
PARTITIONING A PERMUTATION GRAPH:
ALGORITHMS AND AN APPLICATION

LINDA S. MOONEN & FRITS C.R. SPIEKSMA

OR 0358

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Partitioning a permutation graph: algorithms and an
r t' app_lCSoulOn

Linda S. lVloonen • Frits C.R. Spieksma

Katholieke Universiteit Leuven, Department of Applied Economics, Naamsestraat 69,
B-3000 Leuven, Belgium

linda. moonen@econ.kuleuven. ac. be • frits. spieksma@econ.kuleuven. ac. be

In this paper we discuss the problem of partitioning a permutation graph into cliques of

bounded size, and describe a real-life application of this problem encountered at a manufac

turing company. \;Ve formulate the problem as an integer program, and present two exact

algorithms for solving it. The first algorithm is a branch-and-price algorithm based on the

integer programming formulation; the second one is an algorithm based on the concept of

bounded clique-width. The latter algorithm was motivated by the structure present in the

real-life instances. Test results are given, both for real-life instances and randomly generated

instances. As far as we are aware, this is the first implementation of an algorithm based on

bounded clique-width.

(Integer Programming, Analysis of Algorithms)

1. Introduction

Consider the following situation. Given is a set 5 of distinct points in the plane, 5

{I, 2, ... , n}. For any pair of points i, j E 5, we say that i is smaller than j (i; j) iff

Here, Xi and Yi denote the x- and y-coordinate of i, i E 5. Further, we call R <;;: 5 a stack

iff for any two points i, j E Reither i; j or j; i.

The problem we consider is as follows: given the set 5 and an integer B, partition 5 into

as few stacks as possible such that each stack contains no more than B points. We refer to

this problem as problem P.

Problem P is intimately related to problems in graph theory. Indeed, when we build a

graph G = (V, E) as follows: for each point i in 5 there is a node in V, and two nodes are

1

adjacent iff i -< j or j -< i, a so-called permutation graph arises (see for instance Golumbic

1980). Observe that a stack in S corresponds to a clique in G. Thus, in graph-theoretic

terms, problem P boils down to finding a partition of the permutation graph G into a

minimum number of cliques such that each clique has no more than B vertices. In fact, as

we describe at the end of this section, the two problems are equivalent.

Of course, if B is not present in the input of our problem, the resulting problem 1S

solvable in polynomial time since it is a special case of Dilworth's chain decomposition

theorem (Dilworth 1950). However, Jansen (2003) proves that for each fixed B ~ 6, problem

P is NP-hard.

Apart from the application sketched in section 2, problem P occurs in the field of mutual

exclusion scheduling problems (Jansen 2003, Baker and Coffman 1996). In this scheduling

problem a graph is given such that each vertex corresponds to a job, and an edge between two

vertices indicates that the two corresponding jobs are incompatible, i.e., cannot be processed

at the same time. Assuming that we have B processors available, and that each job needs a

single time-unit, computing a schedule such that the latest job finishes as soon as possible is

an instance of problem P (provided that the conflict graph is a permutation graph). Another

related problem, described in Felsner and vVernisch (1998) involves covering as many points

in a planar point set as possible, using a given number of chains.

The goal of this work is

• to describe a real-life application of problem P,

• to propose two exact algorithms for solving problem P: a branch-and-price algorithm

and an enumerative algorithm based on the concept of bounded clique-width,

• to assess the quality of these algorithms by performing computational experiments on

instances from practice as well as on randomly generated instances.

The paper is organized as follows. In Section 2 we describe a setting we encountered at a

manufacturer of storage systems. Section 3 proposes a branch-and-price approach based on

a set-partitioning formulation of P (see Barnhart et al. (1998) for a description of branch

and-price algorithms). vVe show that the pricing problem is solvable in polynomial time,

and that we can generalize this approach to partial orders. Section 4 is devoted to an

exact enumeration algorithm for a special case of problem P. This algorithm is based on

the concept of bounded clique-width. In Section 5, we show computational results from

2

the branch-and-price algorithm and from the algorithm based on bounded clique-width.

Section 6 contains the conclusions.

Finally, let us argue that a permutation graph can be represented in the plane, implying

the equivalence of problem P and the problem of partitioning a permutation graph into

bounded-size cliques.

The following can be found in Golumbic (1980). For each permutation graph G = (V, E),

a permutation 7r = (7rl' 7r2, ... , 7r1V1) can be computed such that the presence of an edge

between two nodes i and j is equivalent with (i - j)(7r;l - 7rjl) < 0, where 7r;1 is the

position of i in the permutation 7r. This means that, for i > j, there is an edge (i, j) iff i

precedes j in the sequence 7r.

Consider now the following point set S. For every i E V:

Yi = IVI- i

It follows that an edge (i, j) in the permutation graph implies i --< j or j --< i in the set

S. Hence, a clique in G corresponds to a stack in S, which implies that problem P and

partitioning a permutation graph into bounded-size cliques are equivalent.

2. Problem Description

Bruynzeel Storage Systems (BSS), a manufacturing company in the Netherlands, produces

storage systems. These storage systems are delivered worldwide. To construct such a system,

BSS produces many rectangular shaped boxes, each with a specific length and a specific

width. vVe refer to such a rectangular shaped box as an item. A single storage system may

consist of up to 200 items. Further, there are no standard sizes, so each customer specifies its

own requirements. The height of an item, however, is identical for all items. The items have

to be loaded onto pallets for transportation to the clients. It is allowed to place items on top

of each other in layers; however, the number of items per layer is restricted to one. Since the

items all have identical heights, it follows that the height of the trucks that transport the

pallets determines the maximum number of layers of each pallet. We denote this number

by B (in the case of BSS, B is equal to 12). A crucial feature involves the stability of the

pallets (see for example Bischoff (1991)). BSS stipulated that no larger item could be placed

on top of a smaller item. More precisely, both the length and the width of an item placed

3

in some layer must be smaller than or equal to the length and the width of the item placed

in the layer directly under it. This restriction ensures that pallets arrive in good shape at

their final destination (Moonen 2001). In order to achieve an efficient usage of the trucks it

is important to minimize the total number of pallets used.

This problem can be seen as a pallet loading problem (PLP). Pallet or container loading

problems concern the optimal packing of small items into large containers or pallets. The

terms pallets and containers are used interchangeably in most studies, although there is

an important difference between them. vVhen loading goods on a pallet, the notion of the

stability of the loading schemes is far more important than when the goods are to be loaded

into a container. vVhen loading items on a pallet, we cannot make use of the upstanding walls

that we have when loading items into a container, so the stability of the loading schemes

must be guaranteed (Bischoff 1991).

Most of the research on PLPs has concentrated on the case where a set of identical

items has to be loaded onto a single pallet. Dyckhoff (1990) gives a detailed overview

of the different types of PLPs and proposes a number of solution approaches for solving

them. In more recent work, Morabito and Morales (1998) developed a heuristic based on a

recursive procedure to solve the problem, and G and Kang (2001) propose a heuristic that

can be applied to relatively large instances (more than 5000 items). Letchford and Amaral

(2001) give a detailed analysis of upper bounds for the PLP. Also, some heuristics have been

suggested for solving the PLP with non-identical items. Scheithauer and Terno (1996b)

developed a heuristic combining a general branch-and-bound framework with optimal two

dimensional loading patterns. More recently, Terno et al. (2000) proposed an algorithm that

uses the G4-heuristic introduced in Scheithauer and Terno (1996a), and combine this with

a branch-and-bound procedure.

Notice that the application described here allows for identical items, whereas we assume

in problem P that all items are pairwise distinct. It is not difficult to see, however, that all

results presented later are valid for the case where identical items are allowed.

3. A Branch-and-Price Algorithm

In this section we formulate problem P as an integer program and we describe a branch

and-price algorithm for solving it (see ego Barnhart et al. (1998)).

4

3.1 Problem Formulation

For the mathematical formulation of our problem, we define a stable stack R ~ S as a stack

with IRI :::; B. Further, we introduce a decision variable Xk for every possible stable stack k,

such that:

{ I if stable stack k is in the solution
Xk = 0 otherwise.

Using a set-partitioning formulation, we get the following model:

subject to

Min LXk
k

LXk = 1
k:iEk

xk E {O,l}

Vi

Vk

(1)

(2)

(3)

The objective (1) is to minimize the total number of stacks needed to pack all items. Con

straints (2) state that each item has to be in exactly one stack, and constraints (3) are the

zero-one constraints on the Xk variables.

3.2 Column Generation

Since the number of variables in formulation (1)-(3) is exponentially large, we employ column

generation to find the LP-relaxation of (1)-(3) without having to enumerate all variables. In

the column generation process, we start with a small subset of the variables that contains a

feasible solution. All other variables are implicitly assigned the value zero. The subproblem

constructed in this way is called the restricted master problem (RMP). vVe solve the LP

relaxation of RMP, and then we have to determine whether the solution found is optimal

for the master problem. To do this, we have to answer the question: do there exist variables

with negative reduced costs? Let Ui (i = 1, ... , n) be the dual variables corresponding to

constraints (2) from our formulation. vVe can now formulate an expression for the reduced

costs of a variable Xk:

5

Thus, given a feasible solution to the LP-relaxation and the corresponding dual variables,

the pricing problem boils down to the following question:

3k such that I.: l/'i > I?
i:iEk

Lemma 1 The pricing problem can be solved in polynomial time.

Proof: vVe construct a directed graph D = (V, A). There is a node in V for each item, and

there is a source s in V. vVe draw an arc from node i to node j if for the corresponding

items i -< j holds; this arc has length CLj. Also, there is an arc from s to each node 'i E V

with length 'LLi. Observe that the constructed graph is acyclic. vVe now define dP(j) to be

the length of a longest path from s to j using at most p arcs (j = 1, ... , n). vVe claim

that these longest paths can be calculated in polynomial time using the following dynamic

programmmg recurSIOn:

dP(j) = max(maxi:(i,j)EAdP-l(i) + 'LLj, ctP-1(j))

with dl(j) = 'LLj 'l/j -I- s (p = 2, ... , B) (4)

Let us show by induction that the values dP (j) computed by the dynamic programming

recursion (4) satisfy their definition. The case p = 1 is trivial, so let us assume that it holds

for p = l - 1. Consider now a longest path from s to j using at most l arcs. If this path

contains exactly l arcs, there is a predecessor of j in this path, say j', such that the longest

path from s to j' using at most l - 1 arcs consists of the first l - 1 arcs in the longest path

from s to j. By induction the latter value (i.e., the length of a longest path from s to j' using

at most l- 1 arcs) is recorded in dl - 1 (j'). If this path contains less than l arcs, it follows that

dl(j) = dl-1(j). It follows that (4) computes dl(j) correctly. Thus, testing whether a node j

exists such that dB (j) > 1 amounts to answering the pricing problem. 0

A consequence of Lemma 1 is that the LP-relaxation of (1)-(3) can be solved in polynomial

time.

Remark. One could consider a situation where a weight Pk is given for each possible

stack k, and next minimize total weight. For instance, in terms of the application, it would

be quite natural to define the weight of stack k as the area of its largest item. Indeed,

it is easy to exhibit examples where minimizing total area is not equivalent to minimizing

the number of stacks needed. Notice that in this case the efficient solvability of the pricing

problem is preserved since by computing dB (j) using (4), and next comparing each value

6

Construct a subset P of
variables that contains a
feasible solution

Solve the pricing
problem

I s there a variable with
negative reduced costs·)

STOP: an optimal solution
to the LP-relaxation has
been found

Figure 1: Procedure for column generation

with the corresponding area of item j determines whether a variable with negative reduced

costs exists.

The solution found by applying the column generation procedure described in Figure 1

will in general be a fractional solution. '-IVe now sketch a branching structure in order to find

the integer optimum.

3.3 Branching procedure

The branching rule we use to partition the solution space IS based on the order in which

items are packed into a stack. Two items are called successors if they are packed in the same

stack such that one item lies directly above the other.

Lemma 2 If a given LP-solution x is fractional, there exists a pair of items i and j which

are successors zn a certain stack k with 1 > Xk > 0, such that

0<
k:i,j successors in k

Proof: Suppose that the lemma is false. Consider a fractional stack k (i.e., a stack

whose corresponding variable has a fractional value) and suppose that it contains m items,

{1,2, ... ,m},m 2': 2 (notice that such a stack always exists). For the lemma to be false, it

must be true that

L x k = 1, for l = 1, ... , m - l.
k:l,l+l successors in k

7

Thus all fractional stacks that contain item l must also contain item l + 1 as its successor

(l = 1, ... , m - 1). Further, since the LP-solution x satisfies constraints (2) for each item

l = 1, ... , m, it follows that Xk = l. Thus, the LP-solution is integral, which is in contradiction

with our assumption of a fractional solution, and proves the correctness of the lemma. 0

vVhen an optimal, fractional LP-solution has been found, we identify two items i and j

for which the sum of all stacks where i and j are successors lies between 0 and l. vVe know

from Lemma 2 that two such items exist. In the integer optimum, these two items will either

be successors in a stack, or they will not. So, given two items i and j, we branch as follows.

In one branch we modify the directed graph D in such a way that items i and j have to be

successors. vVe can do this by deleting all arcs (i, p) for p #- j and all arcs (p, j) for p =I=- i.

Observe that, when solving the pricing problem in case j is a successor of i, the value of

dB (i) is no longer relevant since a stack with item i not followed by item j is not allowed in

this branch. Therefore, we record in each node of the tree which items cannot serve as a last

item in a stack, and for these items j we do not consider dB (j). In the second branch, we

make sure that items i and j can never be successors in a solution, by deleting arc (i, j) from

D. In our algorithm we employ this branching step repeatedly to find an integer solution to

our problem. Notice that this branching scheme keeps the problem structure intact, which

allows us to use column generation throughout the branch-and-bound tree.

3.4 Partial Orders

To what extent can we generalize the branch-and-price approach? In this subsection we

show how the approach sketched in subsections 3.2 and 3.3 remains valid for so-called partial

orders.

In Trotter (1992), a partial order is defined as a pair (X, :::;), where X is a set and:::; is

a relation on X satisfying:

l. x:::; x for each x EX;

2. if x :::; y and y :::; x then x = y;

3. if x :::; y and y :::; z then x :::; z.

A chain C is a subset of X such that, for all x, y E C, one has x :::; y or y :::; x. An antichain

AC is a subset of X such that, for all x, y E AC, one has x i y and y i x. Now, consider

the problem of decomposing a partial order into a minimum number of chains, such that

8

each chain contains no more than B elements. We will refer to such a chain as a B-chain.

We claim that this problem can be tackled using the approach sketched here. First, one

easily verifies that the formulation (1)-(3) goes through by substituting the word" B-chain"

for" stable stack" in the definition of the xk-variables. Second, the efficient solvability of

the pricing problem (Lemma 1) depends on the fact that the digraph contains no directed

cycles. This property is preserved when we consider partial orders. Finally, notice that

also Lemma 2 holds in this more general setting, and it follows that the branching strategy

remains valid.

4. An algorithm based on bounded clique-width

In this section we propose an enumeration algorithm that is based on a property of some

of the instances encountered at BSS. It turns out that, in some instances, many items have

a same length. We exploit this property in this section by assuming that the number of

different lengths in an instance is bounded by a given parameter K. In other words, we

assume that in the input of the problem an additional parameter K is present; we refer to

this variant of problem P as problem P(K).

As a motivating example we first explore the case K = 2. VVe define nj as the number

of items of length j, and we assume that Ll < L2, where Li is the i-th length. Further,

let p = nI mod Band q = n2 mod B. Consider now the items with length L I , and find

the width that corresponds to the pth smallest item. Call this width WI' Then consider the

items of length 2, and find the width that corresponds to the qth largest item, and call this

width W2. Notice that the optimal solution of problem P(2) has value I ~ l or I ~ l + 1 since

Ii l + Ii l ::; I ~ l + 1. We now state, without proof, the following proposition:

Proposition 1 The optimal solution of problem P(2) has value I ~ l iff WI ::; W2'

We now consider problem P(K) in case of an arbitrary value of K. vVe assume that the

lengths are ordered such that Ll < L2 < ... < L K. In section 4.1 we focus on the concept of

(bounded) clique-width. Section 4.2 describes an exact algorithm for problem P(K).

4.1 Clique-width

A property of graphs that has received wide attention recently is clique-width. This property

was first introduced by Courcelle et al. (1993); a related concept called NLC-width has been

9

introduced by Wanke (1994). The reason for this attention is the fact that important graph

theoretic problems (like maximum clique or independent set) can be solved in polynomial

time for graphs with bounded clique-width.

Informally, the notion of clique-width of a graph G can be described using the following

operations (see Courcelle and Olariu (2001) or Brandstadt et al. (2003) for formal defini

tions) :

- creation of a vertex labelled with some integer i (the vertex is said to have label i); we

refer to this as operation 1.

disjoint union of two vertex-labelled graphs (given GI = (VI, EI), G2

G = (VI U 112, EI U E 2)); we refer to this as operation 2.

- adding an edge between each vertex with label i and each vertex with label j, i =1= j; we

refer to this as operation 3.

- relabel each vertex with labeli by label j; we refer to this as operation 4.

The minimum number of labels needed to construct G using these operations is the clique

width of G. Notice that permutation graphs in general have unbounded clique-width (Brandstadt

and Lozin 2003). However, in case of P(K) we have the following:

Lemma 3 A graph associated to an instance of P(K) has clique-width at most K + 1.

Proof: vVe prove the lemma by exhibiting a sequence of operations. First, we order the

vertices according to the width of the associated item in decreasing order. In case of a tie,

the vertex with the highest length goes first.

Let vertex i correspond to an item with length Lj; for each vertex i = 1, ... ,n we perform

the following operations:

- create vertex i and label it K + 1, using operation 1.

- add vertex i to the graph, using operation 2, i.e., G := (V U i, E).

- connect the vertex with label K + 1 to all vertices with label j, j + 1, ... , K, using operation

3 repeatedly.

- relabel the vertex with label K + 1 by label j using operation 4.

10

Observe that this construction guarantees that each vertex that corresponds to an item

with length L j is connected to all vertices that correspond to items that have length L j or

larger. Thus, the resulting permutation graph corresponds to an instance of P(K). 0

Remark: It is easy to verify that the graphs corresponding to instances of P(K) do not

have bounded tree-width.

We can now state the following theorem:

Theorem 1 Problem P(K) is solvable in polynomial time.

Proof: This result follows from Lemma 3 above and Theorem 2 in Espelage et al. (2001),

which states that the problem of partitioning a graph into cliques of bounded size is solvable

in polynomial time for graphs with bounded clique-width. 0

4.2 An algorithm for P(J()

vVe describe an exact algorithm for problem P(K) that, given B, runs in polynomial time.

We now state some preliminaries.

Definition 1 A stack is called mixed when it contains items of at least two different lengths.

A stack that only contains items of the same length is called pure.

Definition 2 The length of an item i is denoted by li' and its width by Wi.

Property 1 A solution of problem P(K) is said to have property 1 if each pure stack of a

length whose items also occur in mixed stacks of that solution, has size B.

Property 2 A solution of problem P(K) is said to have property 2 if it contains no more

than 2K mixed stacks.

Property 3 A solution of problem P(K) is said to have property 3 if no item T in a mixed

stack can be replaced by an item s from a pure stack, with ls = lr and Ws < W r .

Definition 3 We call a solution to problem P(K) minimal if it simultaneously satisfies

properties 1, 2 and 3.

Lemma 4 There exists an optimal solution to problem P(K) that is minimal.

Proof: Consider some optimal solution to problem P(K). By interchanging and transferring

items, we show that there is an optimal solution that is minimal. If there is an item occurring

in a mixed stack that has a length for which there exists a pure stack that is not of size

B (i.e., the number of items in the stack is smaller than B), we can transfer this item to

11

the pure stack. In this way, property 1 is satisfied. If there exists an item r occurring in a

mixed stack that can be replaced by an item s from a pure stack with ls = lr and Ws < W r ,

we interchange these items so that property 3 is also satisfied. To see that there exists an

optimal solution that satisfies property 2, observe that the maximum number of mixed stacks

with different length sets is equal to 2K. Therefore, if we have found a solution containing

more than 2K mixed stacks, there exist at least two stacks with identical length sets. vVe

now show that, by interchanging some items between these stacks, we can alter the solution

such that no stacks with identical length sets are present in the solution. For this, we first

define

P; : the smallest width of an item of length i from stack A

qi4. : the largest width of an item of length i from stack A

Observe that, when we discard the size-requirement of a stack, all items of length i can

be transferred from a stack A to a stack C if the following two conditions hold:

Now, consider an optimal solution that contains more than 2K mixed stacks.

(5)

(6)

Assume,

without loss of generality, that there exist two stacks A and C with identical length sets

L 1 , L2 , ... , Lm. We claim that there exist two lengths Li and L j such that either all items of

Li can be transferred from stack A to stack C, or all items of L j can be transferred from C

to A. This implies that we can construct an alternative optimal solution by interchanging

items between A and C such that these stacks no longer have identical length sets.

Without loss of generality we assume that

(7)

(If this would not be the case, we have PZm < qTm - 1 ; we know, by feasibility of stacks A and

C, that qZm-l S PZm and qfm - 1 S PTm, and it follows from this that PTm 2:: qZm-l' and we can

simply change the order of the two stacks to arrive at our assumption that PZm 2:: qTm - 1 .)

Since PZm 2:: qTm - 1 , the items of length Lm from stack A can be transferred to stack C.

Now, we have to find a length such that items from stack C can be transferred to stack A. In

order to do so, we have to find a length for which conditions (5) and (6) hold. Assume that

we cannot find such a length; we then show that we will ultimately arrive at a contradiction,

proving that such a length does exist.

12

Claim 1 If items of L 1 , ... , L j cannot be transferred from C to A it follows that qtj >
A. . 1 1 PLjH,J = , ... ,Tn- .

Proof: we use induction to prove this claim. Consider the case j = 1. vVe can transfer the

items of L1 from stack C to stack A if qt1 ::; pi2 . Since the items of L1 are the smallest items,

condition (6) does not apply, since there is no length smaller than L 1 . vVe assumed that we

could not transfer items from stack C to stack A, so it must hold that qt1 > pL. Next,

suppose the claim is true for j = l - 1, is it true for j = l? Since we are not able to transfer

the items of Ll from C to A, at least one of the inequalities qt1 ::; pi1+1 and pt1 2: qi1- 1 must

be violated. But we know by induction that qt1- 1 > pi1 which, together with pr1 2: qt1- 1

and pi1 2: qi1- 1 , implies pr1 2: qZl-l' Hence, it follows that qZl > Pi1H , and this contradicts

(7). D

Notice that we could actually replace the upper bound of 2J(on the number of mixed

stacks by 2J(- K - 1, since items of at least two different lengths must be present in a mixed

stack. Lemma 4 implies that there exists an optimal solution such that for each j = 1, ... , K

the number of items of length L j present in mixed stacks (denoted by Sj) equals

n·
Sj = nj - 0;j * B,for some 0;j E {O, 1, ... , I ~l}

Now, given a set of possible srvalues, we enumerate all possible minimal solutions. vVe do

this using the concept of a partial solution.

Definition 4 A partial solution is a family of 2J(sets of items such that each set corre

sponds to a feasible stack and such that each item occurs at most once in the family.

To each partial solution we associate a length. That is, the minimum length L j for which

less than Sj items are present in the current partial solution. Further, we can associate to

each stack in the partial solution with less than B items, the minimal item of that length L j

that can be feasibly added to that stack.

vVe now give an algorithm that finds an optimal minimal solution to problem P(K),

assuming that a set of srvalues is given. First, we deal exclusively with constructing the

mixed stacks. For this, we start with a partial solution that has 2K empty stacks, and we

gradually fill - in many different ways - these stacks.

Algorithm ENUM:

13

Step 1. Start with the initial partial solution that consists of 2K empty stacks. vVe associate

length L1 to this solution (assuming Sl > 0), and set as minimal item for each stack

the smallest item of L 1 . Go to step 2.

Step 2. Generate (at most) 2K new partial solutions by adding for each stack in the old

partial solution its minimal item. Notice we get 2K new partial solutions, since there

are 2K stacks in the old partial solution. Go to step 3.

Step 3. Associate to each partial solution the new minimum length L j for which less than

Sj items are present, and associate to each stack in all solutions its new minimal item.

If L:~:1 Sj items are present in the new partial solution, go to step 4. Otherwise, go to

step 2.

Step 4. For each final partial solution, i.e. for each partial solution where L:~:1 Sj items are

assigned, verify whether each stack in the solution is a mixed stack. If not, we simply

discard the solution. Else, go to step 5.

Step 5. Complete each final partial solution to a feasible solution by adding the remaining

items in pure stacks in a straightforward way. Stop.

By associating a node to each partial solution and connecting two nodes if one partial solution

is constructed by adding a single item to the other, a tree results. 'vVe refer to this as the

tree of partial solutions.

Lemma 5 A solution genemted by algorithm ENUM is minimal.

Proof: We verify whether a solution found by ENUM satisfies properties 1, 2 and 3. The

choice ofthe sy-values and step 5 ofthe algorithm guarantee that each solution found satisfies

property 1. Obviously, it satisfies property 2. Now suppose that the solution found does not

satisfy property 3, that is, there exists at least one item r that is present in a mixed stack,

that could be interchanged with an item S satisfying ls = lr and Ws < W r . Let r be the

smallest interchangeable item and consider the step in the algorithm when we added item r

to a stack. Apparently, we could have added item S at that time. But that implies that item r

was not a minimal item for that stack. Hence, such a solution can not have been generated by

the algorithm. o

Lemma 6 Any minimal solution is genemted by algorithm ENUM.

14

Proof: Consider a minimal solution S that is not generated by ENUM. So each generated

solution differs from S. Consider the tree of partial solutions. Let us find a set of paths in

this tree: starting with the initial solution, follow a branch to a next partial solution if it

puts an item in a stack if in S the same item is in the same stack. Notice that no path makes

it till the end (since S was not generated by ENUM). So let us consider a partial solution

that has no outgoing branches and which is not final. To this partial solution a length is

associated, say the current length.

Consider now the minimal item of the current length of that partial solution that is used

in S, and that has not been considered when we followed branches. Say that this item is

called item d and that it is in stack j in solution S. This stack j has another item, say item c,

serving as minimal item when we look at the branch from our current partial solution to the

partial solution where stack j receives an item (if c = d, we would have followed that branch).

Thus, c -< d. Now, since S is minimal it must use item c somewhere else (if S would not use c

at all, we could replace d by c in S, contradicting the minimality of S (property 3)). Say item

c is used in stack j' (j' i=- j). If we look at the branch from our current partial solution to the

partial solution that gives j' another item, we know there is a minimal item that cannot be

item c (otherwise we would have followed that branch) Thus, there is another item present

in that partial solution, say item b, b -< c. Again, b must be somewhere in S, say in stack j".

Notice that j" i=- j' (for obvious reasons) but also j" i=- j (since c is minimal for j and b -< c).

Let us look at the stack j" and its minimal item given our current partial solution. It cannot

be b (else we would have followed this branch), so it must be less than b, say a. Thus, a

must be in S (otherwise we can interchange contradicting the minimality of S), say in j'".

Again, this stack jill is different from the previously considered stacks j", j' and j (otherwise

each of the wouldn't have the minimal item they have). Continuing in this way, it leads to

the conclusion that S has more than 2K stacks, contradicting property 2 and hence S is not

minimal. D

Theorem 2 The running time of algorithm ENUM is bounded by (2 K)B*2 K * n K .

Proof: The complexity of ENUM depends on the number of solutions generated. This

number depends on the number of items that are present in mixed stacks. Property 2

implies that
K

L Sj ::; B * 2K
j=l

15

Hence, ENUM cannot generate more than (2 K)B*2 K different solutions. Further, ENUM

has to be executed for each possible set of srvalues. Observe that for each Sj there are O(~)

possible values, j = 1, ... ,K, leading to O(nK) possible sets of srvalues for a fixed B. The re

sult follows. Notice that, for a fixed B and a fixed K, this is a polynomial time algorithm. 0

5. Computational Experiments

In this section we discuss some issues concerning the implementation of algorithms described

in this paper, and we show some computational results.

5.1 Implementation Issues

Both algorithms described in this paper are implemented on a 733 MHz computer with

128Mb of intern memory. The algorithms are coded in C++, and in the branch-and-price

algorithm, we use LINDO to solve the restricted master problems.

We used two data sets for the computational experiments. The first data set contains

x- and y-coordinates from 50 real-life instances provided to us by BSS, and the second data

set contains 50 randomly generated instances. In both data sets the number of items ranges

from 0 to 200 (see Table 1). The items from the random instances all have lengths and

widths uniformly distributed between 0 and 3000, and the number of items also follows a

uniform distribution between 0 and 200 items per instance. 'vVe use different values for B,

ranging from 3 to 15. In the real-life setting from BSS, B = 12.

Table 1: Characteristics of the data sets.
#Items #Instances #Instances

0-40
40-80
80-120
120-160
160-200

(data set 1) (data set 2)
10 9
15
10
7
8

13
7
12
9

For data set 1, the value of K ranges from 2 to 9, and in most instances (approximately

85%) K equals 2, 3 or 4. For the second data set however, the value of K is very close to n.

Thus, the clique-width of the instances of data set 1 is small; this is not guaranteed for the

instances of data set 2. Since the running time of the enumeration algorithm is exponential

in K, the instances from data set 2 are very hard to solve for ENUM. In fact, none of the

16

instances could be solved by ENUM in less than one hour of computation time, so for ENUM

we present only the results of the first data set.

In the branch-and-price algorithm, we use a heuristic to find a good starting solution.

before starting the actual branch-and-price procedure. This starting solution is computed in

a very straightforward way: all items are ordered, first according to their length (increasing)

and second according to their width (also increasing). vVe start with the first item and put

it in a stack. Then we simply go down the list, and if an item can be added to the current

stack, we add it, and otherwise we continue with the next item. If a stack contains B items,

or if we are at the end of the list, we start a new stack with the first available item and start

this procedure over. To determine whether a solution generated by this heuristic is optimal,

we use the lower bound I ~ l.
In the pricing problem, when trying to find new variables with negative reduced costs,

we add one variable in each iteration of the longest path procedure. This is the variable with

reduced costs that are the most negative.

In the enumeration algorithm, we first compute a lower and an upper bound. The lower

bound equals I ~ l, and the upper bound is equal to I ~ l + ... + I '7f l. If these bounds

coincide, there exists an optimal solution consisting of only pure stacks, and we do not need

to run ENUM to find a solution.

Apart from computing the LP-relaxation and I IJi l, we computed a third lower bound,

AG. AG stands for the size of a maximum antichain (see section 3.4). In other words, AG

is the optimal value of problem P in case there is no restriction on B (i.e. B = n).

5.2 Results

The results for the first data set are shown in Table 2 and the results for the second data

set are shown in Table 3. In the first two columns we give the value of B and a range for

the number of items. The following three columns give the values of three lower bounds,

namely I IJi l, the size of a maximum antichain and the solution of the LP-relaxation. The

column labelled 'OPT' denotes the optimal integer solution. In the last columns we give the

number of branching nodes visited in the search tree, and the computation time in seconds.

In Table 2 these last two values are given both for the branch-and-price algorithm as for

ENUM. Table 3 only shows the results of the branch-and-price algorithm. Notice that all

values are average values over all test instances in the specific range.

17

Table 2: Results for real-life instances
B n I I ~ 1 AC LP OPT I Branch&Price I ENUlVI

Nodes Time Nodes Time
3 ::; 40 11,90 2,50 11,47 11,90 0,00 0,00 3,70 0,00

::; 80 19,13 3,33 18,91 19,13 29,07 0,69 33,93 2,52
::; 120 36,90 2,90 36,40 36,90 0,00 0,01 2,90 0,01
::; 160 45,86 3,00 45,43 45,86 0,00 0,02 3,14 2,04
::; 200 60,50 2,38 60,08 60,50 0,00 0,05 0,63 0,00

6 ::; 40 6,20 2,50 5,72 6,20 0,00 0,00 7,40 0,00
::; 80 9,73 3,33 9,48 9,80 0,07 0,03 23,87 0,00

< 120 \18,70 2,90 18,20 18,70 0,00 0,01 11,80 0,00
::; 160 23,29 3,00 22,71 23,29 0,00 0,02 4,29 0,01
::; 200 I 30,38 2,38 30,04 30,38 0,00 0,05 4,63 0,00

9 ::; 40 \4,40 2,50 3,97 4,40 0,10 0,02 11,00 0,00
::; 80 6,67 3,33 6,35 6,67 10,08 4,87 24,27 0,00
::; 120 12,80 2,90 12,18 12,80 5,40 0,23 5,80 0,00
::; 160 15,57 3,00 15,16 15,57 1,43 2,26 20,57 0,00
::; 200 20,38 2,38 20,04 20,38 7,75 0,65 11,00 0,00

12 ::; 40 I 3,50 2,50 3,23 3,70 4,80 0,56 14,00 0,00

< 80 \5,13 3,33 4,82 5,27 9,00 6,64 25,94 0,00
::; 120 9,60 2,90 9,10 9,60 0,00 0,01 25,90 0,00
::; 160 11,86 3,00 11,48 11,86 7,57 0,96 31,43 0,00
::; 200 15,50 2,38 15,02 15,50 8,75 2,60 51,88 0,01

15 ::; 40 \2,70 2,50 2,81 3,10 8,10 5,72 22,10 0,00
::; 80 4,33 3,33 3,96 4,40 0,07 1,35 29,07 0,00

::; 120 \7,60 2,90 7,29 7,60 4,90 5,13 28,00 0,00
::; 160 9,43 3,00 9,10 9,43 10,71 6,89 61,14 0,00
::; 200 I 12,63 2,38 12,19 12,96 15,50 7,78 55,88 0,01

In the tables with the results we see that, in a number of cases the number of branching

nodes is equal to 0. For the branch-and-price algorithm, this means that the solution found

by the heuristic equals I ~ 1 (this happened 217 out of 250 times in Table 2 and 12 out of

250 times in Table 3). For the ENUM algorithm it means that the lower- and upper bound

computed at the start of the algorithm are the same, which means that there exists an

optimal solution with zero items in mixed packages (this happened 90 out of 250 times in

Table 2).

From Table 2 we conclude that the instances from data set 1 can be solved optimally

very fast by both algorithms; 90% of the instances is solved in less than one second for the

branch-and-price algorithm, and for ENUM even 99% of all instances is solved in less than

one second. One reason for the good performance of the branch-and-price algorithm is that

18

Table 3: Results for random instances
B n [I~l AC LP OPT [Nodes Time
3 :::; 40 9,89 8,67 10,11 10,44 15,11 0,10

:::; 80 18,77 11,69 18,54 18,85 46,08 7,23

:::; 120 \33,57 16,14 33,38 33,57 \101,14 12,92
:::; 160 47,92 20,83 47,47 47,92 165,75 41,43
:::; 200 [61,11 23,22 60,85 61,11 [305,56 120,10

6 :::; 40 5,22 8,67 8,67 8,67 1,00 0,02
:::; 80 9,62 11,69 11,72 11,77 12,31 4,50
:::; 120 17,00 16,14 17,10 17,29 69,14 82,53

:::; 160 \24,17 20,83 23,90 24,25 \51,83 65,36
:::; 200 30,67 23,22 30,50 30,67 62,67 112,78

9 :::; 40 [3,78 8,67 8,67 8,67 [1,00 0,02

< 80 \6,62 11,69 11,69 11,69 \1,00 0,14
:::; 120 11,57 16,14 16,14 16,14 9,57 9,25
:::; 160 16,33 20,83 21,42 21,42 10,67 25,40
:::; 200 20,67 23,22 26,00 26,00 15,22 97,62

12 :::; 40 2,78 8,67 8,67 8,67 \1,00 0,03
:::; 80 .5,08 11,69 11,69 11,69 1,00 0,37
:::; 120 8,71 16,14 16,14 16,14 \1,00 3,68
:::; 160 12,42 20,83 20,83 20,83 13,17 43,54
:::; 200 15,56 23,22 23,22 23,22 1,00 78,54

15 :::; 40 2,44 8,67 8,67 8,67 1,00 0,03

< 80 \4,23 11,69 11,69 11,69 \1,00 0,37
:::; 120 7,29 16,14 16,14 16,14 1,00 3,98

< 160 \10,00 20,83 20,83 20,83 \1,00 16,20
:::; 200 12,67 23,22 23,22 23,22 1,00 85,93

in 86,8% of the instances, the heuristic for finding an initial solution in the branch-and-price

algorithm provides us with an optimal solution which equals I ~ l. Indeed, the quality of the

lower bound IlJ l for data set 1 is striking. For the ENUM algorithm, an optimal solution is

found without having to branch in 36,0% of the instances. Thus, in most cases ENUM has

to be executed, and then it finds an optimal solution very fast, i.e., usually faster than the

branch-and-price algorithm. As described before, from the results it is also clear that both

I~l and LP are good lower bounds for the integer optimum; the value of AC however, is in

many cases far from the optimum.

vVhen we look at the results from the random instances in Table 3, we see that the

computation times of the branch-and-price algorithm are slower than those from the real-life

instances. Further, the lower bound from the LP-relaxation and the value of AC are very

close to the integer optimum; for large B (B 2:: 9) they even coincide. Not surprisingly, the

19

lower bound I-§ 1 performs here much worse, especially for large B. The heuristic for finding

an initial solution performs much worse compared to the results from the first data set: only

for 4.8% of the instances the heuristic finds an optimal solution equalling I ~ 1·
From the results we conclude that there is a clear difference between the real-life and the

random instances. For the real-life instances, the computation times are much faster than for

the random instances. Also, when we look at the results from the random instances, we see

that as the number of items increases, the computation times generally increase for each value

of B, while this is not so clear from the results of the real-life instances. These differences

in performance can be explained by the fact that, in the real-life instances the number of

different lengths is small; a property that is not present in the randomly generated instances.

Because of this structure, the performance of our heuristic to find an initial solution performs

much better for the real-life instances.

Finally, the results show that the solution to the LP-relaxation provides us for all in

stances with a very good lower bound on the integer optimum. In all instances, the value

of the integer optimum (VIP) is smaller than or equal to the value of the LP-solution (VLP)

rounded up: VIP::; rVLP 1. This is not true in general: one can easily construct instances

such that VIP = 1 VLP ·

6. Conclusion

In this paper we described two exact algorithms for partitioning a permutation graph into

cliques of bounded size. The first algorithm is a branch-and-price algorithm, based on an

integer programming formulation. The pricing problem can be formulated as a longest path

problem and can be solved efficiently by dynamic programming. The second algorithm is an

enumeration algorithm based on the concept of bounded clique-width. This algorithm was

motivated by a special structure that is present in the real-life instances that were used for

computational experiments. From the computational results we conclude that both the real

life and the random instances can be solved satisfactorily by the branch-and-price algorithm.

The enumeration algorithm performs really well in case of the real-life instances (99% of the

instances are solved within a second), but the random instances cannot be solved efficiently,

due to the large number of different lengihs in the input. From these results we also see that

the LP-relaxation provides us with a good lower bound on the integer optimum.

20

Acknowledgements

This research was partially supported by EU Thematic Network APPOL II, IST-2001-32007.

We would like to thank Eric Stinges from Bruynzeel Storage Systems for providing us with

the data for the test instances.

References

Baker, B.S., E.G. Coffman, Jr. 1996. Mutual exclusion scheduling. Theoret. Compllt. Sci.,

162, 225-245.

Barnhart, C., E.D. Johnson, C.L. Nemhauser, M.vV.P. Salvelsbergh, P.R. Vance. 1998.

Branch-and-Price: column generation for solving huge integer programs. Oper. Res., 46,

316-329.

Bischoff, E.E. 1991. Stability aspects of pallet loading. OR Spektrum, 13, 189-197.

Brandstadt, A., F.F. Dragan, H.-O. Le and R. lVIosca. 2003. New graph classes of bounded

clique-width. To appear in Theory of Comput. Systems.

Brandstadt, A., V.V. Lozin. 2003. On the linear structure and clique-width of bipartite

permutation graphs. Ars Combinatoria, LXVII, 273-281.

Courcelle, B., J. Engelfriet, G. Rozenberg. 1993. Handle-rewriting hypergraph grammars.

J. of Comput. and System Sci., 46, 218-270.

Courcelle, B., S. Olariu. 2001. Upper bounds to the clique-width of graphs. Discrete Appl.

Math., 101, 77-114.

Dilworth, R.P. 1950. A decomposition theorem for partially ordered sets. Ann. of Math.,

51, 161-166.

Dyckhoff, H. 1990. A typology of cutting and packing problems. Ellr. J. of Oper. Res., 44,

145-159.

Espelage, W., F. Gurski, E. Wanke. 2001. How to solve NP-hard graph problems on clique

width bounded graphs in polynomial time. In Proceedings of we '01, LNCS, 2204,

117-128, Springer Verlag.

Felsner, S., L. Wernish. 1998. Maximum k-chains in planar point sets: combinatorial

structure and algorithms. SIAM J. of Compllt., 28, 192-209.

21

G, Y-G., M.-K. Kang. 2001. A fast algorithm for two-dimensional pallet loading problems

of large size. Eur. 1. of Oper. Res., 134, 193-202.

Golumbic, M.C. 1980. Algorithmic graph theory and perfect graphs. Academic Press, New

York.

Jansen, K. 2003. The mutual exclusion scheduling problem for permutation and compara

bility graphs. Inform. and Comput., 180, 71-81.

Letchford, A.N., A. Amaral. 2001. Analysis of upper bounds for the pallet loading problem.

Eur. 1. of Oper. Res., 132, 582-593.

Moonen, L.S. 2001. Optimaliseren van een pmductiepmces. Master's thesis of Maastricht

University (in Dutch).

Morabito, R., S. Morales. 1998. A simple and effective procedure for the manufacturer's

pallet loading problem. 1. of the Oper. Res. Soc., 49, 819-828.

Scheithauer, G., J. Terno. 1996a. The G4-heuristic for the pallet loading problem. J. of the

Oper. Res. Soc., 47, 511-522.

Scheithauer, G., J. Terno. 1996b. A heuristic approach for solving the multi-pallet packing

problem. Working Paper, Dresden University of Technology.

Terno, J., G. Scheithauer, U. SommerweiB, J. Riehme. 2000. An efficient approach for the

multi-pallet loading problem. Eur. 1. of Oper. Res., 123, 372-381.

Trotter, \iV.T. 1992. Combinatorics and partially ordered sets: dimension theory. The John

Hopkins University Press, Baltimore.

\iVanke, E. 1994. k-NLC graphs under polynomial algorithms. Discrete Appl. Math., 54,

251-266.

22

