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Abstract

The Basel II Accord outlines a general framework for determining regula-
tory capital requirements for credit risk portfolios. Different obligors usually
operate in dependent socio-economic environments and these structural cor-
relations are the main reason why regulatory capital is needed. Therefore,
it is not surprising that an important component of the regulatory regime
for capital is the asset correlation between obligors. Basel II has set a range
for corporate asset correlations from 8 to 24%, the exact value depending
on several individual firm characteristics.

We use monthly asset value data to calculate asset correlations and com-
pare these with Basel II as well as results from other papers. Our results
are in line with literature but a clear difference is found between the major-
ity of these results and the results from Basel II and some major software
providers. We discuss these differences and offer some explanations as an
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attempt to reconcile the differences. The impact of horizon is considered as
well.

1 Introduction

There is ongoing pressure from regulators, investors and rating agencies on
financial institutions to build appropriate models that allow measurement of
the different risks faced. For the financial institutions the implementation of
these models is often a first step towards developing what is now often called
an enterprise wide risk framework, which can support and reward manage-
ment on an enterprise-wide basis by integrating all risk components. As far
as credit risk is concerned it follows from Sklar’s theorem that one is able
to assess the risk of the entire loan portfolio provided that the dependency
structure or copula is known (as well as the marginal distributions of the
individual credit losses). However, whilst the assessment of the marginal
risks is now relatively well under control, fitting a copula in a credit con-
text is a difficult exercise due to the relative scarcity of observed defaults.
Therefore, most institutions limit themselves to using default correlations
when assessing the dependencies and use a variance-covariance framework
to asses the credit portfolio risk. It must be noted that in the literature on
default correlations it is now standard to use the concept of asset correlation
to discuss and to compare the different findings. Indeed, an assumption on
joint asset movements (typically using a Gaussian copula) allows one to back
out the implied asset correlations from the default correlations; we refer to
Crouhy et al (2000) for more details.

Asset correlations are also an important component of the Basel II Ac-
cord for regulatory capital requirements of credit risk portfolios. In the
Basel Committee on Banking Supervision (BCBS) document of January
2001 (BCBS (2001a), asset correlations were assumed to take a value of
20% for all obligors. The modification later that year (BCBS (2001b)) as-
sumed that asset correlation declined with PD: for the lowest PD the asset
correlation was 20% and for the highest PD the asset correlation was 10%.
Then finally in the Consultative Document of 2006 asset correlations for
sovereigns, banks and corporates were principally assumed to be between
12% and 24%, once again depending on the probability of default. We note
that for small and medium sized corporates an extra downward firm-size ad-
justment up to 4% is made and this brings the effective range of corporate
asset correlations between 8% and 24%.
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There was limited research at the time of the first Basel II document and
as such, it seems that these estimates were at least partly based on indus-
try perception and practice and this is admitted in the document (BCBS
(2001a), page 35).

In the subsequent years there have been numerous papers using different
approaches and different datasets, the majority of which report dramatically
different results. These can be largely separated into two categories. The
first uses observed default data to calculate single and pairwise default fre-
quencies from which default correlations are derived. Papers in this category
include Gordy (2000), Frey and McNeil (2003), Dietsch and Petey (2004),
Jobst and de Servigny (2005) and de Servigny and Renault (2002).

The second starts with the calculation of correlations between firm’s as-
set returns. Next, assuming (for example) that asset returns are bivariate
normally distributed and a Merton model of the firm, one can derive de-
fault correlations; see again Crouhy et al (2000). Papers in this category
include Duellmann et al. (2006), Lopez (2002), Pitts (2004) and the software
providers Moody’s KMV (MKMV) and Fitch Vector 2.0.

A related issue is the choice of the distribution for joint asset value
movements. Non-Gaussian distributions for the asset movements have been
considered in Frey et al. (2001) and since the choice of copula is not the
topic of this paper, we will use the Gaussian copula in all cases.

Ultimately, default data is the best source of default correlations as no
intermediate process is assumed. However frequently default data is either
sparse or unavailable. In this study we use monthly asset value data to
derive asset correlations and we compare our results with other results in
literature.

Section 2 describes the data used and the methodology applied. Section
3 presents our results and the results of other papers. Section 4 discusses
the effect of horizon. Section 5 discusses the various results and interprets
the findings. Section 6 concludes and discusses areas for further research.

2 Data and Methodology

The source of the asset value data used is MKMV Credit Monitor. Several
papers have used the same data source, such as Pitts (2004) and Duell-
mann et al. (2006). These authors reported that the raw asset data should
be corrected for the impact of corporate actions and potential data errors.
Therefore, the data was cleaned to remove outliers, asset values were ad-
justed for debt issues and buybacks and those months where asset value
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data were not available were removed. The eventual sample of companies
was comprised of 20,144 companies with between 40 and 107 months of asset
returns each from March 1997 to March 2006. Correlations between com-
panies were only calculated when there were at least 40 months of data for
each pair of companies. To the best of our knowledge, this is the largest
sample that has ever been used for an asset correlation study.

The companies were aggregated into 336 clusters based on asset size, ac-
tivity sector, probability of default and world region. Previous studies have
shown some evidence that these are factors that may differentiate asset cor-
relation and we note that the probability of default and to some extent asset
size do affect the Basel II values for asset correlations; see amongst others
Lopez (2002), Duellmann and Scheule(2003), Dietsch and Petey (2004) and
BCBS (2006). Then the average of all the asset correlations between compa-
nies in each pair of clusters was used as the representative asset correlation
between two clusters.

3 Results from Literature

Results from literature are separated into two categories: those using de-
fault data and those using asset data. Using default data, one can estimate
default correlations directly and then back out the asset correlation with
an assumption regarding joint asset value movements. Using asset value
data, one can directly estimate asset correlations and then move to default
correlations.

3.1 Asset Correlations from Default Data

In Table 1 we report the asset correlations from a variety of studies which
have used default data. Where the studies report default correlations, we
report the equivalent asset correlations using a Gaussian copula for joint
asset movements.

Hamerle it et al. (2003a) used the same data as in Boegelein et al.
(2002) which comprised default data from Canada, France, Germany, the
UK, Italy, Japan, South Korea, Singapore, Sweden and the US.

In addition Vassiliev (2006) uses default data from UBS to calculate
asset correlations which “are in the range reported in external studies (e.g.,
Dietsch and Petey, 2004)”.

The results, which use data sets from North America, Canada, Switzer-
land, France, Germany, Finland, the UK, Italy, Japan, South Korea and
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Source Study Data Source Results
Gordy (2002) S&P 1.5% - 12.5%

Cespedes (2000) Moody’s 10%
Hamerle et al. (2003a) max of 2.3%
Hamerle et al. (2003b) S&P 1982-99 0.4% - 6.04%

Frey et al. (2001) UBS 2.6%, 3.8%, 9.21%
Frey & McNeil (2003) S&P 1981 - 2000 3.4% - 6.4%
Dietsch & Petey (2004) Coface 1994-2001 0.12% - 10.72%

AK 1997-2001
Jobst & de Servigny (2004) S&P 1981-2003 intra 14.6%, inter 4.7%
Duellmann & Scheule (2003) DB 1987 - 2000 0.5% - 6.4%

Jakubik (2006) BF 1988 - 2003 5.7%

Table 1: Asset correlations from default data

S&P: Standard and Poor’s

DB: Deutsche Bundesbank

AK: Allgemeine Kredit

BF: Bank of Finland

Singapore are largely consistent, yielding correlation estimates in the range
of approximately 1% - 10%.

3.2 Asset Correlations from Asset Value Data

There have been several studies which have used asset value data from var-
ious sources and the results are presented in Table 2.

Source Study Data Source Results
Duellmann et al. (2006) KMV 10.1%

KMV (2001) Undisclosed 9.46%-19.98%
Fitch (2005) Equity intra 24.09%, inter 20.92%
Lopez (2002) KMV Software 11.25%

Table 2: Asset correlations from asset value data

Duellmann et al. (2006) calculate 2 year asset correlations using rolling
24-month time windows. However since their study only used 8 years of
asset return data (which means 4 distinct 24-month periods), this may be
insufficient data for correlation estimates. A similar data source to this
paper is used, however they restrict themselves to the universe of European
companies. The Fitch Vector model uses equity value data and reports 5
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year correlations. MKMV does not release details regarding how they build
their asset correlation model or the data used and it is designed to be used
in conjunction with their Portfolio Manager software. Lopez (2002) also
does not disclose details of the asset data used, only that MKMV Portfolio
Manager was used for the analysis.

In addition, De Servigny & Renault (2002) utilize equity correlations to
obtain an average correlation of 6%.

3.3 Our results

With our 336 asset clusters as described above, the average intra-cluster
asset correlation was 11.1% and the average inter-cluster asset correlation
was 6.3%. A graph of the intra-asset correlation grouped by asset size band
and client rating is provided in Figure 1. As expected, the correlations
are increasing in asset size and also as we expect c orrelations are (almost
always) decreasing in probability of default. The four default probability
groups, in increasing order, are: blue, green, yellow and red. Figure 2 shows
the same information for the average inter-cluster asset correlations.

Figure 1: Average Intra-Cluster Asset Correlations by Rating Colour and Asset Size

Bands
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Figure 2: Average Inter-Cluster Asset Correlations by Rating Colour and Asset Size

Bands

Figures 1 and 2 show that the results using default data and asset value
data are broadly similar, both indicating asset correlations typically in the
range of 0%-10%. We notice that the studies from MKMV and Fitch show
larger results.

The results we obtain from using the monthly asset return data are
consistent with the majority of the values from literature.

4 Effect of Horizon

The effect of horizon has been studied for equity correlations (e.g. Koyluoglu
et al. (2003)) but less so for asset correlations. In large part this is due to
data limitations. Default data is generally only available to use at a 1- or
5-year level. In Jobst and De Servigny (2005) whilst default correlations
were observed to increase with increasing horizon (using 1, 3 and 5 year
time periods) the probability of defaults also increased keeping the asset
correlation broadly constant. However in de Servigny and Renault (2002)
some evidence for increasing asset correlations was found. Moving from an
one year time period to a longer time period shows inconclusive evidence.
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Using asset returns requires the use of shorter time periods due to less
data being available. Given that it is generally advised to use at least 50
values to estimate a correlation, using annual returns is impossible with
the number of years of asset return data available. The commonly used
options are to calculate either weekly or monthly asset returns and then
use these as annual asset correlations. Some studies such as Duellmann et
al. (2006) use rolling-window time periods to calculate correlations, that
is, where overlapping time periods are used however this does not increase
the effective dimension of the calculations. Using rolling 24-month time
periods with 8 years of data may lead to more observations, but consecutive
observations are now built on almost identical data, differing only by one
month at the beginning and one month at the end. One still only has 4
distinct 24-month periods.

Based on the evidence in this paper and the other papers which use
monthly asset returns, using monthly asset correlations as a proxy for asset
correlations gives results that are in line with default correlations observed
from default data. The impact of horizon on asset correlations is certainly
a topic that requires further research.

5 Are Asset Correlations Uniquely Defined?

The results from literature are very closely aligned, with the exception of
Fitch Vector 2.0, which uses equity correlations as a substitute for asset
correlations on a five-year horizon and MKMV. As such, there appears to
be a growing consensus in literature on the range for asset correlations.
Despite the fact that the current Basel II correlations are lower than in
the first release, they are still larger than the results reported in literature.
Many previous papers have reported that the Basel II correlations seem to
be rather high; see for instance Duellmann and Scheule (2003) and Dietsch
and Petey (2004).

This immediately raises the questions of why this might be the case. The
most obvious explanation might be that industry perception was for higher
asset correlations before substantial research had been done. Some evidence
for this is found in the CreditMetrics (1997) technical document (page 93):

Based on conversations with Patrick H. McAllister in 1994 when he was
an Economist at the Board of Governors of the Federal Reserve System. Part
of his research inferred average asset correlations of corporate & industrial
loan portfolios within mid-sized US banks to be in the range 20%-to-25%.
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Our own research suggests that it is easier to construct higher correlation
portfolios versus lower correlation portfolios, hence a 20%-to-35% range.

A second and more difficult issue that needs to be considered here is
the issue of credit loss dependencies. In economic capital calculations and
CDO pricing, asset correlations are not used directly. Rather it is the credit
loss dependency structure that is ultimately required. Hence, many more
modelling assumptions are required to go from default correlations to the
entire credit loss distribution.

First of all, since default correlations are related to individual and pair-
wise but not multiple default probabilities, they do not provide a full picture
of the dependency structure or the copula. In fact, for a given set of default
correlations or even loss correlations, several copulas that preserve the loss
correlations will exist and each of these copulas will give rise to a particular
probability distribution function for the total credit portfolio loss S. We re-
fer to Frey et al. (2001) or Embrechts et al. (1999) for various illustrations
within this respect.

Other examples of implicit or explicit model assumptions that affect the
computation of loss correlations include whether loss given defaults (LGDs)
are deterministic or stochastic, dependence between LGDs and dependence
between PDs and LGDs. This means that asset correlation is merely one
possible source of loss correlation between obligors; see for instance Bürgisser
et al. (2001) and references therein for discussions of a portfolio model that
incorporates dependent LGDs.

We will further illustrate this through the use of an example. Consider
an infinitely large homogeneous portfolio, that is, a portfolio with an infinite
number of identical obligors where the goal is to estimate the portfolio loss
standard deviation, also called the unexpected loss, as accurately as pos-
sible. LGDs here are expressed as a fraction of exposure at default. The
first - and most sophisticated - model uses stochastic dependent LGDs and
best-estimate asset correlations corresponding to the numbers presented in
section 3.3. The second model assumes stochastic independent LGDs and
the third assumes deterministic LGDs. Using the second and third models
will result in lower unexpected losses. To achieve the best estimate of the
unexpected loss (defined as the result from the first model) will require the
use of higher asset correlations. This naturally leads to the question: how
much higher?

From Dhaene et al. (2005) we have the following equation for the loss
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correlation between different obligors.

ρL =
A + B

V ar(L)
(1)

where
A =

[
ρDσ2(I) + q2

]
ρLGDσ2(LGD)

B = ρDσ2(I)E2(LGD) (2)

Here ρD is the default correlation between different obligors (calculated
with a Gaussian copula using an asset correlation and the default proba-
bilities), σ(I) is the standard deviation of the default indicator for a given
obligor, q is the default probability for obligor i, ρLGD is the correlation
between the LGDs for two distinct obligors, E(LGD) is the expected value
of the LGD for an obligor and σ2(LGD) is the variance of the random LGD.
Furthermore, the variance of an individual loss is given by:

V ar(L) = E2(LGD)q(1− q) + qσ2(LGD).

With an infinitely large portfolio as described above, it can be shown
that the Portfolio Unexpected Loss (UL) expressed as a fraction of the total
amount at risk equals:

ULp =
√

ρLvar(L). (3)

We can calculate ULp with the first model and then calculate what the
required asset correlation is for models two and three to reach the same
ULp. Note that from (1) and (2) for an infinitely large portfolio it makes no
difference whether LGDs are stochastic and independent or deterministic so
the required asset correlations for models two and three will be the same.

We calculated the “corrected” asset correlations for various values of PD,
VarLGD and ρLGD. The LGD was fixed at 50%. 8 results are presented in
Table 3 - for the full table, please e-mail the first author. For example the
first row considers a portfolio of obligors with a PD of 0.21%, ρLGD of 25%
and VarLGD of 0.25. The best estimate of asset correlation is 13.96% but
if a zero ρLGD is assumed then an asset correlation of 16.84% needs to be
used to keep the same value of ULp.

Using all the scenarios, the relative change from the true asset correlation
to the corrected asset correlation was 45%. As expected, the difference is
highest for portfolios with high PD and high ρLGD.

This can explain the possible need to use higher asset correlations. Whilst
one might claim to be measuring asset correlations, in fact this is used as an
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PD ρLGD VarLGD True Asset Corrected
Correlation Asset Correlation

0.21% 25% 0.25 13.96% 16.84%
0.21% 100% 0.25 13.96% 23.32%
0.21% 25% 0.042 13.96% 14.48%
0.21% 100% 0.042 13.96% 15.94%
9.75% 25% 0.25 8.45% 16.88%
9.75% 100% 0.25 8.45% 37.53%
9.75% 25% 0.042 8.45% 9.93%
9.75% 100% 0.042 8.45% 14.18%

Table 3: With an Infinitely Large Portfolio of Clients with a given PD, ρLGD, VarLGD

and Asset Correlation, What is The Corrected Asset Correlation We Need to Use if We

Assume ρLGD = 0 to Keep The Same Portfolio Unexpected Loss

input to calculate the overall credit loss distribution. That is, whilst best
estimates of asset correlations might typically be in the region of 0%-10%,
to obtain the best estimates of credit loss distributions might require using
higher asset correlations (to account for other sources of dependencies).

For example, in the KMV Portfolio Manager software, LGDs seem to
be always assumed independent which might require the use of higher asset
correlations to prevent potential underestimation of Portfolio Unexpected
Loss.

6 Final Remarks

Numerous papers in recent years have reported default correlations which
indicate that asset correlations are much lower than suggested by Basel II.
This paper reported these findings and also compared them with the results
of using monthly asset return data from MKMV.

Whilst there have been many papers reporting asset and default corre-
lations using a variety of datasets, there are still a number of issues which
require further research. The most significant could be the issue of horizon,
that is, does asset correlation vary significantly over the time horizon used?
The evidence thus far is inconclusive.

A more difficult issue is the choice of clustering, in other words, what are
the factors that differentiate asset and default correlation and how can they
best be grouped? A related issue is the effect of various factors on asset
correlation. Basel II recommends increasing correlations with decreasing
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default probabilities, however there is evidence that world region and sectors
are important differentiators of asset correlation.

The role of asset correlations in economic capital calculation was con-
sidered, in that asset correlations are merely one source of dependence and
if other dependencies are not explicitly modelled (such as dependence be-
tween LGDs) then the unexpected loss will be underestimated unless the
asset correlations are increased.

Estimation of correlations is a difficult exercise however it is ultimately
crucial for economic capital calculation.
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