

n
∑

i=1

d(zt
iγ; yi), (6)

where log L(γ; Sn) is the conditional log-likelihood function and d(·; yi) is the deviance

function d(s, yi) = −yi log F (s)− (1− yi) log(1− F (s)). Definition (6) can be generalised
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to

γ̂n = argmin
γ

n
∑

i=1

ϕ(zt
iγ; yi), (7)

where ϕ(s, yi) is a positive and almost everywhere differentiable function in s, with the

property ϕ(s; 0) = −ϕ(s; 1) for any s. Bianco and Yohai (1996) show that by selecting

an appropriate ϕ function, a consistent, asymptotically normal, and robust estimation

procedure is obtained. In this paper we will work with the ϕ function proposed by

Croux and Haesbroeck (2003), having the property that the corresponding estimator

exists whenever the ML-estimator exists. These authors also provided a fast and stable

algorithm for its computation and showed in a simulation study the good performance of

this estimator with respect to other proposals.

To reduce the influence of outlying observations in the covariate space, weights can

be added to control for leverage points (e.g. Carroll and Pederson 1993). The weighted

version of the Bianco and Yohai estimator is then defined as

γ̂n = argmin
γ

n
∑

i=1

wiϕ(zt
iγ; yi),

where the weights depend on the Robust Distance of the observation xi. This robust

distance RDi is equal to the Mahalanobis distance of xi to the center of the data cloud

in the covariate space, with the center and covariance-matrix robustly estimated. For the

latter, S-estimators of multivariate location and covariance (Davies 1987, Rousseeuw and

Leroy 1987, p. 174) are used. The weights are generated as wi = W (RDi), with weight

function

W (t) = I(t2 ≤ χ2
p,0.975),

and the resulting estimator is called the Weighted Bianco and Yohai (WBY) estimator.

Similarly, by taking ϕML(s, y) = d(s, y), the Weighted Maximum Likelihood estimator

(WML) is obtained (see also Rousseeuw and Christmann 2003).

In the sequel of the paper, the functional representation of the estimators γ̂n =

(α̂n, β̂t
n)t of the parameters of the logistic regression model is used. Let Sn be a sam-

ple from a distribution H , and denote Hn the associated empirical distribution function.

The statistical functionals A(H) and B(H) corresponding to the intercept and slope es-

timators verify α̂n = A(Hn) and β̂n = B(Hn). If the estimators are consistent at the
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distribution H , then A(H) and B(H) are the limit values of α̂n and β̂n. At the model

distribution H = Hm, it holds that A(Hm) = α and B(Hm) = β for all functionals

corresponding to consistent estimators at the logistic regression model.

2.3 Error rate

The classification performance of the logistic discrimination procedure is quantified by its

error rate. Denote by Π01 the probability that an observation of population 1 is misclas-

sified (so classified as an observation coming from population 0) and Π10 the probability

that an observation of population 0 is misclassified. The data to classify are supposed to

come from the model distribution Hm. The data used to estimate the logistic discriminant

rule, i.e. the training data, come from a distribution H . In ideal circumstances H = Hm,

but it might be that the training data are contaminated and contain outliers. The error

rate (ER) is defined as

ER(H) = π1Π01(H) + (1 − π1)Π10(H),

with π1 = PHm
(Y = 1). Using the previously defined functionals A and B, the probability

of misclassifying an observation of population 1 can be written as

Π01(H) = P (X tB(H) + A(H) < 0 | X ∼ N(µ1, Σ))

= P (X tB(H) < −A(H) | X ∼ N(µ1, Σ))

= P
(

Z ≤ −A(H) − µt
1B(H)

√

Bt(H)ΣB(H)
| Z ∼ N(0, 1)

)

= Φ
(−A(H) − µt

1B(H)
√

Bt(H)ΣB(H)

)

, (8)

with Φ the cumulative distribution function of a univariate standard normal. In the same

way, the probability of misclassifying an observation of population 0 is given by

Π10(H) = P (X tB(H) + A(H) > 0 | X ∼ N(µ0, Σ))

= Φ
(A(H) + µt

0B(H)
√

Bt(H)ΣB(H)

)

. (9)

Using (8) and (9), the error rate using training data coming from a distribution H is given

by

ER(H) = π1Φ
(−A(H) − µt

1B(H)
√

Bt(H)ΣB(H)

)

+ (1 − π1)Φ
(A(H) + µt

0B(H)
√

Bt(H)ΣB(H)

)

. (10)
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At the model distribution H = Hm, where A(Hm) = α and B(Hm) = β, one gets

ER(Hm) = π1Φ
(−α − µt

1β√
βtΣβ

)

+ (1 − π1)Φ
(α + µt

0β√
βtΣβ

)

.

3 Influence Function

3.1 Second order influence functions

Expression (10) for the error rate defines a statistical functional H → ER(H), of which

the influence function (see Hampel et al (1986)) is defined as

IF((x, y); ER, H) = lim
ε↓0

ER((1 − ε)H + ε∆(x,y)) − ER(H)

ε

=
∂

∂ε
ER((1 − ε)H + ε∆(x,y))

∣

∣

ε = 0
(11)

in those (x, y) where the limit exists. The notation ∆(x,y) is used for a Dirac measure

putting all its mass at (x, y). The heuristic interpretation of the influence function is that

it measures the influence of an observation x in the training sample, being assigned to

population y (where y = 0 or 1), on the error rate of the discriminant analysis procedure.

In this paper we also need the second order influence function, defined here as

IF2((x, y); T, H) =
∂2

∂ε2
ER((1 − ε)H + ε∆(x,y))

∣

∣

ε = 0
.

If there is a (small) amount of contamination ε in the training data, due to the presence of

a possible outlier (x, y), then the error rate of the discriminant procedure will be affected

and can be approximated by the following Taylor expansion:

ER(Hε) ≈ ER(Hm) + ε IF((x, y); ER, Hm) +
1

2
ε2 IF2((x, y); ER, Hm). (12)

In Figure 1, we picture ER(Hε) as a function of ε. The Fisher discriminant rule is op-

timal at the model distribution Hm, and therefore we denote ER(Hm) = ERopt. This

implies that any other discriminant rule, in particular the one based on a contami-

nated training sample, can never have an error rate smaller than ERopt. Hence, neg-

ative values of the influence function are excluded. From the well known property that

E[IF((x, y); ER, Hm)] = 0, (Hampel et al 1986, page 84), it follows that

IF((x, y); ER, Hm) ≡ 0
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ERopt

ER(Hε)

ε

Figure 1: Error rate of a discriminant rule based on a contaminated model distribution

as a function of the amount of contamination ε.

almost surely. The behaviour of the error rate under small amounts of contamination

is then characterised by the second order influence function IF2. Note that this second

order influence function should be non-negative everywhere.

In the next proposition the second order influence functions of the error rate at the

normal discrimination model is given. The obtained expression depends on the log odds

ratio

θ = log
π1

1 − π1

and on the Mahalanobis distance between the centers of the two populations

∆2 = (µ1 − µ0)
tΣ−1(µ1 − µ0) = βtΣβ.

Proposition 1 Using the above notations, the influence function of the error rate of

logistic discriminant analysis at the normal discriminant model Hm is zero and the second

order influence function is given by

IF2((x, y); ER, Hm) = π1φ
(

− θ

∆
− ∆

2

)

∆ (13)

[(IF((x, y); A, Hm)

∆
− θ

∆3
(µ1 − µ0)

t IF((x, y); B, Hm) +
(µ1 + µ0

2

)t IF((x, y); B, Hm)

∆

)2

+
IF((x, y); B, Hm)t

∆

(

Σ −
(µ1 − µ0

∆

)(µ1 − µ0

∆

)t)IF((x, y); B, Hm)

∆

]
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where IF((x, y); A, Hm) and IF((x, y); B, Hm) are the influence functions of the estimators

of the intercept and slope parameter of the logistic regression model, and φ is the standard

normal density function.

The proof is in the appendix. For different estimators of the parameters α and β in (4),

different expressions for IF2 are obtained. In particular, one sees that bounded influence

for the error rate is attained as soon as the IF of the functionals A and B are bounded.

In the next subsection, plots of the second order influence functions will be presented.

3.2 Graphical representations

In this subsection, IF2 will be visualised for the ML and Bianco and Yohai esti-

mators, as well as for their weigthed versions. Expressions for IF((x, y); A, Hm) and

IF((x, y); B, Hm), needed to evaluate the second order influence function for the error

rate in (13), are given in Croux and Haesbroeck (2003). Since all these estimators are

equivariant with respect to an affine transformation of the vector of explicative variables,

without loss of generality, it may be assumed that µ1 = −µ0 = (∆/2, 0, . . . , 0)t, and

Σ = Ip, yielding a Canonical Model Hm.

In Figure 2, IF2((x, y); ER, Hm) is pictured at the canonical model with p = 1, ∆ = 2

and θ = log(2). The latter implies unequal group probabilities: π1 = 2/3 and π2 = 1/3.

In this univariate setting, IF2 is plotted as a function of x with the value of y kept fixed,

yielding one curve for y = 1 and another for y = 0. The curve for y = 1 gives then the

influence that an observation in the training data, being allocated to the group with label

y = 1, has on the error rate of the discriminant procedure. From Figure 2 one can see that,

for one single covariate, the BY discriminant procedure has a bounded influence, while

this does not hold for the ML-based method. For example, the IF2 goes beyond all bounds

when the x-value of an observation corresponding to the population N(∆/2, 1) tends to

−∞. Such observations are called bad leverage points, since they are both misclassified

and leverage points in the covariate space. For the BY-procedure the bad leverage points

only have a bounded effect, and the IF redescends to zero for extreme leverage points.

The weighted estimators even give zero weight to high leverage points, as is reflected in

their IF2. Except for the leverage points, the general shape of all second order influence

functions is pretty similar. For all 4 considered discriminant procedures one sees that (i)
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Figure 2: Second order influence function IF2((x, y); ER, Hm) at the canonical model Hm,

with p = 1, ∆ = 2 and θ = log(2) for logistic discrimination based on the ML-estimator

(left), on the Bianco and Yohai estimator (right), as well as their weighted versions (lower).

We distinguish between y = 1 (solid lines) and y = 0 (dashed lines).
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good leverage points, i.e. correctly classified observations being outlying in the covariate

space, have almost no influence on the error rate; (ii) incorrectly classified observations

have a higher influence on the Error Rate; (iii) observations in the training sample being

allocated to the group with the largest prior probability have more influence on the error

rate.

Figure 3 represents IF2((x, 1); ER, Hm) for p = 2, ∆ = 2 and θ = 0, corresponding

to training data coming from a bivariate normal with mean (1, 0)t. The hyperplane

separating the two groups of data has equation x1 = 0. Similar conclusions as in the

univariate case can be made, but there is a remarkable difference. For the BY estimator

we observe that an observation, lying close to the discriminating hyperplane, while having

a large value for the covariate variable, can have a value of the IF2 going beyond all

bounds. These highly influential observations for the error rate of BY are neither good or

bad leverage points. Therefore, as soon as the dimension of the covariate space is larger

than one, a weighting step needs to be added to BY to get a fully bounded influence

discriminant rule. Also note that the magnitude of the influence of a bad leverage point

at x on the error rate depends heavily on the position in the covariate space. For the ML,

for example, the IF2 is much smaller for observations being closer to the line connecting

the two population centers.

We conclude that the BY discriminant procedure has no bounded influence on the

error rate, and that weighting is recommended. Comparing the plots of WML and WBY,

Figure 3 shows that their influence behaviour (on the error rate) is very similar. Taking

into account the fact that WML is easier to compute than WBY, we favour this WML in

the numerical applications we present in the next section.

4 Empirical results

4.1 Simulation study for the error rate

By means of a simulation experiment, we compare the finite sample error rate of robust

(using the WML-estimator) and classical logistic discriminant analysis. Moreover, we also

compare with Fisher’s linear discriminant analysis, and a robustified version of it using

S-estimators (as in He and Fung, 2000, or Croux and Dehon, 2001). Several sampling

schemes are considered, for p = 3 and n = 200. For every sampling scheme we generated
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Figure 3: Second order influence function IF2((x, 1); ER, Hm) at the canonical model Hm,

with p = 2, ∆ = 2 and θ = 0 for logistic discrimination based on the ML-estimator (left),

on the Bianco and Yohai estimator (right), as well as their weighted versions (lower).
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m = 1000 training data sets of size n, and computed the associated error rate. This error

rate is obtained by evaluating the discriminant rule estimated from the training data on

a test data set of size 105 generated from the model distribution. Average error rates over

the m simulations are then reported in Table 1.

In the first three sampling scheme, training samples are generated according to a

canonical normal discrimination model Hm, with µ1 = −µ0 = (∆/2, 0, 0)t, and Σ = Ip.

In the first simulation experiment we take ∆ = 1 and θ = 0, afterwards ∆ = 1 and

θ = log(2), and in the third setting ∆ = 3 and θ = 0. The 2 other sampling schemes take

∆ = 1 and 2, respectively, and θ = 0, but they do not follow the normal discrimination

model discussed in Section 2.1. In the fourth scheme the data are simulated from normal

distributions with unequal covariance matrices: H1 = N(µ1, Ip) and H0 = N(µ0, 0.25Ip),

while in a last simulation setting a exponential transformation is applied to the explicative

variables, creating asymmetric distributions for the two source populations.

To investigate the robustness of the procedures, we add 10 leverage points to the train-

ing data, inducing about 5% of contamination. These leverage points are all attributed to

the group y = 1, and distributed according to λ∆N(−(λ, 1, 1)t, (0.01) ∗ Ip). Intermediate

outliers correspond then with λ = 2, and extreme outliers with λ = 5.

In Table 1 simulated error rates are given, where the standard error around the re-

ported results ranges from about 0.02% (for the cases where not outliers are present)

up to 0.1%. Let us first investigate the effect of the outliers on the error rates. We see

that outliers may have a disastrous effect on the classification performance of the classical

procedures. In presence of the extreme outliers (type 2), the classical procedures can

even have an unacceptably high error rates around 50%, which happens for schemes (i)

and (iv). When the contamination in the training data is of the first type, and closer to

the data clouds of the clean observations, the error rate of the classical procedure is still

significantly driven upwards, but we also note that the robust discriminant procedures

are much more vulnerable to these intermediate than to extreme outliers. The reason is

that the robust estimators involved are redescending, and by giving a zero weight, the

extreme outliers become harmless.

For the second sampling scheme, with θ = log(2), we see that the effect of outliers

is less pronounced than in the first case. The reason is that the contamination level,
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expressed as a percentage of the number of group y = 1 observations, is smaller than for

scheme (1). For scheme (3), similar conclusions as before can be made, but all error rates

are smaller now since the two source populations are easier to discriminate here.

Table 1 also allows to compare standard linear and logistic discrimination. When no

outliers are present, working at the normal discrimination model (the first three cases),

linear discriminant analysis has slightly smaller error rates for n = 200, the reason being

that Fisher’s method is based on the full maximum likelihood estimators here. Logistic

discrimination, however, is not losing much in error rate, since it is also consistently

estimating the optimal discriminant boundary. For the last two sampling schemes, Fisher’s

linear discriminant analysis is no longer optimal. In the simulation experiment with

unequal covariances, it still results in slightly better error rates, but at the asymmetric

lognormal distributions logistic discrimination outperforms Fisher’s method.

Comparing the performance of robust logistic and robust linear discriminant analysis

turns out to be favourable for robust logistic discrimination. In most cases the differences

in simulated error rate between both robust procedures is very small, but for the lognormal

distributions there is a clear advantage for the logistic approach. A conclusion from this

simulation experiment is that robust logistic discrimination leads only to a very small loss

in classification performance when no outliers are present. On the other hand, the effect of

outliers, both extreme and intermediate, in the training sample on the error rate remains

within bounds, while this does not hold for the classical procedures. Finally, robust

logistic discrimination can compete with robust versions of Fisher’s linear discriminant

analysis.

4.2 A diagnostic measure for detecting influential observations

Consider the well-known Vaso Constriction data set of Finney (1947), see also Pregibon

(1981). The binary outcomes (presence or absence of vaso constriction of the skin of the

digits after air inspiration) are explained by two continuous variables: x1 the volume of air

inspired and x2 the inspiration rate, both log-transformed. Figure 4 gives the scatter plot

of the 40 observations in the covariate space, together with the y-values. To asses the effect

of contamination on the ML-estimator and on the robust WML-estimator, an observation

is added to the population with y = 0 at position (x1, x2) = (s, s). In Figure 4 the dotted
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Table 1: Simulated error rates for logistic and linear discriminant analysis with classical

and robust estimators, for five different sampling schemes, and in presence of intermediate

outliers (type I), and extreme outliers (type II).

no outliers type I outliers type II outliers

Classic Robust Classic Robust Classic Robust

(1) ∆ = 1, θ = 0

Logistic 31.52 31.56 36.64 34.57 49.39 31.55

Linear 31.52 31.82 36.59 35.30 49.01 31.91

(2) ∆ = 1, θ = log(2)

Logistic 27.58 27.65 30.83 28.64 33.91 27.60

Linear 27.57 27.88 30.79 29.60 33.88 28.01

(3) ∆ = 3, θ = 0

Logistic 7.03 7.09 19.80 7.06 36.02 7.07

Linear 6.89 7.09 19.76 7.01 35.97 7.07

(4) Unequal covariances

Logistic 24.62 24.70 34.15 30.35 47.92 24.83

Linear 24.10 24.46 33.73 31.21 47.58 25.27

(5) Log-normal, ∆ = 2

Logistic 17.33 16.89 28.94 26.72 43.08 17.01

Linear 25.54 23.10 31.79 28.72 43.68 24.04
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Figure 4: The Vaso Constriction data set. The circles represent the group in absence

of vaso constriction (y = 0) and the crosses the group in presence of vaso constriction

(y = 1).

line represents the line along which this extra observation moves. For negative values of s,

the added observation will be correctly classified and therefore it is a good leverage point.

For large values of s, we get a bad leverage point. To study the effect of adding this extra

observation we compute the apparent error rate from the 40 observations, where s varies

from -1 to 10. From Figure 5, it is confirmed that the robust WML estimator limits the

influence of outliers. On the other hand, the error rate of the classical ML estimator can

increase to about 50% when adding only one outlier.

In the same spirit as in Boente et al (2002) or Pison et al (2003), the influence functions

can be used to detect influential points in the training data set. The value of IF2 evaluated

at the sample points indicates the contribution of each particular observation in the

training set to the error rate. Aim is to detect influential observations for the ML-

estimator, being most vulnerable to outliers. The diagnostic measures are defined as

Di = IF2((xi, yi)); ER, Hm)/cyi
, (14)

for 1 ≤ i ≤ n. In (14), the constant cj corresponds to the 95% quantile of the distribution
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Figure 5: Misclassification rate for the ML-estimator (solid line) and for the WML-

estimator (dotted line) after adding observation (s, s, 0), where s varies from -1 to 10.

of IF2((X, j); ER, Hm), with X ∼ Hj, for j = 0, 1. For more information on critical values

for influence function diagnostics, we refer to Pison and Van Aelst (2004). This allows

to flag an observation as being significantly influential as soon as Di > 1. Note that the

unknown parameters in Hm need to be estimated robustly to avoid the masking effect,

hereby yielding a robust diagnostic measure.

A plot of the diagnostic measures Di with respect to the index of the observation gives

a graphical diagnostic tool to detect influential observations. The diagnostic measures

were computed for the Vaso Constriction data, and also for the contaminated data sets

where the 21-st observation is the added observation (s, s, 0), for respectively s = 4, 7, 10.

Figure 6 presents the 4 corresponding plots. From the upper left plot, it is seen that there

are a few influential points: observations 8 and 9, and to a lesser extent observations

13 and 17. These observations, as can be seen from Figure 4, are incorrectly classified,

and somehow at the border of the data cloud for y = 1. Although these observations

are quite influential on the ML-estimator, they are by no means heavy outliers. From

the other plots of Figure 6, it is seen that the values of Di, with the exception of the

added observation, remain quite stable. This illustrates the robustness of the diagnostics.
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Figure 6: Diagnostic plots for the Vaso Constriction data set (upper left) and for the data

set with an added observation (s, s, 0) with index 21, for s = 4, 7 and 10.

Regarding the added observation, it is seen from Figure 6 that it only becomes highly

influential for s = 7 and s = 10. This confirms Figure 5, where the contamination for

s = 4 is not yet affecting the error rate of the ML-procedure. It is worth noting that

s = 4 corresponds to a huge outlier in the covariate space, but even more extreme values

of s are needed to become influential. The reason is that the added outliers are close to a

line through the center and orthogonal to the separating hyperplane, where the influence

on the error rate is smallest, as can be seen from Figure 3.
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5 Conclusion

In this paper second order influence functions for the error rate have been computed. Due

to the optimality of logistic discrimination at the normal discrimination model the use

of the second order influence functions is natural and appropriate, as motivated in Sec-

tion 3. The expressions obtained are not only valid for the classical maximum likelihood

estimator, but also for robust estimators. While influence analysis for estimators of the

parameters of the logistic regression model has already been carried out before, this is

not the case for the corresponding error rate. Besides of theoretical interest, it has also

been shown how an empirical version of the second order influence function can be used

as a robust diagnostic tool.

Logistic discrimination is easy to carry out, since the Maximum Likelihood estima-

tor for the logistic regression model is implemented in all statistical software packages.

Unfortunately the ML-estimator is not robust: although outliers cannot occur in the de-

pendent variable (taking only the values 0 or 1), outliers in the space of the explicative

variables, i.e. leverage points, can ruin the ML-procedure. Indeed, as shown in this paper,

outliers may have an unlimited influence on the error rate corresponding to the ML-based

procedure. Using the weighted ML-estimator instead, an alternative robust procedure for

logistic discrimination is obtained.

Acknowledgment: This research has been supported by the Research Fund K.U. Leuven

and the “Fonds voor Wetenschappelijk Onderzoek”-Flanders (Contract number G.0385.03).

Appendix

Before starting the proof of Proposition 1, we first need the two following Lemmas.

Lemma 1 Set D1 = −θ/∆ − ∆/2 and D0 = θ/∆ − ∆/2. Then

1. ER(Hm) = π1Φ(D1) + π0Φ(D0)

2. π1φ(D1) = π0φ(D0)

Proof. (i) This is straightforward from (10). For example

α + βtµ0√
βtΣβ

=
θ + βt µ0−µ1

2

∆
=

θ − 1/2(µ1 − µ0)
tΣ−1(µ1 − µ0)

∆
=

θ

∆
− ∆

2
.
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(ii) It is sufficient to note that log(φ(D0)/φ(D1)) = D2
1/2 − D2

0/2 = θ = log(π1/π0). 2

Lemma 2 Consider the two functionals E(H) = A(H)/
√

Bt(H)ΣB(H) and F (H) =

B(H)/
√

Bt(H)ΣB(H). Then

1. IF((x, y); E, Hm) = IF((x, y); A, Hm)/∆ − αβtΣ IF((x, y); B, Hm)/∆3

2. IF((x, y); F, Hm) = IF((x, y); B, Hm)/∆ − ββtΣ IF((x, y); B, Hm)/∆3

3. IF((x, y); F, Hm)t(µ1 − µ0) = 0

4. IF2((x, y); F, Hm)t(µ1−µ0) = −∆ IF((x,y);B,Hm)t

∆

{

Σ −
(

µ1−µ0

∆

) (

µ1−µ0

∆

)t
}

IF((x,y);B,Hm)
∆

Proof. (i) and (ii) can be obtained via straightforward derivation. For a given fixed (x, y),

we set Hε = (1 − ε)Hm + ε∆(x,y). Now by definition of F , we have F (H)tΣF (H) = 1 for

any H , and in particular F (Hε)
tΣF (Hε) = 1. From the latter it follows that

( ∂

∂ε
F (Hε)

)t

ΣF (Hε) = 0, (15)

for any ε > 0. Evaluating (15) at ε = 0 and noting that F (Hm) = β/∆ = Σ−1(µ1−µ0)/∆

yields (iii). Deriving (15) ones more w.r.t. ε and evaluating at ε = 0 results in

IF2((x, y); F, Hm)tΣF (Hm) + IF((x, y); F, Hm)tΣ IF((x, y); F, Hm) = 0,

from which it follows that

IF2((x, y); F, Hm)t(µ1 − µ0) = −∆ IF((x, y); F, Hm)tΣ IF((x, y); F, Hm). (16)

Denote now

P = I −
(

Σ−1/2(µ1 − µ0)

∆

) (

Σ−1/2(µ1 − µ0)

∆

)t

a projection matrix such that P tP = P and P = P t. Then we can rewrite (ii) as

IF((x, y); F, Hm) = Σ−1/2PΣ1/2 IF((x, y); B, Hm)/∆.

From the above, it follows immediately from (16) that

IF2((x, y); F, Hm)t(µ1 − µ0) = −∆
IF((x, y); F, Hm)t

∆
Σ1/2PΣ1/2 IF((x, y); F, Hm)

∆
,
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implying (iv). 2

Proof of Proposition 1: At the contaminated distribution Hε, it follows from (10) that

ER(Hε) = π1Φ(−E(Hε) − F (Hε)
tµ1) + π0Φ(E(Hε) + F (Hε)

tµ0) (17)

Standard derivations results in

IF((x, y); ER, Hm) =(−π1φ(D1) + π0φ(D0)) IF((x, y); E, Hm)

− π1φ(D1) IF((x, y); F, Hm)t(µ1 − µ0),
(18)

using the notations of Lemma 1. The first term of (18) cancels due to Lemma 1(ii) and

the second term due to Lemma 2(iii), showing already that IF((x, y); ER, Hm) = 0.

Computing the second derivative of (17) results in

IF2((x, y); ER, Hm) = π1φ
′(D1)[IF((x, y); E, Hm) + µt

1 IF((x, y); F, Hm)]2

+ π0φ
′(D0)[IF((x, y); E, Hm) + µt

0 IF((x, y); F, Hm)]2

− π1φ(D1)[IF2((x, y); E, Hm) + µt
1 IF2((x, y); F, Hm)]

+ π0φ(D0)[IF2((x, y); E, Hm) + µt
0 IF2((x, y); F, Hm)]

Using φ′(u) = −uφ(u), D0 +D1 = −∆, Lemma 2(iii) and Lemma 1(ii), the above expres-

sion reduces to

IF2((x, y); ERHm) =π1∆φ(D1)[IF((x, y); E, Hm) + µt
1 IF((x, y); F, Hm)]2

− π1φ(D1) IF2((x, y); F, Hm)t(µ1 − µ0).
(19)

From Lemma 2(i) and 2(ii) it follows after some calculations that the term IF((x, y); E, Hm)+

µt
1 IF((x, y); F, Hm) is equal to

IF((x, y); A, Hm)

∆
+

[(µ1 + µ0

2

)

− θ(µ1 − µ0)

∆2

]t IF((x, y); B, Hm)

∆
,

where it was used that α = θ − βt µ1+µ0

2
and β = Σ−1(µ1 − µ0). From (19), the above

equation and Lemma 2(iv), the expression for IF2((x, y); ER, Hm) can be obtained imme-

diately. 2
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