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Abstract 

In the last few years the properties of risk measures that can be considered as suiting 

"best practice" rules in insurance have been studied extensively in the actuarial literature. In 

Artzner (1999) so-called coherency axioms were proposed to be satisfied for risk measures that 

are used for providing capital requirements. On the other hand Goovaerts et al. (2003 a ), 

(2003 b ),(2003c ) argue that the choice of appropriate set of axioms should depend on the 

axiomatic" situation at hand". 

In this contribution, we show that so-called concave distortion risk measures are not al-

ways consistent with some well-known dependency measures such as Pearson's 7", Spearman's 

p and Kendall's T, i.e. higher dependency between random variables does not necessary lead 

to higher risk measure of corresponding sums. We also test numerically to what extend risk 

measures are consistent with certain dependency measures and how stable the consistency 

level is for different one-parametric families of distortion risk measures. 
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1 Introduction 

A risk measure is an instrument that summarize a distribution of for instance an insurance risk 

in one single number. There is no commonly accepted classification of insurance risks. "The 

Report of the IAA's vVorking Party on Solvency", 2002, suggests to categorize the insurance risks 

under six major headings: underwriting risk, credit risk, market risk, operational risk, liquidity 

risk and event risk. This general map of different insurance risks confirms that determining 

capital requirements for an insurance company (either for reserving or solvency purposes) is a 

very complex and non-trivial task. By their nature, capital requirements are numeric, based on 

quantifiable measures of risks. 

In general a risk measure is defined as a mapping from the set of risks at hand to the real 

numbers. It is difficult to specify desirable properties for risk measures. Depending on where 

it is used for, a risk measure should take into account basic probabilistic quantities such as 

central tendency, variability, tail behavior or skewness. In many applications it is particularly 

important to apply risk measures to sums of random variables. In Section 3 we show that the 

general intuition "the more dependent summands - the more risky sum" is not always the case 

for the class of so-called distortion risk measures. 

Different risk measures do not put the same emphasis on each of the probabilistic quantities and 

thus the specification of appropriate risk measures must heavily rely on the economic context. 

In insurance industry there are two main applications of risk measures: at the policy level -

the premium, which is understood as the monetary value of the risk associated with the policy, 

and at the company level - determining the capital requirements for reserving and solvency 

purposes. In the first case one usually deploys two-sided risk measures which aim to measure 

the distance between the risky situation and the corresponding risk-free situation when both 

favorable and unfavorable discrepancies are taken into account. The capital requirements have 

to be determined much more conservatively and thus so-called one-sided risk measures, to which 

only unfavorable discrepancies contribute, have to be used. The Value-at-Risk at level p (which 

is equal to the p-th quantile) is a one-sided risk measure obtained by minimizing the costs capital 

and residual risk. 

A lot of research in actuarial science has been devoted to determine desired properties of risk 
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measures. In the actuarial literature some axiomatic approaches to risk measures (or insurance 

premium principles) have been proposed. Let us remind some of them: the mean value principle 

(Harely et al. (1952)), the zero-utility premium principle (Biihlmann (1970)), the Swiss premium 

principle (Gerber (1974)), the Orlicz premium principle (Haezendonck and Goovaerts (1982)), 

the Wang's (distortion) premium principle (Wang (1996)). All these risk measures can be 

described in terms of a few axioms reflecting desirable properties ~ the related discussion can be 

found in Goovaerts et al. (1984) and Goovaerts et al. (2003b). Recently also so-called coherent 

risk measures introduced in Artzner (1999) (axioms of monotonicity, translation invariance, 

subadditivity and positive homogeneity) has drawn a lot of attention in mathematical papers. 

We discuss the topic of choosing appropriate axioms given the specific economic purpose in 

Section 2 (see also Goovaerts et. al. (2003 0.), (2003b), (2003 c)). Section 3 is devoted to the 

class of so-called distortion risk measures. In this part we examine the behavior for sums of 

dependent random variables and its relation with some well-known measures of dependencies. 

A summary concludes the paper. 

2 Risk measures and "best practice" rules 

2.1 Premium calculation 

When one applies risk measures as premium principles, the coherent risk measures become 

extremely dangerous, especially in the case of catastrophic risks when one encounters very large 

claims and strongly dependent risks. In this case the most important shortcoming of coherency 

is ignoring of available risk capital and as a consequence ~ the corresponding probability of 

ruin. In these cases one should be very cautious with risk measures which are sub additive for 

comonotonic risks (in the extreme case - additive) and/or positively homogeneous. 

Obviously there are cases when subadditivity for comonotonic risks reflects the economical reality 

properly. The so-called sub decomposability may be for example useful (see Goovaerts et al 

(1984)): 

rr[X] S rr[aX] + rr[(l - a)XJ, where 0 S a S 1, 

(splitting the risk into two separate risks may be more expensive for the company to menage). 
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This problem can be however solved by the following decomposition of the premium: 

7f[X] = 7f1[X] + C[X], 

where 7f1[.] denotes a pure risk measure and c[·] is the provision for the costs of governing the 

policy. Then it is reasonable to require c[·] to be subadditive. For some minor policies this 

sub additivity property may dominate the property of superadditivity for comonotonic risks of 

pure premium ?fl[.], however for large risks this additional cost premium will become negligible 

and in this case we can assume that 

7f[X] c::: 7f1[X]. 

Obviously in the case of large claims it often happens that the risk X is much too dangerous for 

the insurance company to bear as a whole and then splitting the risk between n companies will 

be advantageous. In such a case the superdecomposability of the premium will be a desirable 

property: 

n 

?f[X] ~ 7f[P1X] + ... + ?f[PnX], where Pi ~ 0 and L Pi = 1. 
i=l 

Further in this section we will concentrate only on the properties of pure risk premium 7f['] = 7f1[.], 

without taking into account provision c[·]. 

2.1.1 The properties of premium principles 

It is reasonable to assume that the following properties should always hold for premium princi

ples: 

• 7f[c] = c, i.e. when there is no uncertainty, there is no safety loading; 

• Pr[X <::: Y] = 1 =? ?f[X] <::: ?f[Y]. This condition states that the price of the larger risk 

must be higher. 

• X <:::cx Y =? 7f[X] <::: ?flY]' where <:::cx denotes inequality in the convex order sense. It is 

the weakest possible condition for risk aversion as follows from utility theory - the risks 

X and Yare ordered in the convex order sense if all risk averse decision makers prefer 
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risk X over Y. It is reasonable to assume that in the case of insurance both insurers and 

insureds are risk averse decisions makers, so the third condition for premiums arises very 

natural; 

Note that two risk measures widely used in practice: 

7fa[X] = E[X] + Q:CJ[X)] and 

7fiJ[X] = E[X] + J3Var[X] (1) 

do not preserve stochastic dominance so generally they should not be used as premium principles. 

Apart from these general conditions, reasonable premium principles should also satisfy some 

additional properties for sums of random variables, however they must heavily rely on the 

dependence structure between the summands. Below we provide some examples in the two 

extreme cases, namely when random variables are independent and comonotonic. 

2.1.2 Additivity properties for independent risks 

In most calculations in insurance the assumption of independence of risks reasonably well cor

responds to the reality. In the case of a balanced risk such as life insurance or automobile third 

party liability, the claims may be assumed to be independent or at least conditionally indepen

dent given some additional information about the mortality (for example calendar year), interest 

rates, investment opportunities, the skill and experience of the driver, etc. From the law of large 

numbers it is known that accumulating such risks will be always beneficial for the company. As 

a conclusion we state that an insurance premium should satisfy the condition of subadditivity 

for independent risks. Thus for example the group insurance policy purchased by the employer 

for all employees should be always relatively cheaper than policies purchased individually (in 

this case risks seem to reveal even a slight positive dependence). 

In practical applications however it is often convenient to assume additivity for independent 

risks. It is for example the case when a so-called top-down calculation of insurance premiums 

is required, i.e. when the premium is determined at the level of a whole portfolio (for exam

ple by considering the ruin probability model) and then distributed to the policyholders (see 

Biihlmann (1970), Gerber (1979, 1985)). From the characterization of Gerber it follows that 
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any premlUm which is additive for independent risks and preserves the first and the secone! 

stochastic dominance, can be expressed as 

This risk measure is known in the literature as exponential premium principle and can be derived 

also for example from the utility theory (in this case R represents" the risk aversion coefficient") 

or ruin theory (then R = Ilo~cl, where E denotes the imposed probability of ruin and 1l is the 

initial capital). 

2.1.3 Additivity properties for comonotonic risks 

The case of comonotonic risks corresponds to the extreme positive dependency. Formally the 

vector (X, Y) is said to be comonotonic if 

In this definition we use the generalized inverse function, namely 

F-1(p) = inf{tIF(t) 2: pl. 

Clearly from this definition it follows that accumulating comonotonic risks may not be advan

tageous for an insurer - in this case risks do not hedge against each other and accumulating 

comonotonic risks substantially increases the probability of ruin. Therefore risk measures which 

allow strict sub additivity for comonotonic risks do not find any reasonable applications as pre

mium principles. There are some cases when it is convenient and advantageous to use risk 

measures which are additive for comonotonic risks, but we will demonstrate that the additivity 

may be also very dangerous. In general in the case of insurance premiums one should impose 

the condition of superadditivity for all possible pairs of comonotonic risks. 

Example 1 Suppose that 1f['] denotes an arbitrary premillm principle additive for comonotonic 

risks and thllS also translation invariant. We assume for simplicity that Xl, ... ,Xn are binomi

ally distribllted with parameter q = 0.1 and represent comonotonic risks. Sllppose also that there 

is an initial capitalll and that we want to enSllre that the probability of ruin 'is smaller than 5%. 
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ObviO'LLsly it is reasonable to assume that 7T[X] < 1 because otherwise nobody would p'urchase the 

policy. However then for n la:rge enO'LLgh ,ue get 

n 

Pr [{min will occur}] = Pr[u + n7T(X) - ~X; < 0] = 0.1> 0.05 
;=1 

for sufficiently large n. Thus in this example the strict s'upemdd'itivity for comonotonic risks IS 

essential. 

Although mathematics hidden behind this example is very simplified, similar situations are well

known from insurance practice. Obviously there is no insurance company which would insure all 

buildings on the same seismic area or all floors in skyscraper at Manhattan (in both examples 

the considered risks are close to comonotonicity), unless insureds would pay the premium close 

to the maximal possible damage. It is not easy to find anybody who would agree to pay such 

a premium. However after disaggregation such risks are successfully insured and corresponding 

premiums remain at reasonable high levels. In this particular case the premium principle used 

by companies satisfy the strict superadditivity condition: 

7T[Xl + ... + Xn] > 7T[Xd + ... + 7T[Xn]. 

Note that the exponential premium principle introduced in Section 2.2.2 is superadditive for 

comonotonic risks (in fact it is superadditive even for the sums of positive quadrant dependent 

(PQD) couples - see Kaas et al. (2001)). 

2.1.4 Some comments on positive homogeneity of premium principles 

In the actuarial literature it is often argued that premium principles should be positively homoge

neous because only such risk measures can be expressed in monetary units and are independent 

of the actual currency. It is only partially true - indeed, when a risk measure is positive 

homogeneous then it satisfies these conditions. The opposite implication however does not hold. 

Example 2 Once aga'in we consider the exponential premium principle: 

1 
7T[X] = -logE[eRX ]. 

R 
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It is straightforward to verify fmm Jensen's inequality that 

T { 'S a7T[X] for 0 < a 'S 1 
7T[aX] . 

2> a7T[X] for a 2> 1 
(2) 

Does 'it mean that after exchanging Belgian Francs to Eum we will pay less for the premium if 

the rules remain unchanged? Not necessaTY. In Section 2.2.2 we recalled that the exponential 

premium pr'inciple may be derived fmm the ruin theory and then 

1 u 

R loge' 

where u is the initial capital and e denotes the imposed pmbability of ruin. Thus in this example 

not only X is expressed in monetary units but also it, and thus when one changes the CU7Tency 

and adjusts the coefficient R pmpedy - the premium principle tUTnS up to be independent fmm 

the currency. 

Obviously in other cases one has no such clear interpretation as the ruin theory. However in 

many cases coefficients in formulae for the corresponding risk measures cannot be interpreted 

as dimension-free. Let us consider another example. 

Example 3 Recall the risk measure given by (1). In this case pammeter (3 cannot be interpreted 

as dimension-free because otheTWise the first summand will be expressed in Eum while the second 

- in Eum squared. Thus f3 must be expressed in E~ro to give risk measure 7T fJ (-) in monetary 

units. Therefore formula (1) can be rewritten for example as follows: 

where u denotes e.g. the initial capital and f3' is a dimension-free constant. 

Summarizing, in many cases the positive homogeneity may be a useful and convenient property. 

However it has nothing to do with the independence of currency. Moreover we are reluctant 

to require this property for all risk measures used in practice, because it causes very similar 

problems to those illustrated in Section 2.2.3 for the property of additivity for comonotonic 

risks (in fact the positive homogeneity and the additivity for comonotonic risks are closely 
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related to each other) - multiplying the risk by a large constant a increases substantially the 

probability of ruin. VVe think that more general condition (2) reflects the desirable properties 

of premium principles much better. 

2.2 Risk sharing schemes 

In practice we encounter sharing of risks for example when an insurer cedes part of his risk to a 

reinsurer. Suppose that an insurance company is facing the risk X. Assume that the reinsurer is 

obliged to cover a part equal to ¢(X) while X - ¢(X) is retained by the insurer. It is reasonable 

to assume that function ¢ satisfies the following conditions: 

a) 0 S ¢(x) S x; 

b) both ¢(x) and x - ¢(x) are non-decreasing functions of x. 

One can easily verify that functions given below which define widely used in practice risk sharing 

schemes, satisfy conditions a) and b): 

• A stop-loss coverage: for d> 0, ¢(x) = (x - d)+; 

• A q'uota-share coverage: for 0 S a S 1, ¢(x) = ax; 

• A coverage with a maximal limit: for d> 0, ¢(x) = min(x, d). 

Clearly under conditions a) and b) both parts of the vector (¢(X), X - ¢(X)) are comonotonic, 

thus if one has to distribute the premium between the two parties involved, the property of 

additivity for comonotonic risks will be desirable, i.e. 

It is also worth to mention that all risk measures which are additive for comonotonic risks 

and additionally satisfy the three conditions from Section 2.1.1 can be represented as concave 

distortion risk measures (at least for bounded random variables). A related discussion can be 

found in e.g. Wang (1996) or Goovaerts & Dhaene (1998). 
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2.3 A solvency margin 

A calculation of a solvency margin is another typical application of risk measures. However 

it requires completely different properties of the corresponding risk measures than for example 

premium calculation (at the policy level) or determination of reserves (at the company level). 

The solvency margin is interpreted as a provision for the adverse outcome and as a matter of fact 

it should be equal to zero for all situations where there is no uncertainty involved. In particular 

it does not make any sense to require the property of mono tonicity for the corresponding risk 

measures. 

Example 4 Consider a Bernoulli risk Bq with parameter q E [0, 1]. Then obviously premium 

principle 7T[Bq] should be increasing in q (monotonicity). On the contrary, consider a risk 

measure p[.] to compute the solvency margin. It is clear that p[Ba] = p[Bd = 0 becallse in 

both situations there is no uncertainty involved. Moreover one can assume that p[Bq] = p[B1- q ] 

becallse Bq =D 1- Bl-q and thus one can think that in these two cases uncertainties are" equal" 

(note that we put here the same weight to positive and negative discrepancies). Consider a 

function f(q) for q E [O,~] such that f(O) = 0, f 2: 0 and 1'0) = O. Then risk measure p[.] for 

determining a solvency margin can be defined as 

p(Bq) = { 
f(q) for 0:::; q :::; ~ 
f(l - q) for ~ :::; q :::; 1 

and the corresponding premium principle as 

Recall that 7T(Bq) should be increasing in q, what leads to the following additional condition for 

f: 

-1 :::; .t'(q) :::; l. (3) 

Now consider two specific functions: h(q) = avq(l - q) and h(q) = j3q(l- q). One can easily 

verify that for any a > 0 f{+(O) = -00 and that for any j3 :::; 1 (3) is satisfied by h. Thus in 

the situation "at hand" h is an example of a consistent risk measure for calculating solvency 

margin while h not (because it leads to a premium which is not monotonic). 
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2.4 An allocation of an economic capital 

There must be a substantial difference between risk measures applicable as premium principles 

and those used to allocate economic capital. The capital allocation problem is somehow dual -

in this case the risk (at the level of a company) is given and one has to determine the required 

capital sufficiently large too make the ruin unlikely. We will demonstrate that also in this case 

risk measures which have to be used exhibit very complex behavior. In particular coherent risk 

measures do not always lead to optimal solutions. 

Example 5 (A capital allocation based on the cost minimization) ConsideT the following pTOb

lem. Suppose that an insumnce company faces a Tisk X and that the shaTeholdeTs have to pTOvide 

the capital u to let the business run. However when at the end of the yeaT the shoTtfall occurs, 

they aTe also obliged to coveT the deficit. On the other hand it is not allowed to withdmw the 

capital if the shoTtfall does not occur. S'uppose that the capital will be pTOvided at the pTice i per 

unit and that a Tisk-fTee inteTest mte is equal to T. UndeT these assumptions the shaTeholdeTs 

will aim to solve the following minimization pTOblem of their expected cost: 

min(i - T)U + E[(X - u)+J, 
u 

which has the unique solution equal to F.y 1 (1 - ~+~) (see GoovaeTts et al., 2003a ). Thus in this 

case a veTY natuml optimization pTOblem leads to the Value-at- Risk which is a non-coheTent Tisk 

measuTe, 

Example 6 (An allocation of an available economic capital between the subsidiaTies) Now con

sideT the following pTOblem. Suppose that a company faces a Tisk X and that the capital u to 

coveT this Tisk has been allocated already. Now suppose that risk X has to be split into two Tisks 

X = Xl + X 2 . Then one faces the pTOblem of finding the optimal divis'ion of economical capital 

u into u = Ul + U2 wheTe Ul is allocated to Tisk Xl and U2 to X 2 . The opt'imal solution will be 

given by solving the following minimization pTOblem: 

(4) 

wheTe p is a Tisk meas'ure which has to be used in this situation. In this case also a non-coheTent 

Tisk meaSUTe has to be used. OtheTwise, because of the pTOpeTty of tmnslation 'invaTiance, (4) 
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simplifies to 

which does not lead to any solution. 

Example 7 (An allocation of an economic capital for sums of risks) In this example we consider 

a risk measure p[.] which has to be used as a rule of determining an economic cap'ital, i. e. the 

amount'LL = p( X) to be allocated to the risk X. Now suppose that two companies represented by 

risks Xl and X 2 merge to X = Xl + X2. From the reg'LLlatory's point of view the merger shO'LLld 

be efficient in the following sense: 

(5) 

(both sides of the inequality represent the cost to the society). Note that under a mild and 

natural assumption that risk measure 1f[.] has to preserve the stochastic dominance, subadditive 

risk measure p may lead to problems for (5) to be satisfied. On the other hand note that one has 

with probability one an inequality: 

Thus the residual risk of the merged company is always smaller than the risk of the split company. 

This fact will hold in general for risk measures p[.] which are superadditive. 

We are far from requiring superadditivity for risk measures used for economic capital purposes. 

Example 7 aims only to illustrate that risk measures which are sub additive for all possible 

dependence structures of the vector (Xl, X 2 ) do not reflect properly the dependency between 

(Xl - 'LLd+ and (X2 - 'LL2)+. Taking this dependency into account, the risk measure providing 

capitals'LL, 'LLI and 'LL2 will not always be subadditive nor always superadditive, but may instead 

exhibit behavior similar to the Value-at-Risk (see Embrechts et al. (2002)). From this perspec

tive the fact that the Value-at-Risk is neither sub- nor superadditive is a desirable property 

rather than a pitfall! 
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2.5 Consistent risk measures 

In this section we provided several examples to demonstrate that" best practice" rules in in-

surance require sometimes much more complex properties of risk measures than those tollowing 

from coherency axioms. It does not seem to be reasonable to require one particular set of axioms 

to hold in all risky situations, without taking into consideration the available economic capital 

or the dependency structure between random variables. In Goovaerts et al. (2003b) and (2003c) 

it was argued that in any realistic situation at hand, a specific set of axioms § "consistent" with 

the given situation has to be considered. More precisely, they considered the following definition. 

Definition 1 Let § be a set of a:£'ioms for risk measures and a denotes an arbitrary number 

number from the interval (0,1). A risk measure 7T['] = 7T(§,a)['] = 7Ta is called (§,a)-consistent 

if7T['] satisfies the set ofax'ioms § and 'inequality 7T[X] > F";;::l(a) for any risk X, where F;;::l(a) 

denotes a-quantile. 

The condition on a ensures that the risk measure is acceptable for regulators who impose the 

Value-at-Risk at level a. In Goovaerts et al. (2003b) some universal procedures based on the 

Markov inequality were provided to generate (§, a)-consistent risk measures. 

3 Distortion risk measures and dependency measures 

3.1 Introduction 

Distortion risk measures were introduced in Wang (1996). For a given non-decreasing function 

9 : [0,1] ---) [0,1] such that g(O) = 0 and g(1) = 1 for every risk the corresponding risk measure 

is defined as follows: 

Hg[X] = roo g(1 - Fx(t))dt = e F";;::1(1 - q)dg(q), Jo Jo 
(6) 

where Fx (t) denotes the distribution function of X. We will call 9 a distortion function. 

Distortion risk measures have many properties discussed in the previous section: positive ho

mogeneity, translation invariance, additivity for comonotonic risks, preservation of first order 

stochastic dominance. Moreover if we additionally assume concavity of distortion function 9 

than the corresponding risk measure is also subadditive, and thus is Artzner-coherent. 
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These properties of distortion risk measures were comprehensively studied in many works (see 

e.g. Wang (1996), Wang et. al (1997), Dhaene and Wang (1998), 'Nang and Young (1998), 

Wirch and Hardy (2000), Dhaene et. al (2004)). In this section we investigate the relation 

between distortion risk measures applied to sums of random variables and some well-known 

dependency measures between summands (throughout this section we assume that marginal 

distributions are fixed). The theorem we cite below says that when the dependency level differs 

strongly (which is expressed in the terms of the so-called correlation order of pairs of random 

variables) then all concave distortion risk measures behave intuitively, i.e. the more dependent 

summands - the more risky sums. 

Definition 2 Let (Xl,Yd and (X2,Y2) be elements ofR(Fx,Fy) (i.e. have the same marginal 

distributions equal to Fx and Fy). Then we say that (Xl, Yd precede (X2' Y2) in correlation 

order sense when either of the two equivalent conditions holds: 

(aJ for all non-decreasing functions f, 9 one has that Cov(f(Xd,g(Yd) :S Cov(f(X2),g(Y2)), 

provided that the respective covariance functions exist; 

We denote the correlation order by :SCOTT' 

Theorem 1 Suppose that 9 is a concave distortion function. Assume (Xl, Yd, (X2' Y2) E 

R(Fx, Fy) are such that (Xl, Yd :SCOTT (X2' Y2). Then Hg(Xl + Yd :S Hg(X2 + Y2). 

PROOF. See Wang, Dhaene (1998). • 
However the correlation order is only a partial order and recognizes only very strong differences. 

In this section we investigate how distortion risk measures are related to some more elastic 

measures of dependency, namely: 

• Pearson's correlation coefficient 

Cov(X, Y) 
r(X, Y) = O"(X)O"(Y); 
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• Spearman's rank correlation coefficient 

p(X, Y) = E[Fx(X)Fy'(Y)] - E[Fx(X)]E[Fy(Y)]: 
O"(Fx(X))O"(Fy(Y)) . 

(7) 

• Kendall's rank correlation coefficient 

T(X, Y) = PI' ((X - X')(Y - Y') > 0) - Pr ((X - X')(Y - Y') < 0), (8) 

where (X, Y) and (X', Y') are two independent copies from the considered bivariate dis

tribution. 

We show that in general there is no strict relation between distortion risk measures and those 

measures of dependencies. In the following subsection we show that for Tail Value-at-Risk it is 

possible to find random pairs with fixed marginals (Xl, Yd and (X2' Y2) such that 

despite the ordering of all corresponding correlation coefficients is the opposite, i.e.: 

(9) 

Next, we show that for any distortion risk measure H g [.] it is possible to construct such random 

pairs (Xl, Yd, (X2' Y2) E R(Fx, Fy) that TVaRp[Xl + Yl] > TVaRp[X2 + Y2] and r(Xl' Yd < 

r(X2, Y2). Moreover it turns out that under a special condition which ensures that distortion 

function g is not "too concave", all three inequalities (9) hold. 

Finally, we propose an experimental test which aims to indicate how strong is the relationship 

between the riskiness of sums of random variables generated by distortion risk measures and the 

measures of dependency between appropriate summands. 

3.2 A counterexample for the Tail Value-at-Risk 

The Tail Value-at-Risk (further we will call it TVaR) has been recognized as a very important 

risk measure which can be used for solvency purposes. Artzner (1999) recommended this risk 

measure to determine solvency capital requirements, in Panjer (2002) it was used to allocate 

solvency economic capital between subsidiaries for normally distributed risks. The practical 
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importance of the TVaR is intuitively clear - for continuous distributions it can be interpreted 

as an expected loss when a specified threshold (defined here as an appropriate quantile) is 

exceeded. The TVaR at level P is also the smallest concave distortion risk measure exceeding 

VaR at level P and thus is acceptable by regulators, see Dhaene et al. (2004). 

Formally the TVaR at level P is defined as follows: 

. I 

TVaRp[X] = -1-1 Qq(X)dq, 
1 - P p 

and it is straightforward to prove that TVaRp is determined by the concave distortion function: 

{ 
lx for 0 < t < P 

gp(x) = p - - where 0 :::; P:::; 1. 
1 for P < t :::; 1 

Remark 1 In the actuarial literature the TVaR is often confused with the so-called Conditional 

Tail Expectation (CT E ) defined below: 

where Qp(X) denotes p-th quantile of X. Indeed, in the case of continuous random variables 

TVaR and CT E do coincide, however they are not necessary the same in the discrete case and 

in general CT Ep cannot be expressed as a distortion risk measure. The subtle differences between 

those two risk measures were investigated in Dhaene et. al (2004). 

The following example shows that for sums of random variables with fixed marginal distribu

tions, TVaR does not preserve in general neither of the three well-known dependency measures: 

Pearson's r, Spearman's p and Kendall's T. 

Example 8 Let X and Y be two random variables with probabilities Pr(X 

Pr(Y = i) = qi given by: 

1- vp 
Po = PI = 2 ' P2 = yip 

and 

qo = 1 - yip, ql = yip. 
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Let (X l, Yl ) and (X 2, Y2) be two elements of R( Fx , Fy ). Concerning the dependency structure 

of the couples, we assume that Xl and Y1 are mutually independent, while the distribution of 

(X2' Y2 ) is given in the following table: 

X2 

Y2 0 2 

0 Poqo + XE p[qo - E P2qO + (l - X)E 

1 POql - XE Plq[ + E P2ql - (1 - X)E 

In this definition x denotes a positive number satisfying the following inequalities 

( 1 2JP l+JP) 1> x > max -
- - 2'l+JP'3-JP 

(11) 

and E is an arbitrary positive number such that: 

One can immediately verify that (X 2, Y2) E R( Fx , Fy). Note also that for the first independent 

pair one has r(Xl' Yd = p(Xl' Yd = T(Xl' Yd = o. 

All correlation coefficients for the second pair are positive, which can be verified as follows: 

• COV(X2' Y2) = (2x - 1)c: > 0 because x > ~ and thus also r(X2' Y2) > O. 

• From (7) we have that 

10(1- qo)((l- x)po + Pl - (1- x)) 
p(X2, Y2) = O"(Fx(X))O"(Fy(Y)) , 

1 PO PI C ( ) 1 20i which is positive when x > ~+~ ombining this with 10 we get t mt x > 1+0i 

which is always true in view of (17). 

• A straightforward manipulation of (8) leads to the formula: 

T(X2' Y2) 2((poqo + xc:) (P2ql - (1 - x)c:) + (pOqO + XC:)(Plql + c:) 

+ (PlqO - C:)(P2ql - (1- x)c:)) - 2 ((POqO + xc:) (P2ql - (1 - x)c:) 

+ (pOqO + XC:)(Plql + c:) + (PlqO - C:)(P2ql - (1 - x)c:)). 
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Note that all expressions without c sum up to 0 as well as all expressions with c:2 and 

thus (after some calculations) the condition for T(X2, Y2) to be positive is equivalent to 

the inequality 

xPo + (2x - l)Pl + XPl - (1 - X)p2 > 0, 

what - after taking into account (10) - gives x> :~~~, which holds because of (17). 

Now let us return to the TVaR. For the decumulative distribution functions of the sums Si = 

Xi + Y; we find: 

1 for t < 0, 

p+v+19 for 0 ::; t < 1, 

FSI (t) = p+v for 1 ::; t < 2, 

P for 2 ::; t < 3, 

0 for t ~ 3. 

and 

1 for t < 0, 

P + v + 19 - xc for 0 ::; t < 1, 

FS2 (t) = p+v+c for 1 ::; t < 2, 

p-(l-x)c for 2 ::; t < 3, 

0 for t < O. 

(for simplicity of notation we denote Pr[Sl = 2] by v and Pr[Sl = 1] by 19). 

The computation of the first integral in formula (6) is now straightforward: 

gp(p + v + 19 - xc) + gp(p + v + c) + gp(p - (1 - x)c) = 

1 + 1 + P - (1 - x)c < 3 = Hg [Sd. 
p P 

Thus TVaRp(Xl + Yl ) > TVaRp(X2 + Y2) despite r(Xl' Yd < r(X2' Y2), p(Xl' Yd < p(X2' Y2) 

• 

17 



3.3 A construction of a general counterexample 

vVe split the construction into two cases: the critical case when 9 is concave and the easy case 

of non-concave distortion functions. 

3.3.1 The case of concave distortion functions 

vVe restrict ourselves only to the case when a distortion function 9 : [0, 1] --+ [0, 1] satisfies some 

additional smoothness conditions. More precisely we will assume the following: 

(i) g(O) = 0 and g(l) = 1; 

(ii) 9 is piecewise twice continuously differentiable; 

(iii) for all x g'(x) ~ 0 (thus 9 is nondecreasing) and g"(x) :::; 0; 

(iv) 9 differs from the identity function. 

Condition (iv) excludes the trivial case of the expectation. Note that assumption (ii) allows for 

example piecewise linear distortion functions. In fact in our prove we use only left continuity of 

first derivative at 1 and right continuity at O. 

vVe start with a helpful technical lemma. 

Lemma 1 Let 9 be an arbitrary junction satisjy'ing conditions (i}-(iv). Then there ex'ist real 

numbers 001 < 002 in (0,1) such that g'(ood > g'(002) and 

(1 - x)g'(ood + xg~(I) > g'(002), (12) 

where x is an arbitrary number jmm the interval (1, 1). 

Ij we additionally assume that -4l~ (1) < g~ (0) - g~ (1) then jor (12) to hold true it may be 

assumed that x = 3-~' 

PROOF. To prove the first part, we start with choosing any 001 E (0,1) such that 

g'(ood > g~(I) > 0 
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(this is always possible in view of conditions (i)-(iv)). Define E = (1- :r)(g'(ad - g'-(l)) > O. 

Left continuity of g' in 1 implies that it is possible to choose a point 002 such that 

Then one gets 

g'(a2) < g~(l) + E = (1 - x)g'(ad + xg'(l). 

l'vIoreover, 

1 () 1 ( ) 9' (ad - g'- (1) 1 () 1 ( ) 9 002 - g- 1 < E = 3 < 9 001 - g_ 1 , 

and hence 

which completes the proof of the first part. 

The proof of the second part is a bit more subtle, because 002 cannot be chosen as a function of 

x. Recall that we assume here additionally that 

-49''-(1) < g~(O) - g~(l). 

From continuity of the first derivative it immediately follows that it can be chosen such number 

001 > 0 that 

-4g"-(1) < g'(ad - g~(l). 

Note that inequality (12) which has to be proven can be rewritten as 

Consider an auxiliary function f defined as follows: 
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One can easily check that f (1) = 0 and 

f'--(l) = -f~(l) - ~(9'(O~1) - g'-(l)) < O. 

Thus it is possible to choose 0:1 < 0:2 < 1 such that f( 0:2) > O. Moreover from the identity 

g'(o:d = g'(t) =? f(t) < 0 

we conclude that g'(o:d > g'(0:2) what completes the proof of Lemma 1. • 

Theorem 2 Let 9 be an arbitrary function satisfying conditions (i)-(iv). Then there exist uni

variate distributions FX(g) , Fy(g) and random couples (X~g), Y1(g)) , (X~g), y2(g)) belonging to 

R(FX(g) , Fy(g)) such that 

(i) r(Xig), y1(g)) < r(X~g), Y2(g)) , 

(i'i) Hg [Xig) + yl(g)] > Hg [X~g) + y 2(g)]. 

Moreover under additional ass'umption that 

the random couples can be chosen such that also p(Xig), y 1(g)) < p(X~g), y 2(g)) and 

T(X(g) y(g)) < T(X(g) y;(g)) 
1 , 1 2 '2 . 

(13) 

PROOF. Consider two points 0 < 001 < 002 < 1 satisfying the conditions of Lemma 1. Consider 

the random variables X(g) and y(g) for which Pr (X(g) = i) = Pi and Pr (y(g) = j) = qj are 

given below: 

1- y02 
Po = PI = 2 ' P2 = y02 (14) 

and 

(15) 

Furthermore, let (Xig), y 1(g)) be an independent pair with marginal distributions as defined in 

(14) and (15), i.e.: 

P [X (g) . y(g) .] 
r 1 =~, 1 = J = Piqj· (16) 

The joint distribution of (X~g), y 2(g)) is defined in Table 1, where x denotes 
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(i) any fixed number in the interval (~, 1) if (13) is not satisfied; 

(ii) x = :3-~ if (13) is satisfied 

and c is chosen as an arbitrary positive number such that 

x(g) 
2 

y;(g) 
2 0 1 2 

0 Poqo + xc: Pl@ - c: P2qO + (1 - x)c: 

1 POql - xc: Plql + c: P2ql - (1 - x)c: 

Table 1: The distribution of (X~g), y2(g)). 

Note that in the case when (13) is satisfied the follwing inequalities hold: 

( 1 2JCi2 1 + JCi2) 1> x > max -, ,----'-= 
- - 2 1+JCi2 3-JCi2 

(17) 

One can immediately verify that (X~g), y2(g)) E R(Fx, Fy). Note also that for the first inde-

pendent pair one has r(Xl' Yl) = p(Xl' YI) = T(XI' Yll = 0, which have to be compared to the 

correlation coeficients of the second pair calculated as follows: 

(i) COV(X2, Y2) = (2x - 1)10 > 0 and thus also r(X2' Y2) > 0; 

(ii) From (7) we have that 

c(1- qo)((l- x)po + PI - (1 - x)) 
p(X2' Y2) = O"(Fx(X))O"(Fy(Y)) , 

which is positive when x > I~~;t. Combining this with (14) we get that x > I~~ 

which is in view of (17) true in the case when (13) holds. 

(iii) A straightforward manipulation on (8) leads to the formula: 

T(X2' Y2) 2 ((POqO + XE)(P2ql - (1 - X)E) + (POqO + XE)(PIql + E) 

+ (PI@ - E) (P2ql - (1- X)E)) - 2 ((POql - XE)(P2qO + (1 - X)E) 

+ (POql - XE)(PIqO - E) + (Plql + E) (P2qO + (1- X)E)). 
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Note that all expressions without c SUlll up to 0 as well as all expressions with c2 and 

thus (after some calculations) the condition for T(X2, Y2) to be positive is equivalent to 

the inequality 

:rpo + (2x - I)Pl - (1 - :r)p2 > 0, 

which - after taking into account (14) - gives :r > ~~~, which is true in the case when 

(13) holds. 

Let us define s~g) = x~g) + x~g) and s~g) = x~g) + y 2(g). To complete the proof of Theorem 2, 

it suffices to prove that 

H [S(g)] > H [S(g)] gig 2 . 

vVe compute the distribution of sig) as follows: 

h(2) = Pr [S~g) > 2] = P2ql = Ja2 % = 001; 
V 002 

(g) 1- va2 
h(l) = Pr [Sl > 1] = P2Ql + P1Ql + P2QO = 001 + --'---

2 

= ~ + va2 ( 1 - ~) > Ja2 > 002; 

h(O) = Pr [sig) > 0] = 1 - PoQo < l. 

(18) 

(19) 

(20) 

(21) 

One finds the following expression for the decumulative distribution function: 

for t < 0 

for k S; t < k + 1 and k = 0,1,2 

for t 2:: 3 

Now using formula (6), we find 

Analogously, we define values h(k) = Pr [S~g) > k] for k 

identities: 

12(2) = h(2) - (1 - x)c, 
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Thus 

h(l) = h(l) + c, 

h(O) = h(O) ~ Xc. 

(23) 

After combining (22) with (23) we see that in order to complete the proof of inequality (18) it 

suffices to prove that 

g(h(2)) ~ g(11(2) ~ (1 ~ x)c) + g(11(O)) ~ g(11(O) ~ xc) > g(11(I) + c) ~ g(11(I)). (24) 

Now let us take a closer insight in differences occurring in inequality (24). From the Lagrange 

Theorem it follows that there exist 0 < co, Cl, C2 < c such that the following identities hold: 

g(h(O)) ~ g(11(O) ~ xc:) = xcg' (11 (0) ~ XcO) > xg~(I)c, (25) 

g(11(I) + c) ~ g(11(O)) = cg'(11(I) + cl) < g'(a2)c, (26) 

g(11(2)) ~ g(11(2) ~ (1 ~ x)c) = (1 ~ x)cg'(11(2) ~ (1 ~ X)c2) > (1 ~ x)g'(pt}c. (27) 

However, from Lemma 1 we find that 

(28) 

Multiplying both sides of (28) by c: and combining with inequalities (25), (26) and (27), we get 

the sequence of inequalities: 

g(11(2)) ~ g(11(2) ~ (1 ~ x)c) + g(11(O)) ~ g(11(O) ~ xc) > 

> (1 ~ x)c g'(at} + xc g~(I) > cg'(a2) > g(h(l) + c) ~ g(11(I)), 

what completes the proof. • 

Remark 2 Condition (13) requires an additional comment. We believe that this assumption 

can be somehow released (compare Darkiewicz et al. (2004)), however for our construction this 

kind of restriction seems to be necessary. Fortunately a lot of distortion functions encountered 
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in practice satisfy thiCi additional liinitation. In PUlticlllaT the theorem, holds true for all concave 

piecewise linea:,. functions (e.g. Tail Value-at-Risk adm,its 8'11ch representation), because then 

g//(l) = O. At the second extreme we have li'istortion functions for which the first derivative at 

o is infinite and also in this case condition (13) follows mdomatically. The latter case contains 

other favorite distortion risk measures, like Pmportional Hazard Tmnsform (Wang (1.9.95) and 

Wang (1.9.96)) or its generalization - a Beta distodion risk measure (Wirch and Hardy (2000)). 

3.3.2 The case of non-concave distortion functions 

Intuitively, it is clear that the assumption of concavity of g is somehow critical. However in the 

proof we use this assumption explicitly. In fact, when one releases the assumption of concav

ity, the construction follows easily from a general theorem proved by Greco and later also by 

Schmeidler. 

Theorem 3 Let BV be a set of bmmded mndom variables. Suppose that a functional H : BV ---+ 

[0,(0) 

(i) is additive for comonotonic risks; 

(ii) preserves the first order stochastic dominance (i.e. \It Fx(t) «; Fy(t) '* H[X] «; H[Y]); 

(iii) satisfies H[l] = 1. 

Then there exists a distortion function h such that H[X] = Hh[X] for all X E BV. Moreover 

H[X + Y] «; H[X] + H[Y] holds for all X, Y E BV if and only if his concave. 

PROOF. See e.g. Dennenberg (1994), Wang (1996). • 
Consider a distortion risk measure Hg generated by the distortion function 9 which is not 

concave. Clearly, Hg obeys (i), (ii) and (iii) in the theorem above and therefore we find the 

following corollary. 

Corollary 1 Let Hg denote a distortion risk measure genemted by a distortion function 9 which 

is not concave. Then there exists a bivariate mndom variable (X, Y) such that Hg[X + Y] > 

Hg[X] + Hg[Y]. 
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Now it is straightforward to prove the general theorem. 

Theorem 4 Let 9 be an arbitrary non-concave distortion function. Then there exist univari

ate distributions YI((g) , Fy(g) and bivariate distributions (X~g), Yl(g)) , (X~g), y 2(g)) belonging to 

R(Fx(g) , Fy(g») such that 

(i) r(X(g) y(g)) < r(X(g) y;(g)). 
1 , 1 2 '2 , 

(ii) p(xig), y1(g)) < p(X~g), y 2(g)); 

(iii) T(X(g) y(g)) < T(X(g) y;(g)). 
1 , 1 2 '2 , 

PROOF. If 9 is not concave, one finds from Corollary 1 that there exists a random couple 

(X, Y) such that 

(29) 

On the other hand, for the couple (XC, Y C) with the same marginal distributions as the couple 

(X, Y), but with the comonotonic dependency structure, one has that 

(30) 

Combining (29) with (30), one gets 

However we have that Var[X + Y] < Var[Xc + y c] and thus r(X, Y) < r(Xc, Y C ) (see Dhaene 

et al. (2002a)). The same is true also for Spearman's p and Kendall's T because p = T = 1 holds 

true only in the comonotonic case. 
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3.4 The consistency between distortion risk measures 

and dependency measures 

In this subsection we provide a simple methodology to test the consistency of distortion risk 

measures of sums of random variables with the order induced by different dependency measures 

between the summands (in all cases we keep the marginal distributions fixed). 'vVe want to 

emphasize that the test presented here is just a first attempt to test this form of consistency. 

Our conclusions cannot be interpreted formally because there are no accepted procedures of 

generating samples from the population of all random distributions. Our methodology is rather 

subjective and takes into account computational convenience. However it seems to provide quite 

realistic intuition of the problem. 

3.4.1 Description of the methodology 

First, we will select 100 000 couples (X1,k, Y1,k) in the class of bivariate random variables with 

support {(i, j) I i, j = 0, ... , 9}. For each of the selected couples, we will also consider a random 

couple (X2,k, Y2,k) with the same marginal distributions as (X1,k, Y1,k), but of which X 2,k and 

Y2,k are mutually independent. Finally, we will check how many of these couples (X1,k> Y1,k) 

and (X2,k, Y2,k) satisfy the following relations: 

sign(r(X1,k> Y1,k) - r(X2,k, Y2,k)) = sign (Hg [X1,k + Y1,k]- Hg[X2,k + Y2,k]) , (31) 

sign (p(X1,k> Y1,k) - p(X2,k, Y2,k)) = sign(Hg[X1,k + Y1,k]- H g [X2,k + Y2,k]) , (32) 

sign(T(X1,k, Y1,k) - T(X2,k, Y2,k)) = sign(Hg[X1,k + Y1,k]- Hg [X2,k + Y2,k]). (33) 

In order to select (the distribution function of) the couple (X1,k, Y1,k), we start by generating 

99 random numbers Ui,k in the interval (0,1). Let 

VO,k = 0, 

Vi,k = U:,k for i = 1, ... ,99, 

VlOO,k = 1, 
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where U;',h: denotes the i-th order statistic of the sequence {Ui,d. We consider the differences 

ai,k = Vi,k - Vi-1,k 

for i = 1, ... ,100. In this way, we get 100 identically distributed random numbers such that 

a1,k + ... + alOO,k = 1. 

Now we define the probability distribution of (X1,k, Y1,k) as follows: 

Pr[X1,k = i, Y1,k = j] = ai+1+10j,k. 

Then the marginal distributions of X1,k and Y1,k are given by Pr[X1,k = i] = 'Z;;=o ai+1+lOj,k 

and Pr[Y1,k = j] = 'Z;;=o ai+1+lOj,k· 

The related random couple (X2,k, Y2,k) is defined as the independent counterpart of (X1,k, Y1,k), 

hence 

Pr[X2,k = i, Y2,k = j] = Pr[X1,k = i] Pr[Y1,k = j]. 

Next, we compute Pearson's r(X1,k, Y1,k), Spearman's P(X1,k, Y1,k), Kendall's T(X1,ko Y1,k) and 

the considered risk measure of appropriate sums (Hg[Xl,k + Yl,k] , Hg[X2,k + Y2,k]). Finally 

we verify whether the equations (31), (32) and (33) are satisfied (note that all the correlation 

coefficients for the second independent pair are always equal to 0). 

This procedure is repeated for every k = 1, ... , 100000. 

Then, for any particular choice of a distortion risk measure H g [·] we determine the frequencies 

NgT 
T - , 

g,T - 100,000' 
N T - g,p 

g,p - 100,000' 
T _ Ng,T 

g,T - 100,000' 

with Ng,T' Ng,T and Ng,T defined as 

Ng,T = #{ ((Xlk' Y1k), (X2k' Y2k)) I (31) holds), 

Ng,p = #{ ((Xlk' Y1k), (X2k, Y2k)) I (32) holds), 

N9,T = #{ ((Xlk' Y1k), (X2k' Y2k )) I (33) hOlds). 

We will call r g ,. the (Pearson's, Spearman's, Kendall's) correlation consistency coefficient of the 

risk measure Hg for the particular set of constructed bivariate distributions. 
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3.4.2 The risk measures under consideration 

vVe performed the procedure described above for the following one-parameter families of dis

tortion functions. Most of these distortion risk measures were introduced in vVang (1996). For 

each family the parameter p comes from the interval (0,1). 

• The Value at Risk: 

• The Tail Value at Risk: 

• The proportional hazard transform: 

• The dual-power transform: 

1 

9p ( x) = 1 - (1 - x) P ; 

• Dennensberg's absolute deviation principle: 

{
(I + p)x 

9p(X) = 
p + (1 - p)x 

• Gini's principle: 

• The square-root transform: 

9p(X) = }1 -In(p)x - 1; 
}1 -In(p) - 1 

• The exponential transform: 

1- pX 
9p(X) = -1-; 

-p 

• The logarithmic transform: 

In(l -In(p)x) 
9 (x) = --'-:_-----.,.----c'--

P In(l - In(p)) . 

for 0 < x < 1 - - 2 

for 1 <x<1 2- -
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3.4.3 Results and conclusions 

In Table 2, Table 3 and Table 4 we present the results respectively for the Pearson's, Spearman's 

and Kendall's correlation consistency coefficient for different distortion fUllctions g. 

From Table 2 we can draw the overall conclusion, that the correlation coefficient is preserved 

in the majority of cases, for many tested distortion risk measures more frequently than nine 

times out of ten, for some of them even more than nineteen times out of twenty. Favorite risk 

measures, such as the Value-at-Risk, the Tail Value-at-Risk and the Proportional Hazard do not 

perform very well. We also observe that the correlation consistency differs not only between 

different families of distortion risk measures, but also between different parameters within the 

same family. In this respect, the dispersion of the correlation consistency seems to be the worst 

for the Dual-power transform. 

Risk measures such as the square root transform, the exponential transform, the logarithmic 

transform and Gini's principle perform very well. For these distortion risk measures, the Pear

son's correlation consistency coefficient does not seem to be very dispersed and tends to increase 

monotonically together with the parameter p. 

The results for Spearman's coefficient differ significantly from the ones obtained for Pearson's 

Table 2: The results for Pearson's correlation consistency r.,T' 

Parameter p 

Risk measure 0.01 0.1 0.25 0.5 0.75 0.9 0.99 

Value at Risk 84.25% 93.01% 94.26% 89.00% 75.31% 69.01% 74.45% 

Tail Value at Risk 66.98% 71.33% 82.35% 89.58% 82.06% 70.99% 59.02% 

PH transform 70.09% 71.69% 74.80% 80.51% 85.56% 88.04% 89.40% 

Dual-power 60.05% 77.85% 89.22% 96.86% 93.59% 91.04% 89.72% 

Dennenberg 89.58% 89.58% 89.58% 89.58% 89.58% 89.58% 89.58% 

Gini 96.86% 96.86% 96.86% 96.86% 96.86% 96.86% 96.86% 

Square-root 92.02% 93.98% 95.12% 96.16% 96.73% 96.84% 96.86% 

Exponential 86.96% 92.49% 94.80% 96.28% 96.78% 96.84% 96.86% 

Logarithmical 89.49% 92.24% 94.01% 95.63% 96.57% 96.84% 96.86% 
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Table 3: The results for Spearman's correlation consistency r .. p 

Parameter p 

Risk measure 0.01 0.1 0.25 0.5 O.7:'j 0.9 0.99 

Value at Risk 85.80% 89.63% 91.64% 89.01% 77.94% 72.40% 72.77% 

Tail Value at Risk 73.74% 67.15% 7l.77% 73.7:3% 7L.79% 67.19% 65.82% 

PH transform 70.62% 71.41% 72.90% 74.91% 75.87% 76.13% 76.26% 

Dual-power 63.84% 71.15% 74.81% 75.78% 76.23% 76.32% 76.31% 

Dennenberg 73.75% 73.75% 73.75% 73.75% 73.75% 73.75% 73.75% 

Gini 75.78% 75.78% 75.78% 7,5.78% 75.78% 75.78% 75.78% 

Square-root 75.74% 75.82% 75.87% 75.84% 75.79% 75.82% 75.79% 

Exponential 74.50% 75.56% 75.78% 75.80% 75.83% 75.81% 75.79% 

Logarithmical 75A8% 75.66% 75.80% 75.87% 75.79% 75.82% 75.78% 

coefficient. The values are much smaller but also much more stable - all but only few coefficients 

fall between 70% and 77%. Surprisingly the largest consistency seems to be obtained by the 

Value at Risk for low values of parameter p - however these risk measures are useless in practical 

applications. Once again the most stable and relatively large values were obtained for the square 

Table 4: The results for Kendall's correlation consistency r',T 

Parameter p 

Risk measure 0.01 0.1 0.25 0.5 0.75 0.9 0.99 

Value a.t Risk 84.17% 92.98% 94.23% 88.98% 75.31% 69.07% 74.52% 

Ta.il Value at Risk 66.89% 71.14% 82.08% 89.31% 81.86% 70.73% 58.83% 

PH transform 69.88% 71.45% 74.53% 80.15% 85.12% 87.54% 88.87% 

Dual-power 59.92% 77.56% 88.83% 95.69% 92.77% 90A1 % 89.13% 

Dennenberg 89.31% 89.31% 89.31% 89.31% 89.31% 89.31% 89.31% 

Gini 95.69% 95.69% 95.69% 95.69% 95.69% 95.69% 95.69% 

Square-root 91.43% 93.21% 94.23% 95.08% 95.51% 95.63% 95.68% 

Exponential 86.59% 91.91% 93.99% 95.21% 95.56% 95.65% 95.68% 

Logarithmica.l 89.02% 91.66% 93.26% 94.64% 95AO% 95.64% 95.68% 
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root transform, the exponential transform, the logarithmic transform and Gini's principle. 

The coefficients for Kendall's T in Table 4 are very close to those obtained for Pearson's corre

lation, so the conclusions are analogical. 

From the tables it seems that Dennenberg's principle and Gini's principle have very stable 

correlation consistency coefficients (Pearson's, Spearman's and Kendall's). In our test these 

coefficients are even identical for all parameters p. This is not accidental, because both risk 

measures can be expressed as a sum of the expectation and a summand proportional to some 

dispersion measures independent from the parameter p. We discuss it more comprehensively in 

Section 3.4. 

Interested readers are also referred to Dennenberg (1990). 

3.5 Dennenberg's and Gini's principles 

In this section we briefly discuss Dennenberg's and Gini's risk measures. They were recom

mended as premium principles in Dennenberg (1990). 

Firstly we take a closer view at Dennenberg's principle. Substituting (35) into (6) we get: 

lF~l (~) A= 
Hgp[Xl = (p+(l-p)Fx(t))dt+ __ (l+p)Fx(t)dt 

o F/(~) 
1 1 

= 10 2 (1 + p)F-;/(q)dq + 1 (1 - p)F-;/(q)dq = Me[X] 
2 

1 1 

+ (1 + p) 10 2 (F-;/(q) - Me[X])dq - (1- p) 1 (Me[X]- F-;/(q))dq 
2 

= Me[X] + fa1 (F-;/(q) - Me[X])dq + p fa1IF~1(q) - Me[Xlldq = 

= E(X) + pE!X - Me[Xl!, (37) 

where Me[Xl denotes the median of a random variable X. 

Analogous calculations can be done for Gini's principle. Thus, starting from (36) and (6), we 
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get: 

Hgp[X] =.foX! ((l+p)F X (t)-p(F X (t))")(lt 

= E[X] + p (CO Fx(t)(l- Fx(t))rlt 
.10 

= E[X] + p .Ioco 
E[(X - t)+ 1 dFx(t) = E[X] + pE[(X - Y)+ l, 

where X and Yare independent copies from tile same distribution Fx. 

Notice that for the special case when p = 1, one can write the insurance premium as: 

HgJX] = E[max(X, Y)], 

(38) 

thus the premium can be understood as the expectation of the greater of the first two claims 

(assuming independence). 

Therefore, both Dennenberg's and Gini's principles can be written in the form of a sum of 

an expectation and a summand proportional to a specific dispersion measure. It explains why 

correlation consistencies given in Table 2, Table J and Table 4 do not depend on the parameter 

p for these risk measures. 

This representation can be seen as an analogous to the well-known premium principle: 

Ha[X] = E[X] + cyO'[X], 

however the property of preserving stochastic dominance make them much more attractive. 

Dennenberg's and Gini's risk measures are also computable for a larger class of random variables 

- one does not need the existence of moments of order higher than one. In some cases also the 

property of additivity for comonotonic risks which holds for these risk measures may be useful 

- for premium principles this topic was discussed in Section 2.2. 

These risk measures however should not be applied to very heavy tailed distributions. This 

limitation results from the fact that their respective values are restricted by 2E[X] + Me[X] 

and 2E[X], and hence the resulting safety loading may turn out to be too small (sometimes 

it is even impossible to find a premium which would compensate risk for random variables 

with very heavy tails). It is however a typical problem for most distortion risk measures. For 

this reason Wang (1996) postulated to consider one more condition for distortion functions, 

0') 
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namely g~ (0) = 00. Among all analyzed distortion risk functions, only the Proportional Hazard 

transform (34) satisfies this additional property. 

For risk measures (37) and (38) this problem may be partially solved by extending the range of 

the parameter p to all positive values. Then Dennenberg's and Gini's premiums will not satisfy 

the distortion conditions any more (the corresponding function will not be non-decreasing), 

however all desirable properties will be preserved. 

4 Summary 

In this paper we investigated how risk measures of sums of risks are related to the level of 

dependency between the corresponding summands. 

In the first part we demonstrated by means of a number of practical examples that it is impossible 

to find a combination of axioms for risk measures which would hold in all risky situations, no 

matter what the dependency structure between the risks is. We analyzed different contexts in 

which risk measures are typically used, such as calculation of premiums, risk sharing schemes, 

calculation of the solvency margin and an allocation of an economic capital, and related our 

observations to the coherency axioms. 

In the second part we investigated how dependency measures of couples of risks such as Pearson's 

T, Spearman's p and Kendall's T are related to the ordering generated by distortion risk measures 

applied to corresponding sums. We found that for distortion risk measures one can construct 

random couples for which the order is not preserved by neither of the three dependency mea

sures. We also tested the consistency between risk measures generated by some one-parameter 

families of distortion functions and the coefficients T, P and T. We found that the consistency 

varies significantly between different risk measures. For Gini's principle for example the level of 

consistency could be seen as very high and stable. 
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