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Abstract

We study the behaviour of the information matrix (IM) test when
maximum likelihood estimators are replaced with robust estimators.
The latter may unmask outliers and hence improve the power of the
test. We investigate in detail the local asymptotic power of the IM
test in the normal model, for various estimators and under a range
of local alternatives. These local alternatives include contamination
neighbourhoods, Student’s t (with degrees of freedom approaching in-
finity), skewness, and a tilted normal. Simulation studies for fixed
alternatives confirm that in many cases the use of robust estimators
substantially increases the power of the IM test.
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1 Introduction

White (1982) introduced the information matrix (IM) test as an omnibus
test for misspecification of a parametric model. The test exploits the well-
known property that, at the model, the sum of the Hessian of the log-
likelihood and the outer product of the score has zero expectation. So if,
at parameter estimates, the sample average of the sum of the Hessian and
the outer product of the score differs significantly from zero, this is evidence
against the model. The IM test is typically implemented using maximum
likelihood (ML) estimates of the parameters. In this paper we explore the
potential of replacing the ML estimator with robust estimators. Specific at-
tention is given to the effect on power, conjecturing that unmasking outliers
will lead to an increased power of the IM test. In most cases considered,
using robust estimators effectively increases the power of the test.

Past research on the IM test has mainly focussed on the poor behaviour
of the test under the null hypothesis, and on remedies to overcome this
problem (see e.g. Orme (1990) and Chesher and Spady (1991), among many
others). Considering that the use of bootstrap critical values largely solves
this problem (Horowitz, 1994), we shift our attention to the power of the
IM test.

The standard approach in the literature on the IM test is to substitute
the ML estimator for the unknown parameter in the IM equality. As an
alternative, one can use any estimator which is consistent under the model
specification. When the IM test is used in conjunction with the ML esti-
mator, the test may suffer from the masking effect. Outlying observations
will not be recognised as such (or less so, compared to robust estimators),
and hence the test will have low power against distributions with fatter tails
or when outliers are present. We show that, when robust estimators are
used, the IM test statistic still has a limiting χ2 distribution under the null
hypothesis. An explicit expression for the asymptotic covariance matrix (V )
of the indicator vector, to be used in the construction of the test statistic,
is derived.

We analyse the normal location-scale model in detail. It is shown that
V does not depend on the estimator of location. For the ML estimator, as
is well-known, the IM test is the Jarque-Bera (1980) test for skewness and
non-normal kurtosis, and the rank of V equals 2. We show that, for any
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other M-estimator of scale, the rank of V equals 3, indicating that in this
case the IM test is sensitive to ‘more’ specification error. Explicit expres-
sions for V are derived for two robust M-estimators of scale, namely the
M-estimator based on Tukey’s biweight (TB) function and the Median Ab-
solute Deviation (MAD). Next, we examine the performance of the IM test
under four different sequences of local alternatives: a contaminated normal,
Student’s t, a skewed normal, and a tilted normal. The asymptotic distribu-
tion of the IM statistics under a sequence of local alternatives is non-central
χ2. For the contaminated normal alternative the non-centrality parameter
is shown to be minimal, over all M-estimators, at the ML estimator. It turns
out that, when outlying observations are present, the IM test using the 25%
breakdown point TB estimator (which is a compromise between high robust-
ness and high efficiency) is much more powerful than the IM test using the
ML estimator. On the other hand, when the local alternative is Student’s
t (with degrees of freedom approaching infinity), skewed normal, or tilted
normal, the non-centrality parameter is identical for all M-estimators. We
derive closed-form expressions of the non-centrality parameter, under any
local alternative considered. We also compare, whenever relevant, the local
power of the IM tests with the local power of the score test. The latter test
is known to be optimal and so it provides a natural benchmark.

In the normal regression model the IM test is a combined test for het-
eroskedasticity, skewness and non-normal kurtosis (Hall, 1987). We use an
S-estimator (Rousseeuw and Yohai, 1984) or an MM-estimator (Yohai, 1987)
as robust estimators of regression, and an M-estimator based on Tukey’s bi-
weight function as a robust estimator of residual scale. It is well-known that
the ML estimator tends to mask outlying observations, and this danger is
more severe in the regression model than in the location-scale model. It
is therefore expected that the use of robust estimators holds more promise
in the regression case. Simulation results indeed indicate that using robust
estimators increases the power of the IM test in the case of a thick-tailed
alternative like the Cauchy distribution, or in the presence of outliers.

Note that in the presence of outliers, the misspecification test will reject
the IM equality. The aim of testing the IM equality with robust estimators is
to increase the power of the statistical test, and not to attain level-robustness
(Hampel et al., 1986). So when the null hypothesis holds, aside from some
outliers, we would like the test to detect this deviation from the specified
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model.
In Section 2 we present the IM test with robust estimators and the

general form of the IM statistic. The IM test in the normal model, without
and with covariates, is considered in Sections 3 and 5, respectively. In
Section 4 we study the local asymptotic power of the IM test in the normal
model without covariates. Monte Carlo results are presented in Section 6.
Section 7 concludes. Technical derivations are gathered in the Appendix.

2 The IM test with robust estimators

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of the random variables
(X,Y ), whereX has distributionK (which is left unspecified) and the distri-
bution of Y , given X, is specified by the parametric model {Fθ | θ ∈ Θ}. Let
fθ be the conditional density corresponding to Fθ, and let sθ = − ∂

∂θ log fθ.
The conditional IM equality can be stated as

EFθ
[m(X,Y ; θ)] = 0 for almost all X,

where EFθ
is the conditional expectation with respect to Fθ and m is the

vectorised lower triangular part of

sθs
′
θ −

∂

∂θ′
sθ.

Integrating with respect to K yields the IM equality

E[m(X,Y ; θ)] = 0,

where E[·] = EKEFθ
[·]. Now let θ̂ be an estimator of θ, sufficiently regular

to have

θ̂ − θ = 1
n

n∑
i=1

IF(Xi, Yi; θ̂;K,Fθ) + op(n−1/2), (1)

where IF is the influence function of the estimator θ̂, and, for

M̂ =
1
n

n∑
i=1

m(Xi, Yi; θ̂),
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to admit the expansion

M̂ =
1
n

n∑
i=1

[
m(Xi, Yi; θ) +

(
∂

∂θ
m(Xi, Yi; θ)

)′
(θ̂ − θ)

]
+ op(n−1/2). (2)

The estimator θ̂ is B-robust (Hampel et al., 1986) when IF(·, ·; θ̂;K;Fθ) is
bounded. Assuming the existence of

D(θ) = E[
∂

∂θ′
m(X,Y ; θ)],

we have

1
n

n∑
i=1

∂

∂θ′
m(Xi, Yi; θ)

p→ D(θ). (3)

Now, let

ξ(X,Y ; θ) = m(X,Y ; θ) +D(θ)IF(X,Y ; θ̂;K,Fθ). (4)

Then, combining (1)-(4),

M̂ =
1
n

n∑
i=1

ξ(Xi, Yi; θ) + op(n−1/2). (5)

So we obtain

√
nM̂

d→ N(0, V ),

with

V = E[ξ(X,Y ; θ)ξ(X,Y ; θ)′].

Let V̂ + be a consistent estimator of V +, the Moore-Penrose inverse of V ,
and define the test statistic

T = nM̂ ′V̂ +M̂.

Then, if the parametric model is correctly specified,

T
d→ χ2

q,
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where q is the rank of V . Remark that T can also be written as

T = n
(
WM̂

)′ (
WV̂W ′

)+ (
WM̂

)
,

where W is any non-singular q × q matrix. Choosing W so as to make
WVW ′ diagonal simplifies T , and this will be exploited below.

Note that if, say, the j-th column of D(θ) is zero, then V is independent
of the estimator θ̂j (the j-th element of θ̂) that is used. When V has full
rank, an obvious estimator is

V̂ + =

[
1
n

n∑
i=1

ξ(Xi, Yi; θ̂)ξ(Xi, Yi; θ̂)′
]−1

.

For the ML estimator we have

IF(X,Y ; θ̂ML;K,Fθ) = −
(
E

[
∂

∂θ′
sθ(X,Y )

])−1

sθ(X,Y ).

It may occur that (some elements of) D(θ) need to be estimated by empirical
counterparts.

3 The normal model

3.1 The IM test

For the normal model without covariates, Fθ(y) = 1
σΦ(

y−β
σ ) with θ = (β, σ)′

and Φ the standard normal cdf. Letting u = (Y − β)/σ, we have (White,
1994, p. 332-333)

m(Y ; θ) =
1
σ2


 u2 − 1

u3 − 3u
u4 − 5u2 + 2


 ,

∂

∂θ′
m(Y ; θ) = − 1

σ3


 2u 4u2 − 2

3u2 − 3 5u3 − 9u
4u3 − 10u 6u4 − 20u2 + 4


 ,

D(θ) = − 1
σ3


 0 2

0 0
0 2


 ,
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wherefrom, using (4),

ξ(Y ; θ) =
1
σ2


 u2 − 1

u3 − 3u
u4 − 5u2 + 2


− 2

σ3


 IF(Y ; σ̂;Fθ)

0
IF(Y ; σ̂;Fθ)


 .

Note that ξ(Y ; θ) does not depend on IF(Y ; β̂;Fθ). Take σ̂ to be equivariant,
i.e. σ(aY1+b, · · · , aYn+b) = |a|σ(Y1, · · · , Yn), so IF(Y ; σ̂;Fθ) = σIF(u; σ̂; Φ)
and

ξ(Y ; θ) =
1
σ2


 u2 − 1− 2IF(u; σ̂; Φ)

u3 − 3u
u4 − 5u2 + 2− 2IF(u; σ̂; Φ)


 . (6)

A straightforward calculation shows that V = σ−4B, where B is a 3 × 3
matrix with elements Bij given by

B11 = −2 + 4ASV(σ̂),

B22 = 6,

B33 = 46 + 4ASV(σ̂)− 4EΦ(u4IF),

B13 = 10 + 4ASV(σ̂)− 2EΦ(u4IF) = B31,

B12 = B21 = B23 = B32 = 0,

with IF = IF(u; σ̂; Φ) and ASV(σ̂) = EΦ(IF2), the asymptotic variance of
σ̂ when σ = 1. Note that V does not depend on the estimator β̂ that is
chosen. For a given estimator θ̂ = (β̂, σ̂)′, let

ûi = (Yi − β̂)/σ̂, µ̂j = n−1
n∑
i=1

ûji ,

and write M̂ as σ̂−2N̂ with

N̂ =


 µ̂2 − 1

µ̂3 − 3µ̂1

µ̂4 − 5µ̂2 + 2


 .

Taking V̂ + equal to V + with σ replaced by σ̂ yields the test statistic

T = nM̂ ′V̂ +M̂ = nN̂ ′B+N̂ . (7)
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To simplify the notations and calculations that follow we transform M̂ in
order to diagonalise V . Let

W =


 1 + d 0 −d

0 1 0
−1 0 1


 , (8)

where

d =
EΦ

[
(u4 − 6u2 + 3)(u2 − 1− 2IF)

]
EΦ ((u4 − 6u2 + 3)2)

=
1
2
− 1
12
EΦ

(
u4IF

)
. (9)

Then

WM̂ =
1
σ̂2


 µ̂2 − 1− d(µ̂4 − 6µ̂2 + 3)

µ̂3 − 3µ̂1

µ̂4 − 6µ̂2 + 3


 ,

Wξ(Y ; θ) =
1
σ2


 u2 − 1− 2IF (u; σ̂; Φ)− d (u4 − 6u2 + 3

)
u3 − 3u

u4 − 6u2 + 3


 ,

and Ṽ =WVW ′ is given by

Ṽ =
1
σ4

diag[A, 6, 24],

where

A = −8 + 4ASV(σ̂) + 2E
(
u4IF

)− 1
6
[
E
(
u4IF

)]2
. (10)

We conclude that the IM test statistic in the normal model can be written
as the sum of three (asymptotically independent) statistics,

T = n

[
A+ (µ̂2 − 1− d(µ̂4 − 6µ̂2 + 3))2 +

1
6
(µ̂3 − 3µ̂1)2

+
1
24
(µ̂4 − 6µ̂2 + 3)2

]
. (11)
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3.2 Different parameter estimators

Maximum Likelihood Estimator

If σ̂ is the ML estimator, then IF = (u2 − 1)/2, d = A = 0 (implying Ṽ has
rank 2), and

T = n
[
(µ̂3 − 3µ̂1)2

6
+
(µ̂4 − 6µ̂2 + 3)2

24

]
,

with limiting χ2
2 distribution. If, moreover, β̂ is the ML estimator, then

µ̂1 = 0, µ̂2 = 1, and T reduces to

T = n
[
µ̂2

3

6
+
(µ̂4 − 3)2

24

]
, (12)

the well-known Jarque-Bera (1980) statistic for testing for skewness and
non-normal kurtosis.

Robust Estimators

Some straightforward algebra shows that V has rank 2 only if IF = (u2 −
1)/2. Thus, if σ̂ is not the ML estimator, then V has full rank and T ,
given by (11), has a limiting χ2

3 distribution. So, the IM test with robust
estimators is sensitive to ‘more’ specification error than the IM test with
ML estimators 1.

Throughout we use the median as a robust estimator of the location
parameter β. The asymptotic distribution of T , however, does not depend
on this choice. Neither does the local asymptotic power in the examples we
will consider. Alternative M-estimators of location could be used, but we
use the median since it is minimax robust (Huber, 1964).

As robust estimators of scale we consider two robust M-estimators. An
M-estimator of scale, σ̂, solves, for some chosen c > 0,

1
n

n∑
i=1

ρc

(
Yi − β̂
σ̂

)
= bc,

where bc = EΦ [ρc(u)], β̂ is an equivariant estimator of β, and ρc is an even
function, not identically zero, non-decreasing on [0,∞[, differentiable a.e.

1This property is not unique relative to robust estimators.
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and for which ρc(0) = 0. This estimator is consistent for σ and has influence
function (Huber, 1981)

IF(u; σ̂; Φ) =
ρc(u)− bc
EΦ[ρ′c(u)u]

.

For σ̂ to be robust, ρc has to be bounded and β̂ has to be a robust estimator
of location (e.g. the median). The ML estimator of σ, for example, is an
M-estimator of scale for which ρc(u) = u2 (unbounded), bc = 1, and β̂ is the
sample average, and hence is non-robust.

Consider the robust M-estimator of scale defined by Tukey’s biweight
(TB) function,

ρc(u) =




u2

2 − u4

2c2
+ u6

6c4
, if |u| ≤ c;

c2

6 , if |u| > c.
The choice of c is governed by the desired breakdown point of σ̂. The details
of how to compute T , for any choice of c, are given in Appendix A. Table 1
gives the numerical results for 10%, 25% and 50% breakdown points that
are needed to compute T using the TB estimator.

Another, simpler, robust M-estimator of scale is the (standardized) Me-
dian Absolute Deviation (MAD),

σ̂ =
1

Φ−1(3/4)
medi{|Yi −medjYj|},

for which ρc(u) = I(|u| ≥ c) with c = Φ−1(3/4) = 0.6745 and bc = 1/2. The
breakdown point of the MAD is 50%. Table 1 gives the constants, derived
in Appendix A, that are needed to compute T using the MAD.

4 Local asymptotic power

Let Fn be a sequence of local alternatives tending to the null distribution,
i.e. Fn → Fθ. Under a sequence of local alternatives,

Hn : Y ∼ Fn,
the IM indicator M̂ is, given some regularity conditions, asymptotically
normally distributed,

√
n(M̂ −mn) d→ N(0, V ),
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Table 1: Constants needed to compute the IM statistic T , as formulated in
(11), at the normal model for several robust estimators of scale

estimator breakdown c bc d A
of scale point

10% 5.182 0.4476 0.03800 2.417 × 10−4

TB 25% 2.937 0.3594 0.1059 0.03163
50% 1.548 0.1996 0.1925 0.8224

MAD 50% 0.6745 0.5 0.2121 2.362

where mn = EFn [m(Y ; θn)] and θn such that θ̂−θn = 1
n

∑n
i=1 IF(Yi; θ̂;Fn)+

op(n−1/2). Assuming the existence of

b = lim
n→∞

√
nmn,

it follows that under Hn the IM test statistic T = nM̂ ′V̂ +M̂ is asymptoti-
cally non-central χ2,

T
d→ χ2

q(δ),

with non-centrality parameter

δ = b′V +b.

In the following subsections, we derive explicit expressions for δ when
Fθ is the normal location-scale model, and Fn is a specific sequence of local
alternatives. As local alternatives we consider a contaminated normal, Stu-
dent’s t, a skewed normal, and a tilted normal. By the results of Section 3.1,
the non-centrality parameter takes the form

δ = A+b̃21 +
1
6
b̃22 +

1
24
b̃23,

where 
 b̃1
b̃2
b̃3


 = b̃ =Wb,
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with A andW defined in (10) and (8). Thus, for each alternative considered,
we need to find b̃.

The IM test is defined by the parametric model and the estimator em-
ployed (also by the estimator of V , but this is of no concern here). It is
not oriented towards a specific alternative, hence it is called an ‘omnibus’
test for misspecification. In contrast, the score test is defined by the para-
metric model and the alternative, and is usually implemented using the ML
estimator. The fact that it is specifically designed as a test against a given
alternative, and the way the test is constructed ensure that the score test is
most powerful against any given local alternative (Godfrey, 1990). Because
of this optimality property, it is natural to use the score test as a benchmark
for evaluating the power of the IM test. Thus, we also carry out a local power
analysis for the score test, except in the case of contamination because it
is unlikely that, in practice, the precise form of potential contamination is
known here.

In the remainder of this section, we take Fθ(y) = 1
σΦ
(
y−β
σ

)
, unless

otherwise stated.

4.1 Contaminated normal alternative

Consider the sequence of local alternatives

Hn : Y ∼ Fn = (1− e√
n
)Fθ +

e√
n
G (0 < e < 1),

where G is any distribution and e is the level of contamination. We have

b = lim
n→∞

√
nmn = e lim

n→∞

√
n

e
M

((
1− e√

n

)
Fθ +

e√
n
G

)

= e lim
ε↓0

1
ε
M
(
(1− ε)Fθ + εG

)

with M the functional representation of M̂ . So, b is the Gâteaux derivative
of M at Fθ in the direction of G. Hence (Hampel et al., 1986)

b = e
∫

IF(y;M ;Fθ)dG(y).

By (5), IF(y;M ;Fθ) = ξ(y; θ). Therefore, under Hn,

T
d→ χ2

q(δG) (13)
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where

δG = e2EG[ξ(Y ; θ)]′V +EG[ξ(Y ; θ)].

The expression for the non-centrality parameter is valid for any Fθ and G,
provided that EG[ξ(y; θ)] exists. Note that, for G = Fθ, δG = 0 as it should
be.

When Fθ is the normal distribution, then

δG = e2
[
A+
(
EGξ̃1

)2
+
1
6

(
EGξ̃2

)2
+

1
24

(
EGξ̃3

)2
]
, (14)

where

ξ̃1 = u2 − 1− 2IF− dξ̃3,
ξ̃2 = u3 − 3u,

ξ̃3 = u4 − 6u2 + 3,

IF = IF(u; σ̂; Φ) and u = Y−β
σ . We see from (14) that, for any G, δG is

minimal when σ̂ is the ML estimator, because then A = d = ξ̃1 = 0, which
makes the first term in brackets vanish, and because the second and third
term are independent of σ̂. When σ̂ is not the ML estimator, the first
term vanishes only if EGξ̃1 = 0. Thus, replacing the ML estimator with
another estimator has two opposite effects on power: it increases (actually,
non-decreases) the non-centrality parameter, but also increases the degrees
of freedom from 2 to 3.

Taking G = ∆x, where ∆x is the Dirac measure with all mass at x
(representing outliers in the data at x), the non-centrality parameter is

δx = e2
(
ξ(x; θ)

)′
V +ξ(x; θ),

while for G = 1
2 (∆x +∆−x) (representing symmetric outliers), it is

δ−x,x =
e2

4
(
ξ(x; θ) + ξ(−x; θ))′V +

(
ξ(x; θ) + ξ(−x; θ)).

Figure 1 gives the non-centrality parameter for G = ∆x and the three es-
timators discussed above (ML, MAD, and TB with 25% breakdown point).
The non-centrality parameter for G = 1

2(∆x +∆−x) is plotted in Figure 2.
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Figure 1: Asymmetric contamination: non-centrality parameter
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Figure 2: Symmetric contamination: non-centrality parameter
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We see in both figures that the non-centrality parameter corresponding to
the ML estimator is uniformly smaller than those corresponding to the other
estimators, as shown. The non-centrality parameter associated with the
MAD estimator is discontinuous at x = Φ−1(3/4) = 0.6745, where also ρc(·)
is discontinuous. Figure 3 gives the power curves of 5%-level IM tests with
level e contamination at x = 10, a clear outlier relative to the N(0, 1) distri-
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Figure 3: Power curves: (a) asymmetric contamination at x = 10
and (b) symmetric contamination at x = −10, 10
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bution. The ordering is unambiguous: the IM test with the TB estimator is
far more powerful than with the MAD or ML estimator. Using the MAD is
slightly more powerful than using ML. The TB estimator with 25% break-
down point is a compromise between the ML estimator which is efficient but
has 0% breakdown point, and the MAD estimator, which has 50% break-
down point but is very inefficient. This compromise yields a more powerful
IM test.

4.2 Student’s t alternative

Consider the sequence of local alternatives

Hn : Y ∼ Fn = Ft(√n/e) (e > 0)

where Ft(p) is the distribution function of a Student’s t variate with p degrees
of freedom. In Appendix B.1 it is shown that, under Hn,

T
d→ χ2

q(δ)

with non-centrality parameter

δ =
3
2
e2,

for all M-estimators of scale.
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Figure 4: Power curves: Student’s t
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Let S be the score test statistic, defined in the usual way. Under the
null hypothesis (p = ∞), S has a limiting χ2

1 distribution. Under Hn, as we
show in Appendix C.1,

S
d→ χ2

1(δ),

with non-centrality parameter

δ =
3
2
e2.

In conclusion, the score test and the IM tests have the same non-centrality
parameter in their limiting distribution. The power curves (as a function
of e) of 5%-level tests are given in Figure 4. The differences in power are
entirely due to differences in degrees of freedom: 1 for the score test, 2 for
the IM test with the ML estimator, and 3 for the IM test using any other
M-estimator. The difference in power between the IM tests is small.

4.3 Skewed normal alternative

Let Z ∼ N(0, 1) and denote the distribution of ZI(Z ≤ 0)+(1+γ)ZI(Z >
0) as F skγ (Fernández and Steel, 1998). Under the sequence of local alterna-
tives

Hn : Y ∼ Fn = F ske/√n,
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Figure 5: Power curves: Skewed normal

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

lo
ca

l a
sy

m
pt

ot
ic

 p
ow

er

ML
other M
score

we have, as shown in Appendix B.2,

T
d→ χ2

q(δ)

with non-centrality parameter

δ =
3
4π
e2,

which is the same for all M-estimators of scale.
Regarding the score test, we show in Appendix C.2 that, under Hn,

S
d→ χ2

1(δ),

with non-centrality parameter

δ =
π − 1
2π

e2.

The power curves of 5%-level tests are given in Figure 5. The score test
is now considerably more powerful than the IM test, primarily due to the
larger non-centrality parameter. The difference between the different IM
tests is, again, rather small.
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4.4 Tilted normal alternative

Let h(x) be a positive valued, scalar function satisfying h(0) = 1 and
dh(0)
dx = 1, and consider the tilted normal density

f(y;β, σ, κ, λ) =
1

σq(κ, λ)
φ(u)h

[
κ

6
(u3 − 3u) +

λ

24
(u4 − 6u2 + 3)

]
,

where u = (Y − β)/σ and

q(κ, λ) = EΦ

{
h

[
κ

6
(u3 − 3u) +

λ

24
(u4 − 6u2 + 3)

]}
,

which is assumed to exist. Taking h(x) = |x + 1| yields a density compa-
rable to the first two terms of an Edgeworth expansion. Let Fκ,λ be the
distribution corresponding to f(y; 0, 1, κ, λ). Then, as κ, λ → 0, the first
four moments of Fκ,λ are (see Appendix C.3)

EFκ,λ
(Y ) = 0 + o(κ, λ),

EFκ,λ

(
Y 2
)
= 1 + o(κ, λ), (15)

EFκ,λ

(
Y 3
)
= κ+ o(κ, λ),

EFκ,λ

(
Y 4
)
= 3 + λ+ o(κ, λ),

from which κ and λ have an interpretation as skewness and (excess-)kurtosis
parameters. Our interest in this distribution lies in the fact that the score
test for κ = λ = 0 is in fact the Jarque-Bera test. Thus, under a sequence
of local alternatives

Hn : Y ∼ Fn = Fκ,λ,

with κ = k/
√
n and λ = l/

√
n, the IM test with ML estimator is optimal.

We show in Appendix C.3 that, under Hn,

T
d→ χ2

q(δ),

with non-centrality parameter

δ =
k2

6
+
l2

24

for all M-estimators of scale.
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Figure 6: (a) Power surface ML estimator; (b) difference ML
estimator-other

The power surface for the IM test with ML estimator is plotted in Fig-
ure 6 (a). The difference in power between the IM test with ML estimator
and the IM test with other M-estimators is plotted in Figure 6 (b). The
maximal difference in power is 0.06623. It is again observed that the loss in
local power when using robust estimators for the IM equality test is rather
limited.

5 The normal regression model

For the normal model with covariates, Fθ(y|x) = 1
σΦ(

y−x′β
σ ) with θ =

(β′, σ)′. We obtain, with u = (Y −X ′β)/σ,

m(X,Y ; θ) =
1
σ2


 (u2 − 1)vech(XX ′)

(u3 − 3u)X
u4 − 5u2 + 2


 ,

where vech(·) is the lower triangular stack operator, and ξ = ξ(X,Y ; θ),

ξ =
1
σ2


 (u2 − 1)vech(XX ′)− 2

σ IF(X,Y ; σ̂;K,Fθ)EK [vech(XX
′)]

(u3 − 3u)X
u4 − 5u2 + 2− 2

σ IF(X,Y ; σ̂;K,Fθ)


 .
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When σ̂ is equivariant, IF(X,Y ; σ̂;Fθ) = σIF(u; σ̂; Φ). Hence V = σ−4C

with C a partitioned matrix with blocks

C11 = 2EK [vech(XX ′)(vech(XX ′))′]

+(B11 − 2)EK [vech(XX ′)]EK [vech(XX ′)]′,

C22 = B22EK(XX ′),

C33 = B33,

C13 = B13EK [vech(XX ′)] = C ′
31,

C12 = C ′
21 = 0, C23 = C ′

32 = 0,

and all Bij as in Section 3. Again, V does not depend on the choice of the
estimator of the location parameter β. Replacing EK with sample averages
yields an estimate Ĉ of C. For a given θ̂ = (β̂′, σ̂)′, let ûi = (Yi −X ′

iβ̂)/σ̂
and

N̂ =
1
n

n∑
i=1


 (û2

i − 1)vech(XiX ′
i)

(û3
i − 3ûi)Xi

û4
i − 5û2

i + 2


 =


 N̂1

N̂2

N̂3


 .

Then T takes the form

T = n
(
N̂ ′

1Ĉ
11N̂1 + N̂ ′

2Ĉ
22N̂2 + N̂ ′

3Ĉ
33N̂3 + 2N̂ ′

1Ĉ
13N̂3

)
,

where Ĉij is the (i, j)-th block of Ĉ+.
If θ̂ is the ML estimator and the first column ofX is a vector of ones, then

the first element of C11 is zero, B13 = 0 and B33 = 24. Let p = k(k + 1)/2,
with k = dim(β), and

L =
(
0p−1×1 Ip−1

)
,

Li = Lvech(XiX ′
i),

L̄ =
1
n

n∑
i=1

Li.

Then the IM test statistic with ML estimator can be written as (Hall, 1987)

T =
1
2

n∑
i=1

(û2
i − 1)L′

i

( n∑
i=1

(Li − L̄)(Li − L̄)′
)−1

n∑
i=1

(û2
i − 1)Li

+
1
6

n∑
i=1

û3
iX

′
i

( n∑
i=1

XiX
′
i

)−1
n∑
i=1

û3
iXi +

1
24

n∑
i=1

(ûi − 3)2.
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For the computation of the IM test statistic with robust estimators (in par-
ticular, for computing B), we refer to Section 3.2, since all robust scale
estimators considered here are M-estimators based on Tukey’s biweight func-
tion. We consider two robust estimators of β. The first one is the S-estimator
(Rousseeuw and Yohai, 1984),

β̂1 = argmin
β
s(β),

where s(β) is a robust M-estimator of scale, i.e. it solves

1
n

n∑
i=1

ρc1

(
Yi −X ′

iβ

s(β)

)
= bc1 ,

where ρc and bc are as in Section 3.2. The second one is the MM-estimator
(Yohai, 1987), which solves

β̂2 = argmin
β

n∑
i=1

ρc2

(
Yi −X ′

iβ

σ̂

)
,

where σ̂ is an initial residual scale estimator based on a very robust S-
estimator, i.e. σ̂ = s(β̂1). The constant c2 is chosen large enough to obtain
an increase in efficiency upon the S-estimator. By selecting c1 and c2 appro-
priately, this MM-estimator combines the high breakdown property (25%)
with a higher statistical efficiency (95% at Gaussian models) than the S-
estimator.

6 Monte Carlo results

6.1 The normal model

In Section 4 we studied the local behaviour of the IM test under various
alternatives. Here the finite sample power (against fixed alternatives) is
investigated by means of Monte Carlo experiments.

We look at three alternative hypotheses: a normal distribution contam-
inated with outliers, the Cauchy distribution, and the χ2 distribution. To
estimate the location robustly, we use the median, which has a breakdown
point of 50%. As robust scale estimators we use the MAD and the TB M-
estimator with 25% breakdown point. We carry out 10000 simulations. To
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Figure 7: RP-Power curves: (a) n = 20, 2 outliers at 4 (b) n = 20,
one outlier at -4, one outlier at 4
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correct power for errors in rejection probability (ERP) 2 we plot power as
function of (actual) rejection probability under the null of correct specifi-
cation, as in Davidson and MacKinnon (1998). For pivotal statistics, such
an RP-power curve 3 is obtained as follows. Run R Monte Carlo replica-
tions under the null and under the alternative hypothesis. Order the R test
statistics obtained under the null from high to low to obtain T 0

1 ≥ . . . ≥ T 0
R.

The power at actual RP k/(R + 1) is then estimated as the fraction of test
statistics generated under the alternative that are larger than T 0

k . Figure 7
plots the RP-power curves for n = 20, the alternative hypothesis being the
normal distribution contaminated with (a) two outliers at 4 and (b) one
outlier at −4 and one at 4. From Figure 7 (a) it is clear that the IM test
with robust estimators may, but need not be, more powerful in the presence
of outliers than the IM test with ML estimator. As a second alternative hy-
pothesis we consider the Cauchy distribution. The RP-power curves for the
Cauchy distribution are plotted in Figure 8. As conjectured, the IM tests
with robust estimators have more power. A χ2

3 alternative is considered in
2The ERP of a test is the actual minus the nominal (i.e. chosen) probability of rejecting

the null when it is true.
3Davidson and MacKinnon (1998) call this a size-power curve. Because the size of a

test, defined as the supremum, over the null, of the RP, often differs from the RP, we
prefer the term RP-power curve. In this particular model, however, the statistic is pivotal
and hence size equals RP.
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Figure 8: RP-Power curves: Cauchy (a) n = 10 (b) n = 20
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Figure 9: RP-Power curves: χ2
3 (a) n = 10 (b) n = 50
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Figure 9. Here the IM test with ML estimator has better power properties.

6.2 The normal regression model

The following design is used in the Monte Carlo experiments. Throughout
k = 2, β = 0 and σ = 1, with one of the regressors a standard normal
variate and the other one a constant. The regressors are kept fixed across
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Figure 10: Regression: RP-Power curves: Cauchy (a) n = 10 (b)
n = 20
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all replications. The sample size equals 10 or 20 for the Cauchy alternative,
and 50 and 100 in the case of vertical outliers. The RP-power curves are
constructed as explained in Section 6.1. In Figure 10 the RP-power curves
are plotted for the Cauchy alternative. As in the normal model, the IM tests
with robust estimators perform better than the IM test with ML estimator,
although the difference in power is minor. In the presence of 20% vertical
outliers lying at (a) Y = 5 when n = 50 and (b) Y = 5 and Y = −5 when
n = 100, the TB and MAD estimators yield much more powerful IM tests
than the ML estimator (see Figure 11). In this case, the 5%-level IM test
with the ML estimator is biased, meaning that the actual RP under the
null exceeds power. Figure 12 plots the RP-power curves for the case of
bad leverage points, with sample sizes equal to 50 and 100, and 10% and
5% bad leverage points, respectively. In both cases the IM test with robust
estimators has much more power, as expected. These simulation results
convincingly demonstrate the usefulness of robust estimators in a regression
context in connection with the IM test.
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Figure 11: Regression: RP-Power curves: 20% Vertical outliers
(a) at Y = 5 (n = 50) (b) at Y = 5 and Y = −5 (n = 100)
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Figure 12: Regression: RP-Power curves: Bad leverage points:
(a) 5 points at X = (1 6), Y = 6 (n = 50); (b) 5 points at X =
(1 6), Y = 6 (n = 100)
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7 Conclusion

We have studied the behaviour of the IM test when robust estimators re-
place the ML estimator in the construction of the test. Particular attention
has been given to the simplest of models, the normal location-scale model
without covariates, where the IM test with ML estimator reduces to the
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Jarque-Bera test. We have shown that, under local contamination, the ML
estimator in fact minimizes the non-centrality parameter that appears in the
limiting χ2 distribution of the test statistic. Under some other alternatives
(Student’s t, skewed normal, tilted normal), the non-centrality parameter
was found to be the same, whether using the ML estimator or robust esti-
mators. In the regression model, the IM test with robust estimators clearly
dominates the IM test with ML estimator in the presence of vertical out-
liers. Somewhat to our surprise, only minor differences between the tests
were found under a Cauchy alternative.

The use of robust estimators makes the parameter estimates much less
sensitive to outlying observations than when the ML estimator is used. As a
result, such observations are more easily recognised as outliers, and outliers
are in this context considered as evidence against the model. This intuition
is supported by the analytical results concerning local contamination, for
an arbitrary contaminating distribution, and by simulation results in the
regression case.

We have focussed on the normal location-scale and regression model.
The potential of using robust estimators in connection with the IM test in
other models remains to be explored.

Appendix A
Computation of T using TB or MAD estimator

To compute T using the TB estimator, let, for k even,

νc(k) =
∫ c

−c
ukdΦ(u) =

2k/2√
π
Γ
(
k + 1
2

)
P

(
k + 1
2
,
c2

2

)
,

with Γ the gamma and P the incomplete gamma function. Now,

bc =
νc(2)
2

− νc(4)
2c2

+
νc(6)
6c4

+
c2

3
(1−Φ(c)) ,

EΦ

[
ρ′c(u)u

]
= νc(2)− 2νc(4)

c2
+
νc(6)
c4

,

EΦ

[
ρ2
c(u)
]

=
νc(4)
4

− νc(6)
2c2

+
5νc(8)
12c4

− νc(10)
6c6

+
νc(12)
36c8

+
c4

18
(1− Φ(c)) ,
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and ASV(σ̂) follows from

ASV(σ̂) =
EΦ

[
ρ2
c(u)
]− b2c

{EΦ [ρ′c(u)u]}2 .

Furthermore,

EΦ(u4IF) =
1

EΦ [ρ′c(u)u]

{
c2

6
(1− νc(4)) + νc(6)

2
− νc(8)

2c2
+
νc(10)
6c4

− 3bc

}
.

The computation of T , from (11), is now straightforward.
For the MAD, EΦ [ρ′c(u)u] = 2cφ(c) (with φ the standard normal pdf)

and EΦ

[
ρ2
c(u)
]
= 1

2 , resulting in

ASV (σ̂) =
1

16c2
(
φ(c)
)2 = 1.361

and

EΦ(u4IF) =
1

EΦ [ρ′c(u)u]

{
3
2
− νc(4)

}
.

Appendix B
Local asymptotic power of IM test

B.1 Student’s t alternative

Under Hn, Y ∼ Fn = Ft(pn) with pn =
√
n/e. So

Y ∼ Z√
U/pn

,

where U ∼ χ2
pn

and Z ∼ N(0, 1), with U and Z independent. By the Central
Limit Theorem, as pn → ∞,

U

pn
= 1 +

√
2
pn
W +R,

where W ∼ N(0, 1), W and Z are independent, the remainder term R is
Op
(
p−1
n

)
, and E(R) = 0. Therefore σn solves

E


ρc

 Z√

1 +
√
2/pnW +Rσn




 = bc, (16)
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Clearly, σn → 1, since Student’s t tends to N(0, 1) as pn → ∞. Rewrite (16)
as

E

[
ρc

(
Z√
1 + ε

)]
= bc,

where

ε = σ2
n − 1 + σ2

n

√
2/pnW + σ2

nR.

Expanding ρc(Z/
√
1 + ε) around ε = 0 gives

bc = E [ρc(Z)]− 1
2
E
[
(Zρ′c(Z)ε

]
+
1
8
E
[(
Z2ρ′′c (Z) + 3Zρ′c(Z)

)
ε2
]

+o(E(ε2)).

Since E [ρc(Z)] = bc, E(ε) = σ2
n− 1 and E(ε2) = (σ2

n− 1)2 + 2
pn
σ4
n+ o(p

−1
n ),

we obtain,

bc = bc − 1
2
(σ2
n − 1)E

[
Zρ′c(Z)

]
+

1
4pn

σ4
nE
[
Z2ρ′′c (Z) + 3Zρ′c(Z)

]
+o
(
σ2
n − 1, p−1

n

)
.

So

σ2
n = 1 +

1
2pn

Σ1 + o(p−1
n ), (17)

where

Σ1 =
E
[
Z2ρ′′c (Z) + 3Zρ′c(Z)

]
E [Zρ′c(Z)]

.

Let (m̃1, m̃2, m̃3)′ =Wm(Y ; θn) with

Wm(Y ; θ) =


 u2 − 1− d(u4 − 6u2 + 3)

u3 − 3u
u4 − 6u2 + 3


 .

By the symmetry of Student’s t distribution, EFn(m̃2) = 0. Furthermore,

EFn(Y 2)
σ2
n

− 1 = EFn(Y
2)− σ2

n + o(p
−1
n )

=
pn

pn − 2
− 1
2pn

Σ1 − 1 + o(p−1
n )

=
4− Σ1

2pn
+ o(p−1

n ), (18)
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where the first line uses (1 + x)/(1 + y) ≈ 1 + x − y for x and y small,
with x = EFn(Y 2)− 1 and y = σ2

n − 1, and the second line uses the second
moment of Student’s t, pn/(pn − 2). We also have that

EFn(Y 4)
σ4
n

− 3 = EFn(Y
4)(1− 2(σ2

n − 1))− 3 + o(p−1
n )

=
3p2n

(pn − 2)(pn − 4)

(
1− Σ1

pn

)
− 3 + o(p−1

n )

=
18− 3Σ1

pn
+ o(p−1

n ), (19)

where the first line uses (1 + x)−2 ≈ 1 − 2x and the second line uses the
fourth moment of Student’s t, 3p2n(pn−2)−1(pn−4)−1. Using (18) and (19),

EFn(m̃3) =
(
EFn(Y 4)
σ4
n

− 3
)
− 6
(
EFn(Y 2)
σ2
n

− 1
)

=
6
pn

+ o(p−1
n )

and

EFn(m̃1) =
(
EFn(Y 2)
σ2
n

− 1
)
− dEFn(m̃3)

=
1
2pn

(4− Σ1 − 12d) + o(p−1
n ).

To compute Σ1, note that, by partial integration and using φ′(z) = −zφ(z),

E
[
Zρ′c(Z)

]
=
∫ ∞

−∞
zφ(z)dρc(z)

= −
∫ ∞

−∞
ρc(z)

(
φ(z)− z2φ(z))dz

= E
[
Z2ρc(Z)

]− bc.
Along the same lines we get

E
[
Z2ρ′′c (Z)

]
= E

[
Z3ρ′c(Z)

]− 2E
[
Zρ′c(Z)

]
,

and

E
[
Z3ρ′c(Z)

]
= −3E [Z2ρc(Z)

]
+ E
[
Z4ρc(Z)

]
,
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from which an alternative expression for Σ1 follows,

Σ1 =
E
[(
Z4 − 2Z2

)
ρc(Z)

]− bc
E [Z2ρc(Z)]− bc .

From (9),

d =
EΦ

[
(Z4 − 6Z2 + 3)(Z2 − 1− 2IF)

]
EΦ ((Z4 − 6Z2 + 3)2)

=
1
24
EΦ

[
(Z4 − 6Z2 + 3)(Z2 − 1− 2IF)

]
= − 1

12
EΦ

[(
Z4 − 6Z2

)
ρc(Z)

]
+ 3bc

E [Z2ρc(Z)]− bc , (20)

from which it is straightforward that 4 − 12d = Σ1, and thus EFn(m̃1) =
o(p−1

n ). Replacing pn with
√
n/e, we obtain

b̃ = lim
n→∞

√
nEFn [Wm(Y ; θn)] = e


 0

0
6




and

δ = b̃′Ṽ +b̃ =
3
2
e2.

B.2 Skewed normal alternative

Let γn = e/
√
n and Fn = F skγn

. Let β be estimated by an M-estimator of
location (e.g. the median). Then βn and σn are the solutions of

E

[
ψ

(
Y − βn
σn

)]
= 0, (21)

where ψ is an odd function, non-decreasing, not identically zero, and differ-
entiable a.e., and

E

[
ρc

(
Y − βn
σn

)]
= bc, (22)
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where expectations are with respect to F skγn
. From (21),

0 =
∫ 0

−∞
ψ

(
z − βn
σn

)
dΦ(z) +

∫ ∞

0
ψ

(
z(1 + γn)− βn

σn

)
dΦ(z). (23)

Now, expanding the integrands around βn = 0, σn = 1, and γn = 0 gives

ψ

(
z − βn
σn

)
= ψ(z) + ψ′(z)

(−βn − z(σn − 1)
)
+ o
(
βn, σn − 1

)
(24)

and

ψ

(
z(1 + γn)− βn

σn

)
= ψ(z) + ψ′(z)

(
zγn − βn − z(σn − 1)

)
+o
(
βn, σn − 1, γn

)
, (25)

and so (23) becomes

0 = EΦ [ψ(Z)]− βnEΦ

[
ψ′(Z)

]− (σn − 1)EΦ

[
Zψ′(Z)

]
+γn
∫ ∞

0
zψ′(z)dΦ(z) + o

(
βn, σn − 1, γn

)
.

Since EΦ [ψ(Z)] = EΦ [Zψ′(Z)] = 0, it follows that βn = γnΣ2 + o(γn), with

Σ2 =

∫∞
0 zψ′(z)dΦ(z)
E [ψ′(Z)]

.

For σn it holds that

bc =
∫ 0

−∞
ρc

(
z − βn
σn

)
dΦ(z) +

∫ ∞

0
ρc

(
z(1 + γn)− βn

σn

)
dΦ(z). (26)

Since (24) and (25) also hold with ρc replacing ψ, (26) becomes

bc = EΦ [ρc(Z)]− βnEΦ

[
ρ′c(Z)

]− (σn − 1)EΦ

[
Zρ′c(Z)

]
+γn
∫ ∞

0
zρ′c(z)dΦ(z) + o

(
βn, σn − 1, γn

)
.

Now EΦ [ρc(Z)] = bc, EΦ [ρ′c(Z)] = 0 and
∫∞
0 zρ′c(z)dΦ(z) =

1
2EΦ [Zρ′c(Z)],

so we get

σn = 1 +
γn
2
+ o(γn).
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Further,

EFn(Y ) = γnφ(0),

EFn(Y
2) = 1 + γn + o(γn),

EFn(Y
3) = 6γnφ(0) + o(γn),

EFn(Y
4) = 3 + 6γn + o(γn).

Therefore, letting (m̃1, m̃2, m̃3)′ =Wm(Y ; θn),

EFn(m̃3) = EFn

[(
Y − βn
σn

)4
]
− 6EFn

[(
Y − βn
σn

)2
]
+ 3 = o(γn),

EFn(m̃2) = EFn

[(
Y − βn
σn

)3
]
− 3EFn

[
Y − βn
σn

]
= 3γnφ(0) + o(γn),

EFn(m̃1) = EFn

[(
Y − βn
σ1

)2
]
− 1− dEFn(m̃3) = o(γn),

and, upon replacing γn with e/
√
n,

b̃ = lim
n→∞

√
nEFn [Wm(Y ; θn)] = e


 0

3φ(0)
0


 .

Hence b̃′Ṽ +b̃ = 3
4πe

2.

Appendix C
Local asymptotic power of score test

First, we review briefly how the local asymptotic power of the score test
against specified alternatives can be defined. By an appropriate extension
of f(·; ·), let the density under the alternative be f(y;ω), depending on
an extended parameter ω, and let s(y;ω) = − ∂

∂ω log f(y;ω). Write the
null hypothesis as H0 : ω ∈ Ω0, where Ω0 is a restricted parameter space
(essentially, Θ). Let ω̂ be the restricted ML estimator (essentially, θ̂), i.e. ω̂
solves

max
ω∈Ω0

n∑
i=1

log f(Yi;ω).
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Then, the score test statistic of H0 is

S = ns̄′Ĵ−1s̄,

where

s̄ =
1
n

n∑
i=1

s(Yi; ω̂)

and Ĵ is, under H0, a consistent estimator of

J = E
[
s(Y ;ω0)s(Y ;ω0)′

]
,

where ω0 ∈ Ω0 is the true value. Consider now a sequence of alternatives

Hn : Y ∼ Fn,

where Fn = Fωn and ωn = ω0 + e/
√
n. Then, under Hn,

S
d→ χ2

q(δ),

where δ = b′V −1b, with

b = lim
n→∞

√
nEFns(Y ;ω0,n)

and ω0,n solves

max
ω∈Ω0

EFn log f(Y ;ω).

C.1 Student’s t alternative

The log-density is

log f(y;β, σ, η) = − log σ − log tη(u),

where u = (y − β)/σ and tη(u) is the density of a Student’s t variable with
1/η degrees of freedom. The score function, evaluated at η = 0, is

s(y;β, σ, 0) = −




u
σ

u2−1
σ

u4−2u2−1
4


 ,
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where the last element follows from

tη(u) = φ(u)
[
1 +

η

4
(u4 − 2u2 − 1)

]
+ o(η).

See e.g. Johnson et al. (1995, p. 375). The information matrix, evaluated
at σ = 1 and η = 0, is

J = E
[
s(y;β, 1, 0)s(y;β, 1, 0)′

]

= EΦ



u2 u3 − u u5 − 2u3 − u
· (u2 − 1)2 u6−3u4+u2+1

4

· · (u4−2u2−1)2

16




=


 1 0 0

0 2 2
0 2 7

2


 (27)

Since the first two elements of s̄ equal zero at the restricted ML estimator,
and since J 33 = 2/3, the score test statistic equals

S = n
(µ̂4 − 3)2

24
,

which is the ‘kurtosis part’ of the Jarque-Bera statistic (12).
Let Fn be Ft(pn) with pn = η−1

n =
√
n/e. We then have that η0,n = 0,

and, from (17),

σ2
0,n = 1 + 2ηn + o(ηn),

since Σ1 = 4 for the ML estimator. Using (18) and (19), with Σ1 = 4, it
follows that

EFn [s(Y ;β0,n, σ0,n, 0)] =


 0

o(ηn)
3
2ηn + o(ηn)


 .

Hence, replacing ηn with e/
√
n,

b = lim
n→∞

√
nEFn [s(Y ;β0,n, σ0,n, 0)] = e


 0

0
3
2


 ,

and, using (27),

δ = b′J−1b =
3
2
e2.

33



C.2 Skewed normal alternative

The skewed-normal log-density is

log f(y;β, σ, γ) =




−1
2 log(2π)− log σ − u2

2 , if y ≤ β;

−1
2 log(2π)− log σ + log(1 + γ)− u2

γ

2 , if y > β;

where u = (y − β)/σ and uγ = u(1 + γ). The score function, evaluated at
γ = 0, is

s(y;β, σ, 0) = −

 u/σ

(u2 − 1)/σ
I(y > β)(u2 − 1)


 .

Now let Fn be skewed normal with β = 0, σ = 1, and γn = e/
√
n > 0.

Then, γ0,n = 0, and by the results of Appendix B.2,

β0,n = EFn(Y ) = γnφ(0),

σ0,n = 1 +
γn
2
+ o(γn).

It follows that

EFn [s(Y ;β0,n, σ0,n, 0)] = −




0
o(γn)

EFn

{[(
Y−β0,n

σ0,n

)2 − 1
]
I(Y > β0,n)

}

 .

The third element in parentheses is∫ ∞

β0,n

(
(1 + γn)z − β0,n

σ0,n

)2

dΦ(z)− 1 + Φ(β0,n)

=
(
1 + γn
σ0,n

)2 (
β0,nφ(β0,n) + 1− Φ(β0,n)

) − 2(1 + γn)β0,n

σ2
0,n

φ(β0,n)− 1

+Φ(β0,n) + o(γn)

= (1 + γn)
(
γn
(
φ(0)
)2 + 1− Φ(β0,n)

)
− 2γn

(
φ(0)
)2 − 1 + Φ(β0,n)

+o(γn)

= γn

(
1
2
− (φ(0))2)+ o(γn)

= γn

(
π − 1
2π

)
+ o(γn).
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Hence

b = lim
n→∞

√
nEFn [s(Y ;β0,n, σ0,n, 0)] = e


 0

0
1−π
2π


 .

The information matrix is

J = E
[
s(y; 0, 1, 0)s(y; 0, 1, 0)′

]
=


 1 0 EΦ[u(u2 − 1)I(u > 0)]

· 2 EΦ[(u2 − 1)2I(u > 0)]
· · EΦ[(u2 − 1)2I(u > 0)]




=


 1 0 φ(0)

0 2 1
φ(0) 1 1


 ,

wherefrom δ = b′J −1b = π−1
2π e

2.

C.3 Tilted normal alternative

Expanding f(y;β, σ, κ, λ) around κ = 0 and λ = 0 gives

f(y;β, σ, κ, λ) =
1
σ
φ(u)

[
1 +

κ

6
(u3 − 3u) +

λ

24
(u4 − 6u2 + 3)

]
+ o(κ, λ),

from which the moments given in (15) follow. The score function, evaluated
at κ = λ = 0, is

s(y;β, σ, 0, 0) = −




u
σ

u2−1
σ

u3−3u
6

u4−6u2+3
24


 .

The information matrix is

J = E
[
s(y;β, 1, 0, 0)s(y;β, 1, 0, 0)′

]

=




1 0 0 0
0 2 0 0
0 0 1

6 0
0 0 0 1

24


 .
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It follows that the score test statistic for testing κ = λ = 0 is

S = n
[
µ̂2

3

6
+
(µ̂4 − 3)2

24

]
,

which is the Jarque-Bera statistic (see (12)).
Let κn = k/

√
n and λn = l/

√
n and Fn = Fκn,λn . As before, βn and σn

are the solutions of (21) and (22) where expectations are now with respect
to Fκ,λ. From (21) we have, using (24),

0 = EΦ

[{
ψ(Z) + ψ′(Z)(−βn − Z(σn − 1))

}{
1 +

κn
6
(Z3 − 3Z)

+
λn
24

(Z4 − 6Z2 + 3)
}]

+ o (βn, σn − 1, κn, λn) . (28)

Since EΦ [ψ(Z)] = 0 and ψ is odd, it follows that

βn = Σ3κn + o (βn, σn − 1, κn, λn) , (29)

where

Σ3 =
1
6
E
[
(Z3 − 3Z)ψ(Z)

]
E [ψ′(Z)]

.

Similarly, we have, from (22),

bc = EΦ

[{
ρc(Z) + ρ′c(Z)(−βn − Z(σn − 1))

}{
1 +

κn
6
(Z3 − 3Z)

+
λn
24

(Z4 − 6Z2 + 3)
}]

+ o (βn, σn − 1, κn, λn) . (30)

Now EΦ [ρc(Z)] = bc and ρc is even, so

σn = 1 + Σ4λn + (βn, σn − 1, κn, λn) , (31)

where

Σ4 =
1
24
E
[
(Z4 − 6Z2 + 3)ρc(Z)

]
E [Zρ′c(Z)]

.

Since

Y − βn
σn

= Y (1− (σn − 1))− βn + o (κn, λn)
= Y (1− Σ4λn)− Σ3κn + o (κn, λn) ,
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we obtain

EFn

[
Y − βn
σn

]
= −Σ3κn + o(κn, λn),

EFn

[(
Y − βn
σn

)2
]
= 1− 2Σ4λn + o(κn, λn),

EFn

[(
Y − βn
σn

)3
]
= κn − 3Σ3κn + o(κn, λn),

EFn

[(
Y − βn
σn

)4
]
= 3 + λn − 12Σ4λn + o(κn, λn).

Letting (m̃1, m̃2, m̃3) =Wm(Y ; θn), this results in

EFn(m̃1) = −λn(2Σ4 + d) + o(κn, λn)

EFn(m̃2) = κn + o(κn, λn)

EFn(m̃3) = λn + o(κn, λn)

Note that, from (20),

d = − 1
12
E
[
(Z4 − 6Z2 + 3)ρc(Z)

]
E [Zρ′c(Z)]

= −2Σ4,

and thus EFn [m̃1] = o(κn, λn). Since κn = k/
√
n and λn = l/

√
n, we obtain

b̃ = lim
n→∞

√
nEFn [Wm(Y ; θn)] =


 0
k
l


 ,

from which it is straightforward that

δ = b̃Ṽ +b̃ =
k2

6
+
l2

24
.
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