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Abstract

We describe and contrast several different bootstrapping procedures for penal-

ized spline smoothers. The bootstrapping procedures considered are variations on

existing methods, developed under two different probabilistic frameworks. Under

the first framework, penalized spline regression is considered an estimation tech-

nique to find an unknown smooth function. The smooth function is represented

in a high dimensional spline basis, with spline coefficients estimated in a penalized

form. Under the second framework, the unknown function is treated as a realization

of a set of random spline coefficients, which are then predicted in a linear mixed

model. We describe how bootstrapping methods can be implemented under both

frameworks, and we show in theory and through simulations and examples that

bootstrapping provides valid inference in both cases. We compare the inference

obtained under both frameworks, and conclude that the latter generally produces

better results than the former. The bootstrapping ideas are extended to hypothesis

testing, where parametric components in a model are tested against nonparametric

alternatives.

∗Abbreviated title: “Bootstrapping for Penalized Splines.”
†AMS 1991 subject classifications. Primary-62G08; secondary-62G09.
‡Key words: Mixed Model, Nonparametric Regression, Resampling, Nonparametric Hypothesis Test-

ing.
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1 Introduction

The objective of nonparametric regression is to model the mean function of a response

variable Y by some smooth but otherwise unspecified function µ(x), with x as continuous

covariate. Based on a sample of data pairs (xi, yi), i = 1, . . . , n, two important classes of

methods for estimating µ(x) are local approaches (see for instance Fan and Gijbels, 1996)

and spline smoothing (see for instance Wahba, 1992 or Eubank, 1999). Both methods

can be applied in more complex models like Additive Models (Hastie and Tibshirani,

1990), Varying Coefficient Models (Hastie and Tibshirani, 1993) or in generalized response

models (Green and Silverman, 1994 or Bowman and Azzalini, 1997). In recent years,

penalized spline regression (often referred to as P-splines) has received renewed attention

as a powerful alternative smoothing method. Originally suggested by O’Sullivan (1986),

the method has been made popular by Eilers and Marx (1996) and more recently through

the book by Ruppert, Wand, and Carroll (2003). The main idea of penalized spline

regression is to fit the function µ(x) parametrically with a sufficiently flexible spline basis.

Instead of simple parametric estimation, however, a penalty is imposed on the spline

coefficients to achieve a smooth fit. One technical benefit of this approach is that it

reveals a link to linear mixed models (see Wand, 2003). The resulting affinity to linear

mixed models is advantageous and can be exploited in various ways. In particular, the

smoothing or penalty parameters are playing the role of a ratio of variances in the mixed

model which suggests the application of maximum likelihood theory for estimation (see

for instance Kauermann, 2004).

For notational simplicity, we restrict the presentation to the standard smoothing model

Y = µ(x) + ε with ε as zero mean residuals, even though the examples later in this

article mirror more complex models. Estimation of µ(x) is carried out by penalized spline

regression. Under this method, we first replace µ(x) by the parametric form Xβ + Zu,

where X is some low dimensional basis, e.g. a line, while Z is high dimensional, e.g. a

basis built from truncated line segments. The main assumption is that Z is sufficiently

complex and high dimensional, so that the modelling bias µ(x)−(Xβ+Zu) is of ignorable

size compared to the stochastic estimation error. Theoretical results on how large the

dimension of the spline basis should be in relation to the sample size are rudimentary,

even though Cardot (2002) provides a good starting point. However, it has been found in

practice that the actual specification of Z and its dimension has little influence on the fit

2



as long as the dimension of Z is sufficiently large and a penalized fit is pursued. In fact,

Ruppert (2002) concludes that ”it may be surprising that a default that uses at most 35

or 40 knots [= the dimension of basis Z] could be recommended for effectively all sample

sizes and for all smooth regression functions without too many oscillations”.

Once a basis is selected, a penalized fit is pursued by imposing a penalty on the spline

coefficients u and estimating by least squares regression, which results in a ridge regression

estimate. The resulting penalized fit is equivalently achieved by assuming the spline

coefficients u to be random, that is formulating an a priori distribution on u. This leads

to a linear mixed model and the best linear unbiased prediction (BLUP) of u is equivalent

to the penalized smooth fit, if the penalty is selected to be equal to the ratio of the

variances of ε and u.

Our objective is to develop a bootstrap that takes advantage of the mixed model structure,

and to compare it with a bootstrap that treats µ(x) as fixed and only ε as random.

Bootstrapping for such “smoothing models” has a long history, with Härdle and Bowman

(1988) and Härdle and Marron (1991) as two important examples. See also Mammen

(1993), Härdle, Huet, and Jolivet (1995) or Galindo, Liang, Kauermann, and Carroll

(2001) for some extensions. We refer to Shao and Tu (1995) for an overview. A major

concern when bootstrapping in smooth models is the bias occurring due to smoothing,

which is not accounted for if one applies a naive bootstrap. This requires the use of a pilot

estimate with a relatively large smoothing parameter before the actual bootstrapping is

pursued (see Härdle and Marron, 1991). Following the discussion in Ruppert, Wand, and

Carroll (2003, ch.6), we show here that the bias problem can be circumvented in penalized

spline smoothing if a mixed model formulation is used for bootstrapping.

We describe a number of bootstrap versions for both the mixed model and the smoothing

model formulations, including simple residual resampling, wild bootstrapping and boot-

strapping of correlated spline coefficients. We also show how residuals can be adjusted

to compensate for any small sample bias. The adjustment again depends on the model

used, that is a smoothing model or a mixed model, respectively. Bootstrapping is em-

ployed in our paper for two purposes. First, it serves to mirror estimation variability.

That is, we derive bootstrap based confidence bands for our smooth fit. Second, we take

advantage of the technique for model validation and model checking. In particular, we

use bootstrapping for testing of particular components of the model.
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The article is organized as follows. In Section 2, we introduce penalized spline smoothing

in the two models considered, i.e. the smoothing model and the linear mixed model. We

then suggest two resulting bootstrap procedures. Before providing simulations, we propose

some small sample adjustment to improve the performance of the bootstrap routine. The

bootstrap is then applied in Section 3 to two data examples making use of additive models.

In Section 4 we employ the bootstrap in testing for nonparametric and semiparametric

models, which shows the applicability of our suggestions in more complicated regression

settings.

2 Penalized Spline Smoothing

2.1 Estimation

We consider the smoothing model

yi|xi = µ(xi) + εi

with εi ∼ N(0, σ2
ε ) as independent errors. Function µ(x) is assumed to be smooth but

otherwise unspecified. Following the idea of penalized spline smoothing sketched in Sec-

tion 1, we approximate µ(x) by µ(xi) = C(xi)θ + δ(xi) where C(xi) is a high dimensional

basis chosen in advance. In this form, δ(x) denotes the approximation bias of the spline

basis in C(x). If C(x) is chosen as a sufficiently flexible basis, δ(x) does not contain

relevant information and will therefore be dropped subsequently. This means we assume

the function µ(x) to be representable by a high dimensional parametric form C(x)θ. It

is convenient to decompose C(x) into a low dimensional part X and a high dimensional

component Z (see Ruppert, Wand, and Carroll, 2003). For instance X = (1, x, . . . , xp)

can contain a low dimensional polynomial form while Z is a truncated polynomial basis

Z = ((x− τ1)
p
+, . . . , (x− τK)p

+), where (x)p
+ = xp for x > 0 and zero otherwise. Following

Ruppert (2002), we choose K large but less than the sample size n (or n − p − 1). As a

practical choice, we suggest K = min(n/4, 40). Alternatively, one may use the selection

routine suggested in Ruppert (2002), but to keep the approach simple we fix K with the

above rule of thumb. Once K is chosen, we select the knots τk to cover the range of x

values using quantiles. This formulation brings us to the parametric model

Y |x, u ∼ N(Xβ + Zu, σ2
εI) (1)
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where Y = (y1, . . . , yn) is the vector of response variables and X and Z are the bases

vectors built from the observed covariate values x1, . . . , xn. We define θ = (βT , uT ) as

parameter for the basis C = (X, Z). The error structure modelled in (1) assumes homo-

geneity with variance σ2
ε , even though the bootstrap proposed below will also allow for

heterogeneity in the errors.

Simple parametric fitting of θ would lead to unsatisfactory results due to the high dimen-

sionality of C. Instead, θ is estimated in a penalized manner by imposing a penalty on

the coefficients in u. This leads to the penalized likelihood criterion

lp(β, u, λ) = (Y − µ)T (Y − µ) − λuT D̃u, (2)

with µ = Cθ, λ as penalty parameter steering the amount of smoothness and D̃ as

appropriately chosen penalty matrix. For truncated polynomials, it is convenient to chose

D̃ as identity matrix (see Ruppert, Wand, and Carroll, 2003), while for a B-spline basis

(de Boor, 1978) a difference based penalty is suggested (see Eilers and Marx, 1996). The

smooth estimate µ̂ resulting from (2) then looks like µ̂λ = Cθ̂λ, with

θ̂λ = (CT C + λD)−1CT Y (3)

where D is a block diagonal matrix built from 0 relating to the unpenalized coefficients

β and D̃ relating to u. The coefficient λ acts as a smoothing parameter, which can be

chosen by cross validation or using the Akaike criterion, among other methods. For the

latter, one minimizes

AIC(λ) = log(Y − µ̂λ)
T (Y − µ̂λ) +

2 df(λ)

n
,

where df(λ) is the “degrees of freedom” of the fit, commonly chosen as the trace of the

smoothing matrix, i.e. df(λ) = tr{(CT C + λD)−1CT C}.
The penalized estimate in (3) equals a ridge regression estimate with ridging acting on u

only. Alternatively, we can motivate the estimator in a different way. Assuming u to be

random, one obtains the linear mixed model

Y |x, u ∼ N(Xβ + Zu, σ2
εI), u ∼ N(0, σ2

uD̃
−) (4)

with D̃− as (possibly generalized) inverse of D̃. Under this model, the estimator µ̂λ can

be interpreted as a posterior Bayes estimator or as best linear unbiased predictor (BLUP)
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with λ = σ2
ε/σ

2
u steering the amount of smoothness. In fact it is easily checked that the

BLUP in the linear mixed model (4) is identical to the penalized estimate in the smooth

model (1). However, the interpetation of λ is different in the two models. While being a

smoothing parameter in the smoothing model, λ is playing the role of a variance ratio in

the linear mixed model. In the latter, λ can be estimated together with β using Maximum

Likelihood or Restricted Maximum Likelihood (REML, see Harville, 1977) from (4), see

e.g. Kauermann (2004).

The objective is now to assess the variability of the estimator µ̂λ via bootstrapping. This

will be done in two model scenarios. First, we assume that the function µ(x) = Cθ is

unknown and θ is estimated in a penalized form. This corresponds to model (1) and

will be subsequently called smoothing model bootstrap. Secondly, assuming component

u to be random leads to a random function Cθ which is predicted based on data. This

is the scenario of model (4) and bootstrapping in this model will be called mixed model

bootstrap.

2.2 Smoothing Model Bootstrap

We start with smoothing model bootstrapping based on (1). Let λp be a smoothing

parameter serving as pilot estimate. Then,

ε̂p = Y − µ̂p = Y − C(CT C + λpD)−1CT Y =: (I − Sλ)Y (5)

are the resulting residuals. Bootstrapping is now carried out by resampling these residuals

with different procedures. One possibility is to employ the estimate σ̂2
ε and resample boot-

strap errors ε∗i with replacement from the normal distribution N(0, σ̂2
ε ). This is usually

called parametric bootstrap (see e.g. Efron and Tibshirani, 1993). While straightforward

to implement, the parametric bootstrap approach is unable to mirror discrepancies from

the assumed stochastic model and it is therefore not robust with respect to variance model

misspecifications. For this reason, it is commonly recommended to bootstrap errors from

the empirical distribution function of the residuals ε̂. This means we draw the bootstrap

errors ε∗i from ε̂1, . . . , ε̂n with replacement. In doing so, the distributional assumption of

normality is no longer crucial, but homogeneity is assumed since exchangeability of the

residuals is requested. We call this bootstrap residual bootstrap.

Finally, the homogeneity assumption can be relaxed when working with wild bootstrap as
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introduced in Härdle and Marron (1991). In this case, the ith bootstrap error ε∗i is drawn

from the ith residual ε̂i in the following manner: ε∗i is drawn from a two point distribution

with masses ai = ε̂i(1−5
1

2 )/2 and bi = ε̂i(1+5
1

2 )/10 and sampling probability P (ε∗i = ai) =

(5 + 5
1

2 )/10. The rationale of the wild bootstrap is that this method reproduces the first

three moments of the original residuals, i.e. E∗(ε∗i ) = 0, E∗(ε∗
2

i ) = ε̂ 2
i , E∗(ε∗

3

) = ε̂ 3
i ,

where the E∗ notation refers to moments taken with respect to the bootstrap distribution.

The wild bootstrap is able to better capture local structures like variance heterogeneity,

but this flexibility comes at the cost of an increase in variability. In terms of coverage

probability, this can lead to undercoverage even if the homoscedastic model is in fact

correct. The phenomena is in line with Kauermann and Carroll (2001) and not further

explored here.

In this article, we will use both residual and wild bootstrap for penalized spline smoothing.

Regardless of the bootstrap used, the corresponding bootstrap observations result from

Y ∗ = µ̂ + ε∗, and inserting Y ∗ in (3) leads to bootstrap replicate µ̂∗

λ. One can also choose

the smoothing parameter λ according to the bootstrap data Y ∗, which makes it possible

to take this source of variability into account as well.

We now investigate the bootstrap properties in more depth. Writing µ(x) = Xβ + Zu =

Cθ as before, the deviations between the penalized spline fit and its target can be expressed

as

µ̂λ − µ = CH−1
λ CT ε + bias(λ) (6)

with ε = Y −µ(x) and Hλ = (CT C +λD). The bias term thereby mirrors the traditional

smoothing bias resulting as bias(λ) = −λCH−1
λ Dθ. The corresponding bootstrap version

of (6) results by replacing unknown quantities on the right hand side by bootstrap quan-

tities. Hence, let µ̂p be a pilot estimate obtained with bandwidth λp (we will say more

about the role of λp later on). Considering µ̂p as an estimate of µ, we get the bootstrap

version of (6) through

µ̂∗

λ − µ̂p = CH−1
λ CT ε∗ + bias∗(λ) (7)

where bias∗(λ) simplifies with (6) to

bias∗(λ) = −λCH−1
λ Dθ̂p = bias(λ) + λCH−1

λ DH−1
p CT ε − λλpCH−1

λ DH−1
p Dθ, (8)

with Hp = (CT C + λpD).
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Since the bootstrap errors ε∗ are drawn from the residuals ε̂ = Y − µ̂p, a number of

convergence requirements are needed for the bootstrap bias estimator to be valid. As seen

from (7), we need ε∗ to converge in distribution to ε and bias∗(λ) to converge to bias(λ).

For a theoretical investigation we consider the following simple asymptotic scenario. The

dimension K of the spline basis is assumed to be large but finite and we assume K

to be fixed in advance (see Ruppert, 2002, or Ruppert, Wand, and Carroll, 2003, for a

justification of this setting). This scenario allows us to readily derive the asymptotic orders

CT C = O(n) and (CTC)−1 = O(n−1), for instance. Moreover, with (CT C + λD)−1 =

O((n+λ)−1) we get from (6) that µ̂λ−µ = Op (
√

n/(n + λ))+O (λ/(n + λ)). In particular,

µ̂λ is
√

n-consistent as long as λ = o(n
1

2 ), and the bootstrap bias equals

bias∗(λ) = bias(λ) + O

(
λ

(n + λ)

) {
Op

( √
n

n + λp

)
+ O

(
λp

n + λp

)}
. (9)

Hence, under the conditions given and with λp = o(n1/2) we ensure the convergence of

the bias. It can be shown that the Mean Squared Error based choice of λ has order O(1)

(see Kauermann, 2004), so that consistency follows naturally if the smoothing parameter

is chosen in a data driven manner, for both pilot and bootstrap versions of λ. In practice

and for simplicity we suggest to choose λ = λp which also reduces the numerical effort as

the smoothing parameter is selected only once. In principle, however, λ and λp can be

different.

It remains to investigate convergence of the bootstrap residuals ε∗ in (6). This is a

standard bootstrap exercise which we solve here by looking at convergence of moments.

Note first that E∗(ε∗) = 0 = E(ε), where E∗(·) is the expectation with respect to the

bootstrap distribution. For the second moment, we obtain for residual bootstrap E∗(ε∗i ) =
n∑

j=1

ε̂2
j/n = σ2

ε + Op(n
−

1

2 ). If wild bootstrapping is pursued, we end up with E∗(ε∗i ) = ε̂2
i

and it is shown later in the article that E(ε̂2
i ) = σ2

ε +O(n−1). Convergence of higher order

moments can follow similarly if normality is assumed for ε.

Based on the bootstrap, we can now derive confidence intervals for µ̂λ in the conventional

way as [z∗l , z
∗

u] − E∗(µ̂∗

λ − µ̂λ) where z∗l and z∗u are the α/2 and (1 − α/2) quantiles of

the bootstrap distribution of µ̂∗, respectively. In practice, one replaces the bootstrap

distribution and its expectation E∗ by the empirical distribution obtained from repeated

simulated bootstrap replicates.
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2.3 Mixed Model Bootstrap

The above bootstrap was constructed under the smoothing model, where the unknown

function was estimated by penalized least squares regression. Alternatively, we can view

the smooth fit as a Posterior Bayes estimate under the mixed model (4). This link is now

exploited for the construction of a mixed model bootstrap.

Let θ̂p = (β̂p, ûp), with ûp as predicted random effects resulting from (3). Accordingly,

ε̂ is the residual as above. In contrast to the smoothing model (1), we now assume the

coefficient u to be random, that is we consider the functional form µ = Xβ +Zu = Xβ +

ZD̃−1/2v with v ∼ N(0, σ2
ε/λ) and independent. The stochasticity should be mirrored in

the bootstrap and we suggest to draw Y ∗ via Y ∗ = Xβ̂ + Zu∗ + ε∗ with ε∗ and u∗ being

bootstrapped. As in Section 2.2, there are three different options for bootstrapping both

ε∗ and u∗. First, a parametric bootstrap can be pursued by drawing u∗ from a normal

distribution N(0, σ̂2
uD̃

−) and likewise ε∗ from N(0, σ̂2
ε). Second, residual bootstrapping

can be used by setting u∗ = D̃−1/2 v∗ and drawing v∗ from the empirical distribution

function of the fitted values v̂ = D̃1/2û. Likewise we draw ε̃∗ from ε̂ as above. Finally,

we can draw v∗ and ε∗ using a wild bootstrap from v̂ and ε̂, respectively. We pursue the

latter two options in the following.

Drawing v∗ from the fitted values v̂ comes with an additional problem. When resampling

errors ε∗ one needs the bootstrap mean to be zero, that is
∑n

i=1 ε̂i/n = 0. This is

guaranteed for penalized spline fitting, as can be easily shown. However, a similar property

does not hold for the fitted coefficients v̂ so that in order to mirror the mixed model in

the bootstrap we have to center the empirical distribution of v̂, that is we draw bootstrap

values v∗ from v̂− ¯̂v with ¯̂v as arithmetic mean of v̂. In particular this provides E∗(v∗) = 0

for both residual and wild bootstrap.

It should be noted that in the mixed model (4) we are not interested in the random

variation of u, but in the prediction of u only, as this builds our predicted fit µ̂. Our

objective is therefore to assess the prediction error

µ̂ − µ = CH−1CT ε − λCH−1D

(
0

u

)

with µ = Xβ + Zu and u considered as random. The corresponding bootstrap version is

then

µ̂∗

λ − µ∗ = CH−1
λ CT ε∗ − λCH−1

λ D

(
0

u∗

)
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where µ∗ = Xβ̂ + Zu∗ is a random function and µ̂∗

λ is the resulting fit of Y ∗.

Bootstrap convergence is now guaranteed if ε∗ and u∗ converge in distribution to ε and u,

respectively. This convergence could be explored by showing convergence of the moments

of ε∗ and u∗. Even though this is standard for ε∗, we are faced with a conceptional

problem with respect to the asymptotic scenario in the case of the convergence of u∗.

The dimension of u is fixed (for fixed K) and replicates are available only by resampling

the random function µ. This means that if we consider the function µ as given (but

unknown), we treat u as given but unknown and in particular, replicates of u are not

available. Hence u∗ can not converge in distribution to u in a classical way. It is worth

pointing out that this problem holds in the same way in the mixed model (4) when used

for smoothing since increasing observations do not provide replicates for u.

Regardless of this conceptual hurdle, we can calculate the bootstrap moments, yielding

the first two moments as

E∗{µ̂∗

λ − µ∗} = 0

E∗

{
(µ̂∗

λ − µ∗)2
}

= λ2 diag
(
C(CTC + λD)−1D diag (0, Var∗(u∗)) D (CT C + λD)−1CT

)

+diag (Sλ Var∗(ε∗) ST
λ ). (10)

where (.)2 on the left hand side of (10) refers to componentwise squared elements and

Sλ as defined in (5). The variances in (10) therefore depend on the bootstrap scheme

used. For the residual bootstrap, we find Var∗(u∗) = σ̂uD̃
− and Var∗(ε∗) = σ̂2

εIn,

where σ̂2
u =

(
û − ¯̂u

)T
D̃

(
û − ¯̂u

)
/K with ¯̂u = D1/2 ¯̂v and σ̂2

ε = ε̂T ε̂/n. Assuming that

λ = σ̂2
ε/σ̂

2
u and ignoring the centering of v for the moment, we can simplify (10) to

E∗

{
(µ̂∗

λ − µ∗)2} = σ̂2
ε diag (Sλ) which mirrors the theoretical findings in Ruppert, Wand,

and Carroll (2003, page 190). If in contrast wild bootstrapping is pursued, we find

V ∗(u∗) = D1/2diag
(
(v̂ − ̂̄v2

)
D1/2 and Var∗(ε∗) = diag(ε̂ 2

i ).

One advantage of the mixed model approach, as also noted in Ruppert, Wand, and Carroll

(2003, ch.6), is that the bias due to smoothing in the smoothing model becomes a compo-

nent of variance by treating u as random. This holds in the same way for the bootstrap.

Moreover the variability is increased by the variance of u∗, which takes automatic control

of the bias.

10



2.4 Residual Adjustments for Smoothing Model Bootstrap

In all bootstrap approaches above we draw bootstrap errors ε∗ from the residuals ε̂.

Like in other regression contexts, this suffers from a small sample bias since residuals

underestimate the true model errors. Therefore, a correction is necessary to provide a

reliable performance of the bootstrap.

In the smoothing model (1), we find E(ε̂2
i ) = σ2

εdi with di = {(I − Sλ)(I − Sλ)}ii where

subscript ii refers to the ith diagonal element. This suggests replacing ε̂i in the smoothing

model bootstrap by

ε̃i = ε̂i/
√

di (11)

It should be noted that di = 1 + O(n−1) assuming that λ = o(n−1/2), so that this

adjustment is asymptotically negligible.

Considering now the mixed model bootstrap, where we note that model (4) can be written

as r ∼ N(0, σ2
εVλ) with Vλ = I + ZD̃−ZT /λ and r = Y − Xβ. The residual for r can be

written as

r̂ =
(
I − PV −1

λ

)
r

where Pλ = X(XT V −1
λ X)−1XT . This allows to express the fitted spline coefficient û =

(ZT Z + λD̃)−1ZT r̂ as

û =
(
ZT Z + λD̃

)
−1

ZT
(
I − PλV

−1
λ

)
r.

Defining ej as the jth m dimensional unit vector, we obtain through simple matrix algebra

E(û2
j) = σ2

ucj with

cj = eT
j

{
D̃ZT Z

(
ZT Z + λD̃

)
−1

− λ
(
ZT Z + λD̃

)
−1

ZT PλZ
(
ZT Z + λD̃

)
−1

}
ej

for j = 1, . . . , m. Accordingly, the bias in ûj can be corrected by taking ũj = ûj/
√

cj

for the bootstrap. In the same way, we find ε̂ = r̂ − Zû as remaining residual. Defining

SZ = Z(ZT Z + λD̃)−1ZT and using the fact that V −1
λ = (I − SZ), we find for the second

order moment E(ε̂2
i ) = σ2

εqi, where

qi = eT
i {(I − SZ) − (I − SZ)Pλ(I − SZ)} ei.
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This in turn suggests to adjust the residuals by ε̃i = ε̂i/
√

qi before drawing the mixed

model bootstrap.

The above adjustments correct for the small sample size bias in the residuals. In the

case of the mixed model bootstrap, an additional source of potential bias comes from the

possible model misspecification of the random effect for the coefficients u. We assumed

in the mixed model (4) that coefficients u are distributed with correlation matrix D̃−. In

case of truncated polynomials, D̃− is usually set to be the identity matrix for practical

convenience, i.e. assuming that the u are i.i.d. However, assuming independence of u in

the bootstrap can be inefficient if the true underlying function has a smooth shape.

As an example, we show in Figure 1 (top plot) observations simulated from a sine curve.

In order to fit this function by spline regression, we approximate the sine µ(x) by Xβ+Zu

for the right choice of β and u, where x = (1, x) and Z are truncated linear lines (x−τk)+

with (x)+ = x for x > 0 and zero otherwise. The knots are equidistantly distributed

over the range of x and the number of knots chosen is 40. The sine shape implies that

the coefficient vector u which optimally approximates µ(x) (in a least squares sense) has

adjacent values of u of similar size. This can also be seen from Figure 2 (top plot), where

we show the fitted values û as well as the optimal u. The bottom plot in Figure 2 shows the

corresponding sample partial autocorrelation function for the elements (û1, û2, . . . , û40).

Autocorrelation is clearly visible.

To mirror this type of correlation within the bootstrap, we can assume that the coefficients

in u follow an AR(1) process, which will capture serial correlation between the coefficients.

This is achieved by setting ul = ρul−1+vl, with vl as independent mean zero variables and

ρ as autocorrelation. Naturally, more complex correlation structures may also be assumed,

but to keep the framework simple we restrict the approach to the AR(1) process here.

One can now estimate the autocorrelation parameter ρ from the fitted coefficients. This

in turn yields fitted random effect residuals v̂l, l = 2, 3, . . . obtained from ûl = ρ̂ ûl−1 + v̂l.

Bootstrap errors u∗ can now be drawn in the following way. First, a bootstrap sample of

u∗

1 is drawn, either by wild bootstrapping or setting u∗

1 as a random draw from the fitted

values ûl − ¯̂u if residual bootstrap is being used. In the next step, we draw v∗

l either with

residual or wild bootstrap from v̂l, l = 2, 3, . . .. This in turn leads to replicates u∗

l . Note

that dependent on the autocorrelation estimate being used, one might have that ¯̂vl 6= 0

so that some centering might be necessary as well. In practice, due to the construction of
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an AR(1) process, ̂̄vl will be close to zero in particular for a large dimensional basis.

2.5 Simulation

To assess the performance of the proposed routines, we run a small simulation study. We

first simulate n = 200 observations from the model µ(x) + ε with µ(x) = 2 sin(πx/2) and

ε ∼ N(0, 0.252). One realization from this simulation is shown in Figure 1 (top plot). The

covariate x is equidistant on [-2, 2]. For estimation, we use a truncated linear basis with

40 knots equidistantly distributed over the range of x. The smoothing parameter λP is

chosen using REML, which provides an easy and numerically appealing choice (see also

Ruppert, Wand, and Carroll, 2003, p.113). Figure 1 (top plot) shows bootstrap confidence

intervals as solid bands for the smoothing model bootstrap and as dotted lines for the

mixed model bootstrap for the single realization of the simulated data. Both bootstraps

are residual based by resampling from the empirical distribution of ε̂ and û, respectively.

In the case of the residual bootstrap, the bias correction discussed in Section 2.2 is also

included. The intervals are based on 200 bootstraps, and the bands for both methods are

very close to each other.

We now run 200 simulations each with 200 bootstraps to check the coverage probability of

the different bootstrap approaches. The mixed model bootstrap of û is carried out in two

ways, first by simply resampling u∗ from û and secondly by accounting for the correlation

structure among û as proposed above. The two lower plots in Figure 1 show the coverage

probabilities for bootstrapped confidence bands with nominal coverage level at 95%. It

appears that the two versions of the mixed model bootstrap perform slightly better than

the smoothing model bootstrap, even though the former exhibits a slight tendency of

being too conservative. The smoothing model bootstrap appears to have difficulties at

the peaks of the sine curve. In the case of the wild bootstrap, the mixed model bootstrap

again performs slightly better. The undercoverage of the smoothing model bootstrap is

due to increased variability of the variance estimates and not further explored here (see

Kauermann and Carroll, 2001, for an explanation of this phenomenon). For both the

residual and the wild bootstrap, incorporating the correlation in the coefficients u does

not seem to have a large effect on the coverage probabilities overall.

Next, we explore the effect of the sample size. To do so we simulate data from µ(x) = x+

exp(−4x2), as shown in Figure 3 (top plot). The function has locally varying complexity
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and is therefore challenging for smoothing. The two bottom plots show the coverage

probability for the smoothing model bootstrap and the mixed model bootstrap (ignoring

in this case any correlation among coefficients u). Increasing the sample size substantially

improves the performance of both bootstraps. In particular, for sample size n=400 the

coverage of the peak in the middle is clearly better. Overall for both sample sizes, the

mixed model bootstrap outperforms the smoothing model bootstrap in this example, by

providing simulated coverage probabilities closer to the postulated nominal value.

3 Examples

3.1 Munich Rental Data

To illustrate the bootstrap strategy further, we apply the proposed methods to two real

data examples. The first example analyzes data on housing rents (in Euro per squared

meter [sqm]) for apartments in the city of Munich, Bavaria, Germany. The data were

collected in 2003 as a stratified sample by the city council. The study interviewed 2059

tenants with respect to rent and various other features of their apartments. The data

can be downloaded at www.stat.uni-muenchen.de. We analyze a subset of the data,

namely apartments located in buildings constructed after 1960 and having less than 6

rooms (number of rooms include living room, i.e. 1 room apartment = studio, 2 rooms =

1 bedroom etc.). As further explanatory quantities we consider the continuous covariates

x1: floor space (in sqm), x2: year of construction and x3: number of rooms, and the

categorical covariates w1: kitchen (w1 = 1 when apartment is equipped with a kitchen,

w1 = 0 otherwise), w2: location (w2 = 1 if neighborhood is considered “good,” w2 = 0

otherwise) and w3: bath (w3 = 1 if the bathroom is equipped with special features, w3 = 0

otherwise).

With Y denoting the rent per sqm, we consider the additive model Y = µ(x, w)+ε, where

µ(x, w) = β0 + µ1(x1) + µ2(x2) + µ3(x3) + w1β1 + w2β2 + w3β3.

Functions µl(xl) and βl, l = 1, 2, 3, can be estimated by penalized spline regression as

follows. By writing X = (1, X1, X2, X3, w1, w2, w3), with Xl as unpenalized part for

µl(xl), and Z = (Z1, Z2, Z3), with Zl as high dimensional part for fitting µl(xl), we

obtain model (1). For the penalized likelihood (2) we only have to decompose the penalty
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matrix D̃ to diag(D̃1, D̃2, D̃3) and attach smoothing parameters λ1, λ2, λ3 directly to the

corresponding submatrices of D̃. The remaining formulae in the above section are now

readily generalized to the additive model fitted here.

The model was fitted using a truncated linear line basis with 10 knots for x1 and x2

and 5 knots for x3, and smoothing parameters were selected by REML; we used wild

bootstrapping and bootstrapped uncorrelated spline coefficients for the inference. Figure

4 shows the resulting fits with bootstrap confidence intervals for all estimates, including

β1, β2, β3. Dotted lines are for mixed model bootstrap, dashed lines are for smoothing

model bootstrap; for β̂l we show mixed model bootstrap only. The confidence intervals

for the bootstraps performed under both models are again very close, as was also seen in

the simulations above.

Apparently there is a nonlinear effect of floor space with apartments smaller than 50 square

meters, say, being increasingly expensive (per sqm). The year of construction has a weak

but linear effect with newer houses being more expensive. Moreover, apartments with 2

or 3 rooms are most expensive compared to smaller and larger apartments. The factorial

effects βl all appear to have a positive effect, i.e. for apartments equipped with a kitchen

the rent in increased by 70 cents per sqm and likewise for apartments in neighborhood

considered as good. The effect of bathrooms with special features is positive but less

strong and shows some non-significant behavior based on the mixed model bootstrap.

The results look comparable for βl using the smoothing model bootstrap and are therefore

not explicitly shown here.

3.2 USA Phillips Curve Estimation

The Phillips Curve, due to Phillips (1958), is a well established concept in economics.

We refer to Chiarella and Flaschel (2000) for a general discussion and motivation. The

principal (and simplified) idea is that wage inflation Y depends on the unemployment

rate x1 (after controlling for other quantities). Although Phillips (1958) already discussed

a nonlinear relationship between Y and x1, it has become predominant in economics

to work with linear functions only. In this article, we investigate the dependence of

wage inflation Y on unemployment rate x1, inflation x2 and long term inflation x3. The

latter is also called inflationary climate, the integrated inflation of the last 4 years using

a nonparametric approach. See also Flaschel, Kauermann, and Semmler, 2005, for an
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economic discussion of nonlinearity in this context.

Figure 5, bottom right plot, shows the data for the USA from 1970 onwards. Ignoring

the time scale, we embed the data in the Phillips curve context by fitting the model

Y = µ(x1, x2, x3) + ε with

µ(x1, x2, x3) = β0 + µ1(x1) + µ2(x2) + µ3(x3)

and ε as errors. The corresponding fits with residual, wild bootstrap confidence intervals

are shown in Figure 5. The fit is obtained with truncated lines with 12 knots and smooth-

ing parameter selected by REML, and inference is based on mixed model bootstrapping

with uncorrelated spline coefficients.

There is a slight non-linear shape for unemployment rate, meaning that wages increase less

if unemployment is high. Moreover, the effect of the actual inflation is weak and mostly

around zero, while long term inflation influences the wage inflation in a sigmoid shape.

This means that long term inflation has a roughly linear influence on wage inflation

if the long term inflation is in the middle range. For high as well as low long term

inflation, the effect on wage inflation is reduced. We will investigate the effects further

in a subsequent chapter, where we will test whether the covariate effects are linear or

have a non-linear relationship. We again see that both bootstrap approaches give similar

confidence intervals.

4 Testing Models using the Bootstrapping

4.1 Testing Parametric versus Nonparametric Models

An important area where bootstrapping can be of practical help is when the focus is

on testing different models. In this case, a bootstrap makes it possible to mimic the

distribution of a test statistic under the hypothetical model. Assume for instance that we

want to test the parametric model H(0) : Y = Xβ + ε against the smooth model H(1) :

Y = Xβ + Zu + ε. In the context of smoothing and mixed models this problem has been

recently tackled in a series of papers by Crainiceanu and Ruppert (2004), Claeskens (2004)

and Crainiceanu, Ruppert, Claeskens, and Wand (2005). The theoretical results derived

there rely, among other things, on the assumption of independent homoscedastic errors

ε. A test that does not rely on this assumption can be constructed via bootstrapping.
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As test statistic for model testing, we take the likelihood ratio with model H(0) defined

through Y |x ∼ N(Xβ, σ2
εI) and alternative model either the smoothing model (1) or the

mixed model (4), respectively. Let σ̂2
(l) denote the error variance estimate under H(l) for

l = 0, 1. The log likelihood ratio in the smoothing model is then defined through

Λsmooth =
n

2

{
− log(σ̂2

(1)) + log(σ̂2
(0))

}
(12)

with σ̂2
(l) = ε̂T

(l)ε̂(l)/n, where ε̂(l) are the residuals obtained for model H(l). For the mixed

model, we modify the likelihood ratio by employing the Restricted Maximum Likelihood

(REML) defined as (see also Harville, 1977)

lREML(σε, λ) = −(n − p)

2
log(σ̂2

ε,mixed) −
1

2
log |Vλ| −

1

2
log |XTV −1

λ X|, (13)

where Vλ = I + ZD̃−ZT /λ with D̃− as (generalized) inverse of D̃ and σ̂2
ε,mixed = (Y −

Xβ̂)T V −1
λ (Y − Xβ̂)/(n − p). The log RE likelihood ratio is then defined as

ΛREML = lREML(σ̂2
(1),mixed, λ̂) − lREML(σ̂2

(0),mixed, λ = ∞).

Note that in the case σ2
u = 0 (or equivalently, λ = ∞), the mixed model (4) collapses to

the simple regression model H(0).

The distribution of Λsmooth and ΛREML under H(0) are difficult to derive analytically

in general. We therefore derive it by bootstrapping. To do so, we have to bootstrap

data from the H(0) model and refit the models either using the smooth or the mixed

model as alternative H(1). Apparently, there is no random effect u in the H(0) model

so that we only have to resample residuals, either with residual or wild bootstrapping.

Refitting models H(0) and H(1) now provides bootstrap replicates Λ∗

smooth and Λ∗

REML.

If the penalty parameter λ is large, coefficients u are shrunk to zero and there is no

evidence for H(1). In fact, as shown in Crainiceanu and Ruppert (2004) ,the probability

that the REML estimate λ̂ is infinity can exceed 1/2. Therefore in each bootstrap we

chose the smoothing parameter λ using a REML estimate to incorporate the variability

of estimating λ in bootstrap as well. A test decision can be based on the empirical

distribution of Λ∗

smooth and Λ∗

REML, respectively. In practice, if the bootstrap p-value is

at the borderline, one should increase the bootstrap size to guarantee reliable results.

We run a small simulation to show the performance of the routine. First we simulate

200 data points from a simple linear model as shown in Figure 6 (left hand side) for one
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realization. We fit both alternative and assumed model and assess the significance of the

likelihood ratio statistic by smoothing model and mixed model wild bootstrap of size of

200. For 150 simulations, we show in Figure 7 (upper row) the empirical distribution of

the resulting bootstrap p-values for both Λsmooth (solid line) and ΛREML (dotted line).

Since we simulated from model H(0), this should have a uniform distribution. The large

proportion of p-values equal to 1 results from the bootstrap samples where λ̂ → ∞ and

hence model H(1) collapsed to H(0) (we choose λ̂ > 105 as threshold in the simulation).

Focussing on the lower part of the distribution (zoom in plot on the right hand side)

we see that the test appears to be consistent since small p-values approximately follow a

uniform distribution, with the diagonal line included as reference in the plot.

To assess the power of the test, we simulate data from a quadratic model y = β0 + xβ1 +

x2β2 + ε with parameter settings β0 = 0, β1 = 2, β2 = 0.1. A plot of the data is shown in

Figure 6 (right hand side) for one realization. The quadratic shape appears quite weak.

The resulting distribution of the p-values is provided in Figure 7 (bottom row).

For comparison, we also include a parametric test of a simple linear model tested against

a quadratic model for both simulated cases, i.e. H(0) : y = β0 + xβ1 + ε against H(1) :

y = β0 + xβ1 + x2β2 + ε using a likelihood ration test. Because both models are correctly

specified, this test serves as benchmark. The resulting simulated p-values are also included

in Figure 6 as dashed line. As can be seen from the plots for data following a linear model

and a quadratic model, the bootstrap test behaves soundly by showing a promising power

compared to the parametric test. No obvious difference between smooth and mixed model

bootstrap is observable for this example. This concurrence has also been observed in other

simulations which are not reported here.

4.2 Bootstrapping in Additive and Varying Coefficient Models

The above test situation is somewhat simplistic because, since the hypothetical model is

parametric, we did not actually need to use the bootstrap ideas introduced in Section 2

to construct a test. However, both the bootstrapping and the testing ideas we described

can be easily extended to more complex models such as Additive or Varying Coefficient

Models. As an example of a more complex testing situation, consider the model

Y = β0 + µ1(x1) + gµ2(x2) + ε, (14)
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where β0 is the intercept, µ1(.) and µ2(.) are smooth but unknown functions in x1 and x2,

and g is a factorial covariate (with binary outcome). If x1 ≡ x2 ≡ x then µ2(x) describes

the multiplicative interaction between g and x, introduced as varying coefficient in Hastie

and Tibshirani (1993). If g ≡ 1 and x1 and x2 are two different covariates, then (14) is

better known as Additive Model, extensively discussed in Hastie and Tibshirani (1990).

Estimation in (14) can be carried out similarly to our examples above by penalized spline

smoothing (see also Marx and Eilers, 1998) by replacing µl(x) by Xlβl + Zlul with Xl

as low and Zl as high dimensional basis. The matrix X1 does not contain the intercept,

since this is explicitly written as β0 in (14). The same holds for X2 in the Additive Model.

Defining θ = (β0, β1, β2, u1, u2) and C = (1, X1, GX2, Z1, GZ2) with G = diag(g1, . . . , gn),

we get the penalized fit by θ̂−θ = H(λ)−1CT ε−H(λ)−1D(λ)θ, where H(λ) = CT C+D(λ)

and D(λ) = diag(0, λ1D̃1, λ2D̃2) for λ = (λ1, λ2). Parameter θ is thereby either considered

as fixed but unknown, mirroring a model with smooth components (1), or components u1

and u2 in θ are treated as random, extending the mixed model (4).

As an example, we present a test on checking an additive model, that is g = 0 versus

g = 1, and x1 and x2 as two covariates. For the subsequent simulation we draw x1 and x2

independently from a truncated standard normal distribution with support [−2, 2]. The

shapes of µ1(x1) and µ2(x2) are shown in Figure 8 (top plots) where we show Y −µ2(x2) =

µ1(x1) + ε and Y − µ1(x1) = µ2(x2) + ε, respectively. The error variance is set to 1. We

now test hypothesis

H(0) : Y = β0 + µ1(x1) against H(1) : Y = β0 + µ1(x1) + µ2(x2).

To do so we fit µl(xl) as Zlul only, i.e. we drop Xl and keep Zl as truncated linear lines.

Hence, when penalized regression is carried out with λ2 → ∞, the fit will correspond to

that for the hypothetical model H(0). Let the restricted likelihood function be defined

as in (13) with Vλ = I + ZΣ̃uZ
T where Z = (Z1, Z2) and Σ̃u as block diagonal matrix

built from D̃−

1 /λ1 and D̃−

2 /λ2. Then setting λ2 to infinity provides the log REstricted

likelihood ratio

ΛREML = lREML

(
σ̂(1), (λ̂1, λ̂2)

)
− lREML

(
σ̂(0), (λ̂1, λ̂2 = ∞)

)

with σ̂(l) as variance estimates in the resulting model. Correspondingly, the smooth

likelihood ratio Λsmooth is defined as in (12). Bootstrapping of the test statistic can
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now be pursued by either following the mixed model or the smoothing model scenario,

respectively. For the former, we sample Y ∗ = β̂0 + Z1u
∗

1 + ε∗ where ε∗ is drawn from

the (adjusted) residuals ε̂(1) in the alternative model and u∗

1 is drawn from the fitted

random effect in the mixed model with u1 and u2 as random components. Note that the

bootstrap has to be constructed from the fitted values in the H(1) model in order to avoid

bias problems occurring due to model misspecifications. Fitting the test statistic ΛREML

to the bootstrapped values Y ∗ provides bootstrap replicates Λ∗

REML for the likelihood

ratio. To accomplish the variability due to estimation of λl we refit λ̂l for each bootstrap

sample selected by its REML estimate.

For the bootstrap based on the smoothing model, we sample Y ∗ = Wβ̂ +Z1û1 +ε∗. Using

Y ∗ to refit the model leads to the bootstrap replicate Λ∗

Smooth which is used for validation

of the significance of Λsmooth. In this case, ε∗ is drawn from the fitted smooth model

H(1), while β̂ and û are the estimates in the H(0) model. In Figure 8 (bottom plots) we

show the distribution of the p-value for simulations under H0 and under H1, respectively.

The results are based on 100 simulations and λ = (λ1, λ2) is estimated using a REML

approach. If λ̂l > 105, we formally set λl ≡ ∞ and fitted a reduced model with the

component excluded. Again, the performance of the bootstrap-based test appears sound

and no obvious differences between the smoothing model or mixed model approach can

be seen.

5 Examples

5.1 Munich Rental Data

Returning to the Munich Rental data fits in Figure 4, we intend to simplify the model given

the linear shape of x2: year of construction. Moreover, we could test on the significance

of w3: bath, given the bootstrap confidence intervals in the full model contain the zero.

We therefore test the following simplified models

H0 : µ(x1) + µ(x2) + µ(x3) + w1β1 + w2β2 + w3β3

vs.

H11 : µ(x1) + µ(x2) + x3βx3
+ w1β1 + w2β2 + w3β3

H12 : µ(x1) + µ(x2) + x3βx3
+ w1β1 + w2β2.
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The resulting bootstrapped p-values for testing H11 against H0 are 0.22 using the smooth-

ing model bootstrap and 0.19 using the mixed model bootstrap. Testing H12 against H0

we get 0.185 as smoothing model p-value and 0.13 as mixed model p-value, respectively.

This suggests that there is no evidence for a non-linear influence of year of construc-

tion and special features of the bath do not increase the rent significantly. All other

components are significant, with p-values not reported here.

Considering the functional shapes in Figure 5 for the other example data set, we test

whether the influence of some of the covariates can be simplified in a linear shape. We

therefore pursue a bootstrap test for the following models

H0 : µ1(x1) + µ2(x2) + µ3(x3)

vs.

H11 : x1β1 + µ2(x2) + µ3(x3)

H12 : x1β1 + x2β2 + µ3(x3)

H13 : x1β1 + µ2(x2) + x3β3.

The resulting p-values are shown in Table 1. There is clear evidence for non-linear in-

fluence of both long and short term inflation while the unemployment rate has a linear

relationship on wage inflation, so that model H11 can be used as a final model.

6 Conclusions

We have demonstrated how the link between penalized spline smoothing and linear mixed

models can not only be exploited for smoothing but also for bootstrapping. As could be

seen in our simulations and examples, the mixed model bootstrap works satisfactory when

applied to assess the fit of a smooth function using mixed model confidence bands. For

the calculation of confidence intervals, the mixed model formulation provides a better

framework for bootstrapping than the traditional smoothing model.

The idea was extended to testing nested models. In this hypothesis testing context,

the behavior of the mixed model and smoothing model bootstrap methods appeared to

be more similar, with both approaches giving good results. The resulting test appears

consistent and powerful at the same time.
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model

bootstrap H11 versus H0 H12 versus H0 H13 versus H0

smoothing model 0.31 0.01 < 0.01

mixed model 0.34 0.01 < 0.01

Table 1: Bootstrap p-values for Phillips curve data
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Figure 1: Simulated data from a sine curve (top plot) with bootstrap confidence bands.

Bold line shows time curve. Coverage probability based on 200 simulations using residual

bootstrapping (middle plot) and wild bootstrapping (bottom plot).
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Figure 3: Simulated data with smoothing and mixed model confidence bands (top plot).

Bold line shows true curve. Coverage probability based on 200 simulations using a sample

size of n = 100 and n = 400 (two bottom plots).
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Figure 6: Simulated data from hypothetical (linear) and alternative (quadratic) model.
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Figure 7: Empirical distribution function of bootstrap p-values under H(0) (upper row)

and under the alternative model H(1) (bottom row) from Figure 6.
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Figure 8: Additive functions in model H0 and H1 (top row) and simulated distribution of

the p-value.
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