
KATHOLIEKE
UNIVERSITEIT

LEUVEN

OEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0250

THE COMPLEXITY OF GENERATING ROBUST
RESOURCE-CONSTRAINED BASELINE

SCHEDULES
by

R. LEUS
w. HERROELEN

D/2002/2376/50

The Complexity of Generating Robust
Resource-Constrained Baseline Schedules

Roel Leus and Willy Herroelen

November 2002

Operations Management Group

Department of Applied Economics

Katholieke Universiteit Leuven

Naamsestraat 69, B-30oo Leuven (Belgium)

Phones +32 1632 69 67 and +32 16 32 69 70

Fax +32 1632 6732

e-mail: <firstname>.<name>@econ.kuleuven.ac.be

The Complexity of Generating Robust Resource-Constrained
Baseline Schedules

Roel Leusi: and Willy Herroelen

Abstract

2

Robust scheduling aims at the construction of a schedule that is protected against

uncertain events. A stable schedule is a robust schedule that will change little when

variations in the input parameters arise. Robustness can also be achieved by making

the schedule makespan insensitive to variability. In this paper, we describe models

for the generation of stable and insensitive baseline schedules for resource­

constrained scheduling problems and present results on their complexity status. We

start from a project scheduling viewpoint and derive results on machine scheduling

sub-problems.

Keywords: scheduling; uncertainty; robustness; stability; sensitivity; complexity

i:Research assistant of the Fund for Scientific Research, Flanders (Belgium) (F.W.o.)

3

1. Introduction

The project scheduling literature largely concentrates on the generation of a

precedence and resource feasible schedule that 'optimizes' the scheduling

objective(s) and that should serve as a baseline schedule or pre-schedule for executing

the project (the two terms are used interchangeably throughout the paper). During

project execution, however, project activities are subject to considerable uncertainty,

which may lead to numerous schedule disruptions. Proactive (robust) project

scheduling aims at the construction of a baseline schedule that takes into account

uncertainty information (for instance information about the variability in activity

durations) and that is protected against uncertain events that may occur during

project execution. Several techniques for proactive scheduling have recently been

published. The majority of publications are in the real-time shop scheduling

literature, we refer to Davenport and Beck [6] for a review. Herroelen and Leus [11]

give a recent survey of the existing approaches for dealing with uncertainty in project

scheduling.

Stable scheduling or solution robustness refers to the particular case of robust

scheduling where the objective is to minimize the anticipated deviation between the

pre-schedule and the executed schedule. Quality robustness on the other hand is

achieved when the objective function, typically the schedule makespan, is insensitive

to variability. In view of achieving stability, various algorithms have been proposed

that use a match-Up point, described by Akturk and Gorgulu [2] as the time instance

"where the state reached by the revised schedule is the same as the initial schedule,"

when action is undertaken after a machine breakdown. They continue, "the pre­

schedule can be followed if no disruption occurs." Robust scheduling already builds

protection into the pre-schedule, which makes it proactive rather than reactive.

The objective of this paper is to elaborate on work performed by Herroelen

and Leus [10] on the generation of stables schedules without resource constraints,

and by Leus and Herroelen [17] on robust resource allocation. We examine the

complexity of resource allocation and schedule development with robustness

objectives. We study the case of joint resource allocation and scheduling (Section 4)

as well as the problem of stable resource allocation for a given input schedule

(Section 3). As a preliminary, Section 2 introduces most of the notation and

summarizes the polynomially solvable problem of stable schedule development in

the absence of resource constraints. Although the approaches taken are

fundamentally different, the research in this paper can be classified among existing

4

studies of complexity in robust scheduling, we refer the interested reader to Adiri et

a1. [1], Daniels and Carrillo [4], Daniels and Kouvelis [5] and Unal et a1. [21].

2. Stability i.n the absence of resource constraints

Consider an activity-on-the-node project network G(N,A), where N denotes the set of

nodes (activities) and A is the set of arcs representing the finish-start zero-lag

precedence relations. Node ° is a dummy start activity and node n= I N-ll a dummy

end; these activities are predecessor and successor to all tasks that have no other

predecessors or successors, respectively. We assume G to be acyclic and A to be

minimal, excluding redundant precedence relations. Without loss of generality, we

require V(i,j)EA: i<j. TA designates the transitive closure of A: (i,j)ETA if there is a

path from i to j in G.

It is assumed that all uncertainty during project execution can be captured by

variability in activity durations. The stochastic variable representing the duration of

activity iEN is denoted by Di, the vector of stochastic variables by D. A particular

realization (sample) of D is written as d(dO,. .. ,dn). For a realization d, a schedule $ is

defined by an (n+ I)-vector of start times s(SO,. .. ,Sn). Every s implies an (n+ I)-vector of

ending times e, si=ei+di; ViEN. For a given schedule $ and (i,j)E TA, the pairwise float

Fij{5) is defined as sj(5) - ei(5). Fij(5) is undefined for (i,j)e T A.

For the development of a pre-schedule, we impose a project deadline OJ and

start with a set of deterministic baseline durations d. We associate a probability of

disruption Pi with every activity i (i=O,I, ... ,n-l), with L~:Olpi = 1: we assume that

exactly one disturbance will occur in the network, in the form of an increase in the

duration of a single activity. This setting should not be seen as one where always

exactly one disturbance will take place; the underlying idea is that disturbances are

sufficiently sparse and spread over time and throughout the project network so that

we can assume that the effect of one disturbance will not interact with the effects of

another. The dummy end node has disruption probability pn=O, while po is the

probability that the dummy start node, i.e. the entire project, starts later than initially

anticipated. The random variable Li denotes the increase in baseline duration di of

activity i if it is disturbed. We assume all Li to be discrete with probability mass

function (pmf) gi(-). This pmf associates nonzero probability with positive values

likE 'Pi, where 'Pi denotes the set of disturbance scenarios for the duration of activity i;

LkE'!', g;(lik) = 1. A non-negative cost Ci is incurred per unit time overrun on the start

time of activity i; co=O. The expected weighted deviation in start times in the realized

schedule from those in the pre-schedule is used as stability measure for a schedule $, or

in other words, the objective function we wish to minimize is L;=h(ES/5)-s/5)),

5

with E the expectation operator and Sj(S) a random variable representing the actually

achieved starting time of activity j upon execution of the project. We impose that

during project execution, activities cannot be started earlier than their planned

starting times in the baseline schedule, i.e. Si(S) ::::; Si(5), which guarantees that the

baseline schedule is realized if all goes as planned (no disruptions). Makespan

protection is the special case where cn>O and Ci=O, #n.

In this section, we assume no resource constraints are present. Let P(i,j)

denote any path from i to j in G(N,A). For a given schedule 5, define

MSPF;j(S)= min path, P(i,j) Ledges (q,r) in pFqr (5) as the minimum sum of pairwise floats of all

edges on any path P(i,j). MSPFij(S) represents the protection of the activity start time

Sj(S) against a disruption of the duration of activity i. In the remainder of this paper,

we mostly omit the argument indicating the schedule, as there is little danger of

confusion, We can compute Sj as max{sj; max(i,j)eA{Si +Di}}, and so

ESj= Sj + " .. (.. T' PiE(max{O;Li -MSPF;l})' ~'.I,})e.n

Hence, we can write tlle objective function as

min "" c(ES-s) = min " pc.E(max{O;L.-MSPF)) L...Jj=l] J] LJ(j,j)eTA I J I I]

= min L(i,j)eTAPiC j Lke'!', gi(lik)max{O;lik - MSPF;j} (1)

If the delay in the start time of activity j due to a duration increase lik of activity i

according to disturbance scenario k is written as llijk=max{O ; lik - MSPFij}, we can

obtain the following linear program (Herroelen and Leus [10]):

(EWD1) min L(i,j)eTALke'!', PiCjgi(liJllijk

subject to

Si + di + A;j + MSPFij = Sj

Sn ::::; (j)

lik - MSPFij ::::; llijk

llijk, Si, MSPFij ;::: 0

(2)

(3)

(4)

(5)

(6)

Eqs, (3) compute the MSPF values: A;j is the longest path of activity durations from

activity i to j (excluding di and dj). At the same time, the precedence constraints are

imposed: for every (i,j)EA, si+di ::::; Sj. Eq. (4) imposes project deadline (J). Eqs, (5)

allow us to linearize the objective (1). Eqs. (6) are the non-negativity constraints. The

model can be simplified by eliminating variables MSPF;j, and the resulting LP can be

rearranged as the dual of a minimum cost network flow problem with I N I nodes

and 1+ I A I + L(i,j)eTAI'I'il arcs (Herroelen and Leus [10]). In conclusion, the robust

scheduling problem without resource constraints can be solved in polynomial time,

6

3. Resource allocation for a given schedule

We present the concept of resource flow networks in Section 3.1. Section 3.2 studies

the complexity of resource allocation for an input schedule.

3.1 Resource flow networks

When resource restrictions are introduced, a so-called resource flow network can be

used to represent the flow of resources across the activities of the project network

(efr. Leus and Herroelen [17]). Assume that the execution of a project requires a set

of renewable resource types R with constant availability ak, k=1, ... , / R /. Activity i

requires rik ::;; ak units of resource type k during each period of its execution. As an

example, consider the project and associated feasible schedule shown in Figure 1.

The project network is shown in Figure 1(a) in activity-on-the-node format.

Activities 0 and 5 are dummies with zero duration and zero resource requirement.

For each activity, the baseline duration and per period requirement for a single

renewable resource type are shown above the corresponding node (ri:=ril). The

resource type is assumed to have a constant per period availability of 3 units. The

feasible schedule shown in Figure 1(b) nUnimizes the project duration (the makespan

equals the critical path lower bound).

4 1 ; ; 3 : ~
1 2 3 time

(a) (b)

Figure 1. Example project and feasible schedule

Figure 2(a) represents a possible resource flow. We see that, for instance, the

dummy start activity passes one unit of the resource to activity 2 and two units to

activity 4, representing the dispatching of the resources into the project. The resource

unit that executes activity 2 is transferred to activity 3 and on to dummy end activity

5, indicating that the resource does not contribute to the project after it completes its

work on activity 3. A corresponding resource allocation is pictured in Figure 2(b), in

which the 3 resource units are identified as Ml, M2 and M3. We notice that

sometimes, more than one resource allocation can be associated with a given flow

network. Nevertheless, with respect to the objective function, they are essentially

7

equal, and in the remainder of this paper, we use the terms 'resource allocation' and

'resource flow' interchangeably.

M1

M2

M3
4 time

(a) (b)

Figure 2. Resource flow network and associated resource allocation

The technological precedence constraints of Figure l(a) can be augmented with the

extra 'resource links' OJ) implied by the resource flow fin Figure 2(a) (dotted arcs),

yielding a resource-unconstrained network. We define a resource flow f to be

compatible with a schedule 5 if \/(i,j)E TAuC(f): ej(S) :5 Sj(S), or in other words C(f) ~

~S) = ((i,j)ENxNl (i,j)f£TA /\ ej(S) :5 Sj(S)}. The partial order resulting from TAuC(f)

defines an early start policy (Igelmund and Radermacher [12], Leus and Herroelen

[17]), and all compatible schedules can be obtained with resource allocation f.

3.2 Resource allocation for an input schedule

The first basic problem to be treated in this paper is the following (with U a rational

number):

ALLOCATION (ALL). Can a feasible resource flow f be found for a given feasible schedule

5 such that LU,j)eTAUC(f) Lke'l'; PiCjgi(lik)Llijk:5 U and C(f) ~ ~S)?

ALL asks whether a resource allocation exists that is compatible with a feasible input

schedule 5 and provides sufficient protection against uncertainty. The goal is to

guarantee that 5 is realized if all goes as planned, so if no disruptions occur.

Decision problem ALL can be shown to be NP-complete. Motivated by the

desire to find 'minimal' NP-complete sub-problems (Garey and Johnson [8]) we shall

go about by proving that ALL is already NP-complete for the case of a single

renewable resource (I R I =1) with availability a=2, both for makespan protection and

for stability in job starting times. Remark that makespan protection is not implied by

stability anymore (there is no dummy end job anymore), and that a=l involves no

allocation.

Consider a parallel machine schedule 5 in which m denotes the total number

of (non-dummy) jobs assigned to machine k and let [k,i] denote the job that is

8

scheduled in the i-th position on this machine. For a given due date

OJ ~ maxk=l, ... " elk,n,] ' the total float of job [k,i] can be written as

TF(k,i] = OJ - e[k.i] - iAk.i] '
j=i+l

(7)

For makespan protection, we set OJ = maxk=l, ' elk•n,]' This setting can be seen within

the framework of ALL by assuming A to be empty except for pairs (O,i) and (i,n),

i=I, ... ,n-l, ril=1 for each job i'f':O,n, and r01=rnl=po=SO=O. Additionally, Ci=O, i'f':n, and

cn=l, Sn=(O and TF[k.iJ=MSPF[k.iln. If we consider a single disruption scenario for each

activity i with length li:=lil, the objective function can be written as

LiEN\lnJ Pi (Ii - TF, r , and we obtain decision problem 2MASEN:

2-MACHINE ALLOCATION SENSITIVITY (2MASEN). Given the availability of two

parallel machines, can a feasible machine allocation be found for a feasible input schedule 5

such that I:=l I;~l P[k.il (I[k.i] - TF[k.il r :5 U ?

For the particular case where each (Ii - TFi) is non-negative, which can be achieved by

choosing each Ii sufficiently large (for instance Ii ~ (0), minimization of the objective

corresponds with maximization of

In other words, in the described setting, 2MASEN boils down to verifying whether

there exists a machine allocation such that
2 nk nk

IIp[k.iJ I~k.j] :5 U - LiEN\{o.nJPi(li - OJ+ ei)·
k=l ;=1 1'=;+1

(9)

Consider now the parallel machine scheduling problem with the objective of

minimizing the sum of weighted completion times (problem Pm I I LWjCj). The

associated decision problem DmS has been shown to be (ordinarily) NP-complete

even for m=2 (Bruno et al. [3], by reduction from KNAPSACK). For the same set of

jobs as 2MASEN, the expression to be minimized by P21 I LWjCj is

(10)

where Wi denotes the weight of job i. Without loss of generality, we can subtract the

constant term LiEN\lo.nJ widi from (10). D2S boils down to answering the question

whether for a given integer L there exists a schedule for P2 such that

(11)

For a given selection of jobs to be processed on a particular machine, the weighted

shortest processing time first (WSPT) rule, where the jobs are ordered on the machine in

non-decreasing order of the ratio dj/wj, minimizes the weighted sum of completion

9

times (Pinedo [19]). In other words, it is the assignment of jobs to the machines, not

the ordering of the assigned jobs on a machine, that makes the scheduling problem

intractable. Thus, it can be seen that the bound in (11) can be achieved if and only if a

schedule exists for which

Eq. (11) holds and every machine has a WSPT order. (12)

Solution of this decision problem reduces to solving an instance of 2MASEN with

reversed time horizon, as follows. Order all jobs in non-increasing order of the ratio

d/wj, which can be done in O(nlogn) time. Construct the input schedule 5 by

putting all the jobs in this order in a contiguous chain, and assign probabilities

Pi:=Wi! LjWj , A machine allocation satisfying (12) can be found if and only if the

answer to 2MASEN is 'yes' when U=LI".w l·+". \ ,Pi(li-OJ+ei)' In other L..- J L..J1eN 10,n

words, D2S polynomially reduces to 2MASEN, which is therefore ordinarily NP-

complete. As a corollary, we obtain that ALL is also ordinarily NP-complete. The

proof can be extended to show strong NP-completeness for free number of machines.

An alternative and somewhat shorter proof is possible that directly reduces

PARTITION to 2MASEN, by inserting two 'enforcer' jobs in parallel at the start of a

schedule with all jobs (items) in series, both with disruption length equal to the sum

of the durations (sizes) divided by 2, and asking whether a schedule exists with

objective zero. Nevertheless, the proof was useful to introduce the notation and

model, since it will again be referred to below (Section 4.1).

We define the following problem:

2-MACHINE ALLOCATION STABILITY (2MASTA). Given the availability of two

parallel machines, can a feasible machine allocation be found for a feasible input schedule 5

such that L:=IL;~1 c[k,i]L;:~ p[k,jj(l[k,jj - MSPF[k,i][k,jjt :s; U ?

2MASEN reduces to 2MASTA, by inserting an enforcer job at the end of 5 as input to

2MASTA.

It is important to see that the evaluation of the objective function of ALL for a

given solution (resource allocation) can be performed in polynomial time

(O(n3+n2maxiEN I 'I'd)), in other words, the intractability of the PERT problem

(Hagstrom [9]) that complicates the search for a general early start policy (Igelmund

and Radermacher [12]; Mohring and Radermacher [18]; Stork [20]) is not an issue

here. Rather, the resource allocation aspect itself seems to induce the complexity of

the problem.

10

4. Joint resource allocation and scheduling

In the previous section we studied the resource allocation problem for an input

schedule. In this section we analyze the complexity of various sub-problems of the

joint resource allocation and scheduling problem, for a rational number U:

SCHEDULING AND ALLOCATION (SAA). Given a project deadline aJ, can a feasible

resource flow f and compatible feasible schedule be found for which

LU,j)eTAUC(f)LkE'I', p;cjg;(lik)L'l;ik ::s; U ?

Sub-problems are referred to without formal definition; they are constructed from

SAA in a similar way as 2MASEN and 2MASTA from ALL. ALL reduces to SAA by

adding for each activity i extra enforcer activities kli and k2i, predecessor and

successor of i, respectively, with zero resource usage and durations dk" =Si(S) and

dku =aJ- ei(S), such that each original activity i is 'fixed' at its starting time in S. As a

result, SAA is at least NP-complete in the ordinary sense.

We ask the reader to consider the general deterministic resource-constrained

project scheduling problem (RCPSP). Its decision problem version (checking for the

existence of a feasible schedule subject to a deadline) is strongly NP-complete, which

means that the extension to test whether a deadline and a bound on a variability

performance measure can be respected, is also strongly NP-complete. We will pay

attention to the specific case where the imposed scheduling deadline aJ is not

restrictive, meaning that aJ is at least as large as the deterministic minimum

makespan (or a heuristic solution) obtained when disregarding variability

considerations. Even when the deadline is non-restrictive, ordinary NP­

completeness of the decision version of P21 I Cmax (reduction from PARTITION)

implies ordinary NP-completeness of the 2-machine SAA with sensitivity objective,

by giving the jobs a disruption length equal to aJ minus the bound on the makespan

(cfr. Section 4.2).

In the sequel, we investigate the basic single machine problem (Section 4.1),

and we also study the complexity of SAA when the number of machines is a free

parameter (Section 4.2), when precedence constraints are allowed (Section 4.3) and

when different release dates are admitted (Section 4.4).

11

4.1 Single machine problem without precedence constraints or release dates

We will show that for the stability objective, even the I-machine SAA is ordinarily

NP-complete. For the sensitivity objective, the restrictive I-machine problem is

trivially solvable: all semi-active or 'left-justified' schedules are optimal.

We will show that P21 I LWjCj (efr. Section 3.2) reduces to the single machine

SAA with stability objective. For an instance of D2S, we have input parameters di,

the durations of the jobs to be scheduled, and Wi, the weights of the jobs. D2S asks

whether for a given integer L there exists a schedule for P2 such that (11) holds.

We associate with an arbitrary instance of D2S an instance of single machine

SAA, as follows. The jobs to be scheduled remain the same, however, we now

choose durations d; =1 for each job. Each job has a single disruption scenario li1=l

and probability pi:=dil I,idj , and we choose w=n={n-l)+l (=number of jobs plus one,

so a feasible schedule always exists). The cost coefficients are selected as Ci=Wi,

i=l, ... ,n-l.

We first show that for a given order of the jobs, scheduling the available float

of 1 time unit contiguously is always a dominant decision for SAA. This can be seen

as follows: we have to divide the float of one time unit across the buffers F[tl[i+l]

(i=O, ... ,n-l), with F[O][l] and F[n-l][n] the float before the first and after the last job,

respectively. The objective function is I,;::PtilI,;:;+lC[il
I,;::F[i.1][il{L;::P[il){I,;:;C[il)' and all P[,1 and C[i] are constant for a fixed job order.

Constraint I,;::F[i][i+11 =1 is imposed on the schedule by the choice for l4 such that it

is never a dominated solution to assign all float (=1) to the buffer with highest

coefficient in the second term of the objective expression. In conclusion, we restrict

the search for an optimal schedule to solutions with a buffer of size 1 somewhere in

the schedule, and given the disruption lengths of 1, this divides the jobs into 2 blocks

that do not influence each other. We denote the job at the k-th position in the i-th

block by [i,k] and the number of jobs in block b by m. Solution of the single machine

instance verifies whether a schedule exists for which, for a rational number U:

ttW[b'il%d[b'il/~di ~ U.

We see that choice of the upper bound on the SAA-objective U=Lj I,jd j will allow

us to solve D2S by means of the single machine SAA instance. In conclusion, the

single machine SAA stability problem is ordinarily NP-hard.

It is interesting to see that it is not the sequencing part itself but rather the

interplay between sequencing and buffer allocation that induces the complexity

status of this problem: if we select OJ = I,li ' then an adjacent interchange argument

shows that the problem is solvable in polynomial time, even for multiple disruption

12

scenarios per activity, by ordering the jobs with shortest weighted expected

disruption length (piELi! Ci) first.

4.2 Free number of parallel machines

Garey and Johnson [8] show the following problem to be NP-complete in the strong

sense:

3-PARTmON. Input: a finite set P oJ3h elements (heIN),a bound BeIN, and an integer

size zaJor each aeP, such that each z. satisfies B/4 < Za < B/2 and such that 2:.epz, = hB.

Question: can P be partitioned into h disjoint sets Pl,P2, ... ,Ph such that, Jor 1 ~ i ~ h,

" Z = B? £....aepj a

P I I Cmax is strongly NP-complete, since 3-PARTITION is a special case, so when the

deadline can be restrictive, the complexity status of SAA with free number of parallel

machines is immediate. Otherwise, strong NP-completeness for the sensitivity case is

shown as follows. For an arbitrary instance of 3-P ARTITION, we construct an

instance of parallel machine SAA. We start from an arbitrary partition of Pinto 3-

element subsets, and determine the size Q of the largest subset. The jobs of the SAA

are the elements of P, and di=zi, "IieP. We set OJ = Q and give each job i a single

disruption scenario lil= OJ- B. The bound U on the objective value is o. All activities

have equal probability of being disrupted. We have h parallel processors available.

Given our choice of OJ, a feasible schedule for the corresponding instance of

SAA always exists, so OJ is not restrictive. Each activity should have a total float of

OJ - B in order to make U=O, and since no other cost coefficients are nonzero, we can

always schedule all activities such that each processor is contiguously occupied from

time O. Time window [B, OJ] should not be used by any activity, which leaves us with

h separate time blocks on the h processors, each of length exactly B, and since this is

just enough time in total to accommodate all the activities in P, each block must be

completely filled; these blocks therefore play the same role as the sets Pl, P2,. .. , Ph in

the desired partition of P. We remind the reader that, since B/4 < z. < B/2 for each

item a, filling length B by means of 2 or 4 activities (or less or more, respectively), is

impossible. Thus, the answer to the 3-PARTITION instance can be seen to be 'yes' if

and only if the answer to SAA is 'yes' when bound U is set to o. This description

allows to specify a pseudo-polynomial transformation from 3-PARTITION.

For the stability case, a similar reduction can be set up, when additionally h

enforcer jobs are included, indexed k=3h+1, ... ,4h, with ck=2hlil+1, h=rut-2hlil and dk=1,

and we set ci=1, i=1,. .. ,3h, U=2hlil and £l):::Q+1. If U is to be respected, each machine

13

should carry exactly one of the extra jobs, and this job should be scheduled last on

the machine, more specifically from time 0) to Q. The remainder of the proof is

similar to the sensitivity case, by noting that U can never by respected if any of the

extra jobs is not protected completely from disruptions in its predecessors on the

assigned machine.

4.3 Precedence constraints

Du et al. [7] show that problem P21 chains I enax is strongly NP-hard, which allows for

an easy reduction to the 2-machine SAA with precedence constraints, when the

deadline can be restrictive. The non-restrictive sensitivity case is proven similarly, by

addition of an extra job that is a successor to all jobs without successor. I-machine

sensitivity is polynomially solvable, similarly as in Section 4.1; remark that

11 prec I Cmax is also polynomially solvable (Lawler [13]).

The non-restrictive I-machine SAA with precedence constraints and stability

objective is NP-complete in the strong sense by reduction from the decision version

of 11 prec I LCj, which is strongly NP-hard (Lawler [14], Lenstra & Rinnooy Kan [15]).

The reduction is simple: for an instance of the latter problem, we use the same jobs

with durations equal to 1, 0) equal to the number of jobs, all disruption probabilities

equal, and single disruption lengths equal to the durations. All costs coefficients are

also set equal, and the precedence constraints are maintained. The reduction is then

immediate, by noting that no float can be inserted because of the choice of the

deadline 0), and that the expected disruption length of a job is the sum of the original

durations of the preceding jobs (=disruption lengths), times a constant (for

normalizing the probabilities). The deadline is non-restrictive: any linear extension

of the partial ordering implied by the precedence constraints defines a feasible

schedule. This generalizes to the restrictive case.

4.4 Release dates

In this section we show the single machine SAA with non-restrictive deadline and

release dates or 'ready times' to be strongly NP-complete for the stability objective.

The restrictive sensitivity case is easily solved in polynomial time; an optimal

schedule is obtained by starting the jobs in non-decreasing order of ready time, and

as early as possible (again semi-active). This is straightforwardly shown by adjacent

interchange argument.

Each instance of the strongly NP-complete decision version of 11 Yi I LCj

(Lenstra et al. [16], referred to as IrS in the follOWing) can be solved by an instance of

14

the single machine SAA with release dates and stability objective. We start by the

choice of a deadline OJ for SAA: we select OJ such that at least one optimal solution to

IrS exists with makespan no larger than OJ, a safe value being the largest r;-value plus

the sum of all activity durations. The set of jobs to be scheduled consists of the

activities from the IrS instance with corresponding duration, collected in set P,

augmented with (OJ- LiEpdi) enforcer activities of duration 1, which are gathered in

set Q. Disruption lengths for all activities in PuQ equal their duration; all disruption

probabilities are equal. The cost coefficients Ci are zero for iE Q and 1 for iE P; the

ready times ri are zero for iE Q and equal to the original ready times for iEP.

For an arbitrary schedule to the resulting SAA instance, the expected increase

in starting time for any activity j is proportional to its scheduled starting time, with

proportionality constant k==l/ 1 P I. The description easily allows to specify a pseudo­

polynomial transformation from the decision version of IrS to the single machine

SAA with ready times, such that the stability version of the latter is seen to be

strongly NP-complete: if L is the numerical bound on the objective function of a lr5-

instance, SAA solves the instance with U == k(L- LiEpdi).

5. Conclusions

In this paper, we have analyzed the complexity of the generation of robust baseline

schedules with the expected weighted deviation of activity starting times as stability

measure, and with the objective of makespan protection. We assume that exactly one

disturbance occurs when a schedule is implemented, in the form of an increase in the

duration of a single activity. The underlying idea is that disturbances are sufficiently

sparse and spread over time and throughout the project network. If abstraction is

made of resource usage, it is has been shown earlier that the scheduling problem is

solvable in polynomial time. This paper establishes complexity results for various

machine scheduling sub-problems of the robust resource allocation problem. All

complexity proofs have been formulated for the case with only one disruption

scenario per activity.

References

[1] I. Adiri, J. Bruno, E. Frostig, A.H.G. Rinnooy Kan, Single machine flow­

time scheduling with a single breakdown, Acta Informatica 36 (1989) 679-696.

[2] M.S. Akturk and E. Gorgulu, Match-up scheduling under a machine

breakdown, European J oumal of Operational Research 112 (1999) 81-97.

15

[3] J. Bruno, E.G.Jr. Coffmann, R. Sethi, Scheduling independent tasks to

reduce mean finishing time, Communications of the ACM 17 (1974) 382-387.

[4] RL. Daniels, J.E. Carrillo, ,B-robust scheduling for single-machine systems

with uncertain processing times, lIE Transactions 29 (1997) 977-985.

[5] RL. Daniels, P. Kouvelis, Robust scheduling to hedge against processing

time uncertainty in single-stage production, Management Science 41 (1995) 363-376.

[6] A.J. Davenport, J.e. Beck, A survey of techniques for scheduling with

uncertainty, unpublished manuscript available at

http://www.eil.utoronto.ca/EIL/profiles/chris/zip/uncertainty-survey.ps.zip.

[7] J. Du, J.Y.-T. Leung, G.H. Young, Scheduling chain-structured tasks to

minimize makespan and mean flow time, Information and Computation 92 (1991)

219-236.

[8] M.R Garey, D.s. Johnson, Computers and intractability. A guide to the

theory of NP-completeness, W.H. Freeman and company, 1979.

[9] J.N. Hagstrom, Computational complexity of PERT problems, Networks

18 (1988) 139-147.

[10] W. Herroelen and R Leus, On the construction of stable project baseline

schedules, Research Report 0220, Department of Applied Economics, Katholieke

Universiteit Leuven, Belgium, 2002.

[11] W. Herroelen and R Leus, Project scheduling under uncertainty - Survey

and research potentials, Research Report 0225, Department of Applied Economics,

Katholieke Universiteit Leuven, Belgium, 2002.

[12] G. Igelmund and F.J. Radermacher, Algorithmic approaches to

preselective strategies for stochastic scheduling problems, Networks 13 (1983) 29-48.

[13] E.L. Lawler, Optimal sequencing of a single machine subject to

precedence constraints, Management Science 19 (1973) 544-546.

[14] E.L. Lawler, Sequencing jobs to minimize total weighted completion time

subject to precedence constraints, Annals of Discrete Mathematics 2 (1978) 75-90.

[15] J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of scheduling under

precedence constraints, Operations Research 26 (1978) 22-35.

[16] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine

scheduling problems, Annals of Discrete Mathematics 1 (1977) 343-362.

[17] R Leus and W. Herroelen, Models for robust resource allocation in

project scheduling, Research Report 0128, Department of Applied Economics,

Katholieke Universiteit Leuven, Belgium, 200l.

[18] R. Mohring and F.J. Radermacher, The order-theoretic approach to

scheduling: the stochastic case, Chapter 4 of Part III in: R Slowinski and J. Weglarz,

Advances in project scheduling, Elsevier, 1989.

16

[19] M. Pinedo, Scheduling. Theory, algorithms and systems, Prentice-Hall,

1995.

[20] F. Stork, Stochastic resource-constrained project scheduling, Ph.D. Thesis,

Technische UniversWit Berlin, 200!.

[21] A.T. Unal, R. Uzsoy, A.S. Kiran, Rescheduling on a single machine with

part-type dependent setup times and deadlines, Annals of Operations Research 70

(1997) 93-113.

