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Robust scheduling aims at the construction of a schedule that is protected against 

uncertain events. A stable schedule is a robust schedule that will change little when 

variations in the input parameters arise. Robustness can also be achieved by making 

the schedule makespan insensitive to variability. In this paper, we describe models 

for the generation of stable and insensitive baseline schedules for resource­

constrained scheduling problems and present results on their complexity status. We 

start from a project scheduling viewpoint and derive results on machine scheduling 

sub-problems. 

Keywords: scheduling; uncertainty; robustness; stability; sensitivity; complexity 
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1. Introduction 

The project scheduling literature largely concentrates on the generation of a 

precedence and resource feasible schedule that 'optimizes' the scheduling 

objective(s) and that should serve as a baseline schedule or pre-schedule for executing 

the project (the two terms are used interchangeably throughout the paper). During 

project execution, however, project activities are subject to considerable uncertainty, 

which may lead to numerous schedule disruptions. Proactive (robust) project 

scheduling aims at the construction of a baseline schedule that takes into account 

uncertainty information (for instance information about the variability in activity 

durations) and that is protected against uncertain events that may occur during 

project execution. Several techniques for proactive scheduling have recently been 

published. The majority of publications are in the real-time shop scheduling 

literature, we refer to Davenport and Beck [6] for a review. Herroelen and Leus [11] 

give a recent survey of the existing approaches for dealing with uncertainty in project 

scheduling. 

Stable scheduling or solution robustness refers to the particular case of robust 

scheduling where the objective is to minimize the anticipated deviation between the 

pre-schedule and the executed schedule. Quality robustness on the other hand is 

achieved when the objective function, typically the schedule makespan, is insensitive 

to variability. In view of achieving stability, various algorithms have been proposed 

that use a match-Up point, described by Akturk and Gorgulu [2] as the time instance 

"where the state reached by the revised schedule is the same as the initial schedule," 

when action is undertaken after a machine breakdown. They continue, "the pre­

schedule can be followed if no disruption occurs." Robust scheduling already builds 

protection into the pre-schedule, which makes it proactive rather than reactive. 

The objective of this paper is to elaborate on work performed by Herroelen 

and Leus [10] on the generation of stables schedules without resource constraints, 

and by Leus and Herroelen [17] on robust resource allocation. We examine the 

complexity of resource allocation and schedule development with robustness 

objectives. We study the case of joint resource allocation and scheduling (Section 4) 

as well as the problem of stable resource allocation for a given input schedule 

(Section 3). As a preliminary, Section 2 introduces most of the notation and 

summarizes the polynomially solvable problem of stable schedule development in 

the absence of resource constraints. Although the approaches taken are 

fundamentally different, the research in this paper can be classified among existing 
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studies of complexity in robust scheduling, we refer the interested reader to Adiri et 

a1. [1], Daniels and Carrillo [4], Daniels and Kouvelis [5] and Unal et a1. [21]. 

2. Stability i.n the absence of resource constraints 

Consider an activity-on-the-node project network G(N,A), where N denotes the set of 

nodes (activities) and A is the set of arcs representing the finish-start zero-lag 

precedence relations. Node ° is a dummy start activity and node n= I N-ll a dummy 

end; these activities are predecessor and successor to all tasks that have no other 

predecessors or successors, respectively. We assume G to be acyclic and A to be 

minimal, excluding redundant precedence relations. Without loss of generality, we 

require V(i,j)EA: i<j. TA designates the transitive closure of A: (i,j)ETA if there is a 

path from i to j in G. 

It is assumed that all uncertainty during project execution can be captured by 

variability in activity durations. The stochastic variable representing the duration of 

activity iEN is denoted by Di, the vector of stochastic variables by D. A particular 

realization (sample) of D is written as d(dO,. .. ,dn). For a realization d, a schedule $ is 

defined by an (n+ I)-vector of start times s(SO,. .. ,Sn). Every s implies an (n+ I)-vector of 

ending times e, si=ei+di; ViEN. For a given schedule $ and (i,j)E TA, the pairwise float 

Fij{5) is defined as sj(5) - ei(5). Fij(5) is undefined for (i,j)e T A. 

For the development of a pre-schedule, we impose a project deadline OJ and 

start with a set of deterministic baseline durations d. We associate a probability of 

disruption Pi with every activity i (i=O,I, ... ,n-l), with L~:Olpi = 1: we assume that 

exactly one disturbance will occur in the network, in the form of an increase in the 

duration of a single activity. This setting should not be seen as one where always 

exactly one disturbance will take place; the underlying idea is that disturbances are 

sufficiently sparse and spread over time and throughout the project network so that 

we can assume that the effect of one disturbance will not interact with the effects of 

another. The dummy end node has disruption probability pn=O, while po is the 

probability that the dummy start node, i.e. the entire project, starts later than initially 

anticipated. The random variable Li denotes the increase in baseline duration di of 

activity i if it is disturbed. We assume all Li to be discrete with probability mass 

function (pmf) gi(-). This pmf associates nonzero probability with positive values 

likE 'Pi, where 'Pi denotes the set of disturbance scenarios for the duration of activity i; 

LkE'!', g;(lik) = 1. A non-negative cost Ci is incurred per unit time overrun on the start 

time of activity i; co=O. The expected weighted deviation in start times in the realized 

schedule from those in the pre-schedule is used as stability measure for a schedule $, or 

in other words, the objective function we wish to minimize is L;=h(ES/5)-s/5)), 
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with E the expectation operator and Sj(S) a random variable representing the actually 

achieved starting time of activity j upon execution of the project. We impose that 

during project execution, activities cannot be started earlier than their planned 

starting times in the baseline schedule, i.e. Si(S) ::::; Si(5), which guarantees that the 

baseline schedule is realized if all goes as planned (no disruptions). Makespan 

protection is the special case where cn>O and Ci=O, #n. 

In this section, we assume no resource constraints are present. Let P(i,j) 

denote any path from i to j in G(N,A). For a given schedule 5, define 

MSPF;j(S)= min path, P(i,j) Ledges (q,r) in pFqr (5) as the minimum sum of pairwise floats of all 

edges on any path P(i,j). MSPFij(S) represents the protection of the activity start time 

Sj(S) against a disruption of the duration of activity i. In the remainder of this paper, 

we mostly omit the argument indicating the schedule, as there is little danger of 

confusion, We can compute Sj as max{sj; max(i,j)eA{Si +Di}}, and so 

ESj= Sj + " .. ( .. T' PiE(max{O;Li -MSPF;l})' ~'.I,})e.n 

Hence, we can write tlle objective function as 

min "" c(ES-s) = min " pc.E(max{O;L.-MSPF)) L...Jj=l ] J ] LJ(j,j)eTA I J I I] 

= min L(i,j)eTAPiC j Lke'!', gi(lik)max{O;lik - MSPF;j} (1) 

If the delay in the start time of activity j due to a duration increase lik of activity i 

according to disturbance scenario k is written as llijk=max{O ; lik - MSPFij}, we can 

obtain the following linear program (Herroelen and Leus [10]): 

(EWD1) min L(i,j)eTALke'!', PiCjgi(liJllijk 

subject to 

Si + di + A;j + MSPFij = Sj 

Sn ::::; (j) 

lik - MSPFij ::::; llijk 

llijk, Si, MSPFij ;::: 0 

(2) 

(3) 

(4) 

(5) 

(6) 

Eqs, (3) compute the MSPF values: A;j is the longest path of activity durations from 

activity i to j (excluding di and dj). At the same time, the precedence constraints are 

imposed: for every (i,j)EA, si+di ::::; Sj. Eq. (4) imposes project deadline (J). Eqs, (5) 

allow us to linearize the objective (1). Eqs. (6) are the non-negativity constraints. The 

model can be simplified by eliminating variables MSPF;j, and the resulting LP can be 

rearranged as the dual of a minimum cost network flow problem with I N I nodes 

and 1+ I A I + L(i,j)eTAI'I'il arcs (Herroelen and Leus [10]). In conclusion, the robust 

scheduling problem without resource constraints can be solved in polynomial time, 



6 

3. Resource allocation for a given schedule 

We present the concept of resource flow networks in Section 3.1. Section 3.2 studies 

the complexity of resource allocation for an input schedule. 

3.1 Resource flow networks 

When resource restrictions are introduced, a so-called resource flow network can be 

used to represent the flow of resources across the activities of the project network 

(efr. Leus and Herroelen [17]). Assume that the execution of a project requires a set 

of renewable resource types R with constant availability ak, k=1, ... , / R /. Activity i 

requires rik ::;; ak units of resource type k during each period of its execution. As an 

example, consider the project and associated feasible schedule shown in Figure 1. 

The project network is shown in Figure 1(a) in activity-on-the-node format. 

Activities 0 and 5 are dummies with zero duration and zero resource requirement. 

For each activity, the baseline duration and per period requirement for a single 

renewable resource type are shown above the corresponding node (ri:=ril). The 

resource type is assumed to have a constant per period availability of 3 units. The 

feasible schedule shown in Figure 1(b) nUnimizes the project duration (the makespan 

equals the critical path lower bound). 

4 1 ; ; 3 : ~ 
1 2 3 time 

(a) (b) 

Figure 1. Example project and feasible schedule 

Figure 2(a) represents a possible resource flow. We see that, for instance, the 

dummy start activity passes one unit of the resource to activity 2 and two units to 

activity 4, representing the dispatching of the resources into the project. The resource 

unit that executes activity 2 is transferred to activity 3 and on to dummy end activity 

5, indicating that the resource does not contribute to the project after it completes its 

work on activity 3. A corresponding resource allocation is pictured in Figure 2(b), in 

which the 3 resource units are identified as Ml, M2 and M3. We notice that 

sometimes, more than one resource allocation can be associated with a given flow 

network. Nevertheless, with respect to the objective function, they are essentially 
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equal, and in the remainder of this paper, we use the terms 'resource allocation' and 

'resource flow' interchangeably. 

M1 

M2 

M3 
4 time 

(a) (b) 

Figure 2. Resource flow network and associated resource allocation 

The technological precedence constraints of Figure l(a) can be augmented with the 

extra 'resource links' OJ) implied by the resource flow fin Figure 2(a) (dotted arcs), 

yielding a resource-unconstrained network. We define a resource flow f to be 

compatible with a schedule 5 if \/(i,j)E TAuC(f): ej(S) :5 Sj(S), or in other words C(f) ~ 

~S) = ((i,j)ENxNl (i,j)f£TA /\ ej(S) :5 Sj(S)}. The partial order resulting from TAuC(f) 

defines an early start policy (Igelmund and Radermacher [12], Leus and Herroelen 

[17]), and all compatible schedules can be obtained with resource allocation f. 

3.2 Resource allocation for an input schedule 

The first basic problem to be treated in this paper is the following (with U a rational 

number): 

ALLOCATION (ALL). Can a feasible resource flow f be found for a given feasible schedule 

5 such that LU,j)eTAUC(f) Lke'l'; PiCjgi(lik)Llijk:5 U and C(f) ~ ~S)? 

ALL asks whether a resource allocation exists that is compatible with a feasible input 

schedule 5 and provides sufficient protection against uncertainty. The goal is to 

guarantee that 5 is realized if all goes as planned, so if no disruptions occur. 

Decision problem ALL can be shown to be NP-complete. Motivated by the 

desire to find 'minimal' NP-complete sub-problems (Garey and Johnson [8]) we shall 

go about by proving that ALL is already NP-complete for the case of a single 

renewable resource ( I R I =1) with availability a=2, both for makespan protection and 

for stability in job starting times. Remark that makespan protection is not implied by 

stability anymore (there is no dummy end job anymore), and that a=l involves no 

allocation. 

Consider a parallel machine schedule 5 in which m denotes the total number 

of (non-dummy) jobs assigned to machine k and let [k,i] denote the job that is 
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scheduled in the i-th position on this machine. For a given due date 

OJ ~ maxk=l, ... " elk,n,] ' the total float of job [k,i] can be written as 

TF(k,i] = OJ - e[k.i] - iAk.i] ' 
j=i+l 

(7) 

For makespan protection, we set OJ = maxk=l, .... ' elk•n,]' This setting can be seen within 

the framework of ALL by assuming A to be empty except for pairs (O,i) and (i,n), 

i=I, ... ,n-l, ril=1 for each job i'f':O,n, and r01=rnl=po=SO=O. Additionally, Ci=O, i'f':n, and 

cn=l, Sn=(O and TF[k.iJ=MSPF[k.iln. If we consider a single disruption scenario for each 

activity i with length li:=lil, the objective function can be written as 

LiEN\lnJ Pi (Ii - TF, r , and we obtain decision problem 2MASEN: 

2-MACHINE ALLOCATION SENSITIVITY (2MASEN). Given the availability of two 

parallel machines, can a feasible machine allocation be found for a feasible input schedule 5 

such that I:=l I;~l P[k.il (I[k.i] - TF[k.il r :5 U ? 

For the particular case where each (Ii - TFi) is non-negative, which can be achieved by 

choosing each Ii sufficiently large (for instance Ii ~ (0), minimization of the objective 

corresponds with maximization of 

In other words, in the described setting, 2MASEN boils down to verifying whether 

there exists a machine allocation such that 
2 nk nk 

IIp[k.iJ I~k.j] :5 U - LiEN\{o.nJPi(li - OJ+ ei)· 
k=l ;=1 1'=;+1 

(9) 

Consider now the parallel machine scheduling problem with the objective of 

minimizing the sum of weighted completion times (problem Pm I I LWjCj). The 

associated decision problem DmS has been shown to be (ordinarily) NP-complete 

even for m=2 (Bruno et al. [3], by reduction from KNAPSACK). For the same set of 

jobs as 2MASEN, the expression to be minimized by P21 I LWjCj is 

(10) 

where Wi denotes the weight of job i. Without loss of generality, we can subtract the 

constant term LiEN\lo.nJ widi from (10). D2S boils down to answering the question 

whether for a given integer L there exists a schedule for P2 such that 

(11) 

For a given selection of jobs to be processed on a particular machine, the weighted 

shortest processing time first (WSPT) rule, where the jobs are ordered on the machine in 

non-decreasing order of the ratio dj/wj, minimizes the weighted sum of completion 
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times (Pinedo [19]). In other words, it is the assignment of jobs to the machines, not 

the ordering of the assigned jobs on a machine, that makes the scheduling problem 

intractable. Thus, it can be seen that the bound in (11) can be achieved if and only if a 

schedule exists for which 

Eq. (11) holds and every machine has a WSPT order. (12) 

Solution of this decision problem reduces to solving an instance of 2MASEN with 

reversed time horizon, as follows. Order all jobs in non-increasing order of the ratio 

d/wj, which can be done in O(nlogn) time. Construct the input schedule 5 by 

putting all the jobs in this order in a contiguous chain, and assign probabilities 

Pi:=Wi! LjWj , A machine allocation satisfying (12) can be found if and only if the 

answer to 2MASEN is 'yes' when U=LI".w l·+". \ ,Pi(li-OJ+ei)' In other L..- J L..J1eN 10,n 

words, D2S polynomially reduces to 2MASEN, which is therefore ordinarily NP-

complete. As a corollary, we obtain that ALL is also ordinarily NP-complete. The 

proof can be extended to show strong NP-completeness for free number of machines. 

An alternative and somewhat shorter proof is possible that directly reduces 

PARTITION to 2MASEN, by inserting two 'enforcer' jobs in parallel at the start of a 

schedule with all jobs (items) in series, both with disruption length equal to the sum 

of the durations (sizes) divided by 2, and asking whether a schedule exists with 

objective zero. Nevertheless, the proof was useful to introduce the notation and 

model, since it will again be referred to below (Section 4.1). 

We define the following problem: 

2-MACHINE ALLOCATION STABILITY (2MASTA). Given the availability of two 

parallel machines, can a feasible machine allocation be found for a feasible input schedule 5 

such that L:=IL;~1 c[k,i]L;:~ p[k,jj(l[k,jj - MSPF[k,i][k,jjt :s; U ? 

2MASEN reduces to 2MASTA, by inserting an enforcer job at the end of 5 as input to 

2MASTA. 

It is important to see that the evaluation of the objective function of ALL for a 

given solution (resource allocation) can be performed in polynomial time 

(O(n3+n2maxiEN I 'I'd )), in other words, the intractability of the PERT problem 

(Hagstrom [9]) that complicates the search for a general early start policy (Igelmund 

and Radermacher [12]; Mohring and Radermacher [18]; Stork [20]) is not an issue 

here. Rather, the resource allocation aspect itself seems to induce the complexity of 

the problem. 
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4. Joint resource allocation and scheduling 

In the previous section we studied the resource allocation problem for an input 

schedule. In this section we analyze the complexity of various sub-problems of the 

joint resource allocation and scheduling problem, for a rational number U: 

SCHEDULING AND ALLOCATION (SAA). Given a project deadline aJ, can a feasible 

resource flow f and compatible feasible schedule be found for which 

LU,j)eTAUC(f)LkE'I', p;cjg;(lik)L'l;ik ::s; U ? 

Sub-problems are referred to without formal definition; they are constructed from 

SAA in a similar way as 2MASEN and 2MASTA from ALL. ALL reduces to SAA by 

adding for each activity i extra enforcer activities kli and k2i, predecessor and 

successor of i, respectively, with zero resource usage and durations dk" =Si(S) and 

dku =aJ- ei(S), such that each original activity i is 'fixed' at its starting time in S. As a 

result, SAA is at least NP-complete in the ordinary sense. 

We ask the reader to consider the general deterministic resource-constrained 

project scheduling problem (RCPSP). Its decision problem version (checking for the 

existence of a feasible schedule subject to a deadline) is strongly NP-complete, which 

means that the extension to test whether a deadline and a bound on a variability 

performance measure can be respected, is also strongly NP-complete. We will pay 

attention to the specific case where the imposed scheduling deadline aJ is not 

restrictive, meaning that aJ is at least as large as the deterministic minimum 

makespan (or a heuristic solution) obtained when disregarding variability 

considerations. Even when the deadline is non-restrictive, ordinary NP­

completeness of the decision version of P21 I Cmax (reduction from PARTITION) 

implies ordinary NP-completeness of the 2-machine SAA with sensitivity objective, 

by giving the jobs a disruption length equal to aJ minus the bound on the makespan 

(cfr. Section 4.2). 

In the sequel, we investigate the basic single machine problem (Section 4.1), 

and we also study the complexity of SAA when the number of machines is a free 

parameter (Section 4.2), when precedence constraints are allowed (Section 4.3) and 

when different release dates are admitted (Section 4.4). 
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4.1 Single machine problem without precedence constraints or release dates 

We will show that for the stability objective, even the I-machine SAA is ordinarily 

NP-complete. For the sensitivity objective, the restrictive I-machine problem is 

trivially solvable: all semi-active or 'left-justified' schedules are optimal. 

We will show that P21 I LWjCj (efr. Section 3.2) reduces to the single machine 

SAA with stability objective. For an instance of D2S, we have input parameters di, 

the durations of the jobs to be scheduled, and Wi, the weights of the jobs. D2S asks 

whether for a given integer L there exists a schedule for P2 such that (11) holds. 

We associate with an arbitrary instance of D2S an instance of single machine 

SAA, as follows. The jobs to be scheduled remain the same, however, we now 

choose durations d; =1 for each job. Each job has a single disruption scenario li1=l 

and probability pi:=dil I,idj , and we choose w=n={n-l)+l (=number of jobs plus one, 

so a feasible schedule always exists). The cost coefficients are selected as Ci=Wi, 

i=l, ... ,n-l. 

We first show that for a given order of the jobs, scheduling the available float 

of 1 time unit contiguously is always a dominant decision for SAA. This can be seen 

as follows: we have to divide the float of one time unit across the buffers F[tl[i+l] 

(i=O, ... ,n-l), with F[O][l] and F[n-l][n] the float before the first and after the last job, 

respectively. The objective function is I,;::PtilI,;:;+lC[il 
I,;::F[i.1][il{L;::P[il){I,;:;C[il)' and all P[,1 and C[i] are constant for a fixed job order. 

Constraint I,;::F[i][i+11 =1 is imposed on the schedule by the choice for l4 such that it 

is never a dominated solution to assign all float (=1) to the buffer with highest 

coefficient in the second term of the objective expression. In conclusion, we restrict 

the search for an optimal schedule to solutions with a buffer of size 1 somewhere in 

the schedule, and given the disruption lengths of 1, this divides the jobs into 2 blocks 

that do not influence each other. We denote the job at the k-th position in the i-th 

block by [i,k] and the number of jobs in block b by m. Solution of the single machine 

instance verifies whether a schedule exists for which, for a rational number U: 

ttW[b'il%d[b'il/~di ~ U. 

We see that choice of the upper bound on the SAA-objective U=Lj I,jd j will allow 

us to solve D2S by means of the single machine SAA instance. In conclusion, the 

single machine SAA stability problem is ordinarily NP-hard. 

It is interesting to see that it is not the sequencing part itself but rather the 

interplay between sequencing and buffer allocation that induces the complexity 

status of this problem: if we select OJ = I,li ' then an adjacent interchange argument 

shows that the problem is solvable in polynomial time, even for multiple disruption 
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scenarios per activity, by ordering the jobs with shortest weighted expected 

disruption length (piELi! Ci) first. 

4.2 Free number of parallel machines 

Garey and Johnson [8] show the following problem to be NP-complete in the strong 

sense: 

3-PARTmON. Input: a finite set P oJ3h elements (heIN),a bound BeIN, and an integer 

size zaJor each aeP, such that each z. satisfies B/4 < Za < B/2 and such that 2:.epz, = hB. 

Question: can P be partitioned into h disjoint sets Pl,P2, ... ,Ph such that, Jor 1 ~ i ~ h, 

" Z = B? £....aepj a 

P I I Cmax is strongly NP-complete, since 3-PARTITION is a special case, so when the 

deadline can be restrictive, the complexity status of SAA with free number of parallel 

machines is immediate. Otherwise, strong NP-completeness for the sensitivity case is 

shown as follows. For an arbitrary instance of 3-P ARTITION, we construct an 

instance of parallel machine SAA. We start from an arbitrary partition of Pinto 3-

element subsets, and determine the size Q of the largest subset. The jobs of the SAA 

are the elements of P, and di=zi, "IieP. We set OJ = Q and give each job i a single 

disruption scenario lil= OJ- B. The bound U on the objective value is o. All activities 

have equal probability of being disrupted. We have h parallel processors available. 

Given our choice of OJ, a feasible schedule for the corresponding instance of 

SAA always exists, so OJ is not restrictive. Each activity should have a total float of 

OJ - B in order to make U=O, and since no other cost coefficients are nonzero, we can 

always schedule all activities such that each processor is contiguously occupied from 

time O. Time window [B, OJ] should not be used by any activity, which leaves us with 

h separate time blocks on the h processors, each of length exactly B, and since this is 

just enough time in total to accommodate all the activities in P, each block must be 

completely filled; these blocks therefore play the same role as the sets Pl, P2,. .. , Ph in 

the desired partition of P. We remind the reader that, since B/4 < z. < B/2 for each 

item a, filling length B by means of 2 or 4 activities (or less or more, respectively), is 

impossible. Thus, the answer to the 3-PARTITION instance can be seen to be 'yes' if 

and only if the answer to SAA is 'yes' when bound U is set to o. This description 

allows to specify a pseudo-polynomial transformation from 3-PARTITION. 

For the stability case, a similar reduction can be set up, when additionally h 

enforcer jobs are included, indexed k=3h+1, ... ,4h, with ck=2hlil+1, h=rut-2hlil and dk=1, 

and we set ci=1, i=1,. .. ,3h, U=2hlil and £l):::Q+1. If U is to be respected, each machine 
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should carry exactly one of the extra jobs, and this job should be scheduled last on 

the machine, more specifically from time 0) to Q. The remainder of the proof is 

similar to the sensitivity case, by noting that U can never by respected if any of the 

extra jobs is not protected completely from disruptions in its predecessors on the 

assigned machine. 

4.3 Precedence constraints 

Du et al. [7] show that problem P21 chains I enax is strongly NP-hard, which allows for 

an easy reduction to the 2-machine SAA with precedence constraints, when the 

deadline can be restrictive. The non-restrictive sensitivity case is proven similarly, by 

addition of an extra job that is a successor to all jobs without successor. I-machine 

sensitivity is polynomially solvable, similarly as in Section 4.1; remark that 

11 prec I Cmax is also polynomially solvable (Lawler [13]). 

The non-restrictive I-machine SAA with precedence constraints and stability 

objective is NP-complete in the strong sense by reduction from the decision version 

of 11 prec I LCj, which is strongly NP-hard (Lawler [14], Lenstra & Rinnooy Kan [15]). 

The reduction is simple: for an instance of the latter problem, we use the same jobs 

with durations equal to 1, 0) equal to the number of jobs, all disruption probabilities 

equal, and single disruption lengths equal to the durations. All costs coefficients are 

also set equal, and the precedence constraints are maintained. The reduction is then 

immediate, by noting that no float can be inserted because of the choice of the 

deadline 0), and that the expected disruption length of a job is the sum of the original 

durations of the preceding jobs (=disruption lengths), times a constant (for 

normalizing the probabilities). The deadline is non-restrictive: any linear extension 

of the partial ordering implied by the precedence constraints defines a feasible 

schedule. This generalizes to the restrictive case. 

4.4 Release dates 

In this section we show the single machine SAA with non-restrictive deadline and 

release dates or 'ready times' to be strongly NP-complete for the stability objective. 

The restrictive sensitivity case is easily solved in polynomial time; an optimal 

schedule is obtained by starting the jobs in non-decreasing order of ready time, and 

as early as possible (again semi-active). This is straightforwardly shown by adjacent 

interchange argument. 

Each instance of the strongly NP-complete decision version of 11 Yi I LCj 

(Lenstra et al. [16], referred to as IrS in the follOWing) can be solved by an instance of 
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the single machine SAA with release dates and stability objective. We start by the 

choice of a deadline OJ for SAA: we select OJ such that at least one optimal solution to 

IrS exists with makespan no larger than OJ, a safe value being the largest r;-value plus 

the sum of all activity durations. The set of jobs to be scheduled consists of the 

activities from the IrS instance with corresponding duration, collected in set P, 

augmented with (OJ- LiEpdi ) enforcer activities of duration 1, which are gathered in 

set Q. Disruption lengths for all activities in PuQ equal their duration; all disruption 

probabilities are equal. The cost coefficients Ci are zero for iE Q and 1 for iE P; the 

ready times ri are zero for iE Q and equal to the original ready times for iEP. 

For an arbitrary schedule to the resulting SAA instance, the expected increase 

in starting time for any activity j is proportional to its scheduled starting time, with 

proportionality constant k==l/ 1 P I. The description easily allows to specify a pseudo­

polynomial transformation from the decision version of IrS to the single machine 

SAA with ready times, such that the stability version of the latter is seen to be 

strongly NP-complete: if L is the numerical bound on the objective function of a lr5-

instance, SAA solves the instance with U == k(L- LiEpdi ). 

5. Conclusions 

In this paper, we have analyzed the complexity of the generation of robust baseline 

schedules with the expected weighted deviation of activity starting times as stability 

measure, and with the objective of makespan protection. We assume that exactly one 

disturbance occurs when a schedule is implemented, in the form of an increase in the 

duration of a single activity. The underlying idea is that disturbances are sufficiently 

sparse and spread over time and throughout the project network. If abstraction is 

made of resource usage, it is has been shown earlier that the scheduling problem is 

solvable in polynomial time. This paper establishes complexity results for various 

machine scheduling sub-problems of the robust resource allocation problem. All 

complexity proofs have been formulated for the case with only one disruption 

scenario per activity. 
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