
DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

ONDERZOEKSRAPPORT NR 9604

On the Decomposition of Tabular Knowledge Systems

by

Jan VANTHIENEN

Jef WIJSEN

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONDERZOEKSRAPPORT NR 9604

On the Decomposition of Tabular Knowledge Systems

0/1996/2376/4

by

Jan VANTHIENEN

Jef WIJSEN

On the Decomposition of Tabular Knowledge Systems

JAN V ANTHIENEN

Departement of Applied Economic Sciences
Katholieke Universiteit Leuven

Naamsestraat 69,3000 Leuven, Belgium
jan. vanthienen@econ.kuleuven.ac.be

JEFWIJSEN

Department of Computer Science
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
jwijsen@vub.ac.be

Abstract. Recently there has been a growing interest in the decomposition of knowledge based systems and

decision tables. Much work in this area has adopted an informal approach. In this paper, we first formalize

the notion of decomposition, and then we study some interesting classes of decompositions. The proposed

classification can be used to formulate design goals to master the decomposition of large decision tables into

smaller components. Importantly, carrying out a decomposition eliminates redundant information from the

knowledge base, thereby taking away -- right from the beginning -- a possible source of inconsistency. This,

in tum, tenders subsequent verification and validation more smoothly.

1. Introduction

The decomposition of knowledge based systems is recognized as an important research issue, e.g. in Kohavi (4),

and Moily & Murray (8). In this paper, we look at the decomposition of knowledge bases that consist of

decision tables. Decision tables store rules of the form if condition(s) then action(s). They have been

successfully applied in the construction, validation & verification and implementation of expert systems. The

success of decision tables can probably be attributed to the availability of an intuitive and simple tabular

representation. Unfortunately, arbitrarily built decision tables and knowledge bases may grow very large,

which, in turn, may compromise our insight in the rules represented. A solution is to decompose decision tables

into smaller independent components, which are easier to manage.

Relatively few studies concern the decomposition of decision tables (examples are Hicks (3), Vanthienen &

Snoeck (16». Moreover, some work in this area suffers from a lack of formality. In this paper, we formalize

the notion of decomposition in terms of its inverse operator, viz. composition. Not every decomposition is

beneficial. 1.'herefore, we define some interesting classes of decompositions that are helpful to the

decomposition process.

This paper is organized as follows. The next section introduces some preliminary concepts about decision

tables and (verification and validation of) knowledge based systems. Section 3 and 4 concern the composition

and the decomposition of decision tables respectively. Section 5 characterizes some important classes of

decompositions. Criteria to guide the decomposition decision are elaborated in section 6. Some related work is

discussed in section 7. Finally, section 8 contains concluding remarks.

To appear in New Review of Applied Expert Systems, 1996

2. Decision Tables, Modularization and Verification & Validation

2.1. Preliminaries

In this section; the notion of decision table is formally defined. We assume the existence of the following

pairwise disjoint sets:

a set COND of conditions,
a set ACT of actions,
a set VAL of condition values.

Every condition is associated with a domain of condition values, as follows:

We assume the existence of a total function Dom from COND into 2 VAL, the powerset of VAL, such that for

every c E COND, Dom(c) contains at least two distinct elements.

Let C be a set of conditions (i.e., C ~ COND).

A condition state over C is a total function cr from C into VAL such that for every c E C, cr(c) E Dom(c).

The set of all condition states over C is denoted by C*.

Example 1. Let c, d, e E COND with Dom(c) = Dom(d) = {Yes, No} and Dom(e) = {Good, Bad}.
{c: Yes, d:No, e:Good} is a condition state over {c, d, e}. •

A decision table is a pair (C; D), where C is a non-empty set of conditions and D is a total function from C*

into 2ACT .

Let T = (C ; D) be a decision table. We write I T I as a syntactic shorthand for C. We write II T II for the

smallest set of actions containing D(s) as a subset whenever s E C*.

We write Ic for the decision table (C; D) with for every s E C*, D(s) = 0. Ic is called an empty decision

table.

Clearly, Ilc 1= C and IIIc II = 0.

Example 2. Let x, y, Z E ACT.
Consider the following function from {c, d} * into 2ACT (call it D!):

{ {c:No, d:No}: 0,
{c:No, d:Yes}: 0,
{c:Yes, d:No} : {x},
{c:Yes, d:Yes}: {y}}.

({ c, d) ; D!) is' a decision table (call it TI).

I TIl = {c,d} and II TIll = {x,y}.

Consider the following function from {d, e} * into 2ACT (call it (2):

2

{{d:No, e:Bad} : {x},
{d:No, e:Good}: 0,
{d:Yes, e:Bad} : {z},
{d:Yes, e:Good}: 0 }}.

({ d, e) ; 82> is a decision table (call it T2). •

In our definition of decision table, we abstract from the graphical representation of decision tables. Two tabular

representations of decision table T] of example 2 are shown in figure 1. We assume that it is intuitively clear

how a decisiol1 table can be represented in a tabular format. The abstraction we use suffices to study the notion

of decomposition.

c N Y d N Y

d - N Y c N Y N Y

x - X - x - X - -

Y - - X y - - - X

Fig. 1. Two tabular representations of the same decision table.

2.2. The Need for Modularization

Knowledge based system (KBS) development can benefit from modularization for a number of reasons:

Typical approaches in KBS development start from a model that is gradually constructed through interaction

with the expert. (Automated) modularization techniques here can provide important feedback to experts and

engineers on the overall knowledge structure. In order to support the modeling phase, modularization

techniques should, therefore, aim at generating a structure that matches real-world constructs as closely as

possible.

With respect to KBS maintenance, it should be clearly understood that maintainability is one of the factors that

will have an impact on modularization decisions. Particularly, it is desirable to bundle components that deal with

the same SUbtopic into the same module, table or packet, since this will reduce the risk of incompleteness and/or

creating inconsistencies when changing the knowledge base in respect to that SUbtopic.

Both in verification and validation (V & V), modularization can be considered a very important concept. Most

research in verification ('building the system right') concentrates on domain-independent techniques such as

anomaly detection, aimed at detecting abuse or unusual use of the knowledge representation scheme used

(O'Keefe and O'Leary (9». Validation ('building the right system') often boils down to constructing and

evaluating test cases, combined with visual inspection of the knowledge. Since verification algorithms. and

extension checks in particular, face a combinatorial explosion as the size of the knowledge base increases,

. attempts to Qvercome this problem include partitioning the knowledge base. Although this approach

3

dramatically reduces the time needed to check each individual module, the possibility of inter-modular

anomalies that arise due to dependencies between (components of) different modules is nevertheless not ruled

out. It can be easily understood that modularization theory can be of assistance in selecting a partitioning that

minimizes the presence of inter-modular dependencies, thereby reducing the need for time-expensive inter

modular checks.

Not only in verification, but also in validation, modularization theory can play an important role, providing a

basis for generating an ensemble of test cases with respect to a specific sUbtopic. In addition, visualization of

each of these modules will facilitate direct examination of the knowledge by the expert.

Execution speed may become a critical factor in real world problem solving, due to the growth in inferencing

process time as the knowledge base becomes larger. Enhancing efficiency can be performed by modularizing the

knowledge bas.e or transforming it into other representations (such as decision tables, as indicated in Colomb &

Chung (1». Furthermore, a combination of both approaches, that is, modularizing a knowledge base into a

structure of decision tables might be appropriate in a number of cases.

2.3. Decision Tables and V &V of Knowledge Based Systems

Detection of anomalies, although considered an important part of KBS reliability assurance (O'Keefe and

O'Leary (9», is rarely incorporated into KBS building tools, as indicated in Preece & Shinghal (10). As a result,

verification is in practice seldom integrated into the modelling phase, but performed afterwards on the

implemented system, by means of a stand-alone verification tool. We however believe that the inclusion of this

verification component into an earlier development phase would strongly improve the process of knowledge

acquisition and representation, and prevent expensive errors.

Problems of validation and verification have led to the occasional use of schemes, tables or similar techniques in

knowledge representation. It has been reported earlier, e.g. in Colomb & Chung (1), Cragun & Steudel (2),

Puuronen (11), Vanthienen & Dries (14), that the decision table technique is able to provide for extensive

validation and verification assistance. Most of the common validation problems can easily be solved using

decision tables, as described in Vanthienen, Mues, Aerts & Wets (15):

• Consistency and Correctness of Knowledge

Dividing knowledge over a large number of rules, designed independently, may lead to problems of

inconsistency, such as: Conflict, Cyclical rules, Invalid attribute values, Unreachable conditions.

• Non-redundancy of Knowledge

Redundancy may considerably harm efficiency. The main problem with redundancy, however, is not

inefficiency, but maintenance and the risk of creating inconsistencies. Common problems are: Subsumption,

Redundant premises, Redundant rules.

• Completeness of Knowledge

No current system is able to incorporate all knowledge, but within the specific problem area, the following

omissions often occur: Missing knowledge, Unused attribute values or combinations, Unreachable conclusions.

4

The definition of a decision table, as proposed in this paper, only allows for single-hit tables, in which every

possible case is included in one (completeness criterion) and only one (exclusivity criterion) column. It can

easily be understood that the exclusivity criterion is a very important item in the verification of a decision table,

since it will enable the prevention of duplicate, subsumed and ambivalent column pairs. The completeness

criterion, too, has an important impact on verification, more specifically, where unused inputs are concerned.

Although the use of decision tables has been proposed before in V&V literature, our viewpoint also differs from

these other approaches, because we advocate the use of decision tables as a modelling technique on its own, and

not merely as a means towards verification of rule-based systems. As pointed out in Preece & Shinghal (10),

tools that verify rule-bases after operationalizing them into decision table format, generally fail to find anomalies

that stretch beyond simple pairs of rules. In our opinion, using the decision table formalism as a modelling

instrument offers significant advantages in verification, because its structured nature eliminates, for a large

number of anomaly types, the need for a translation into some other operational form, such as Petri nets, first

order logic, etc. (Larsen & Nonfjall (5), Zhang & Nguyen (18), Zlatareva (19), Liu & Dillon (6», in order to

detect them. This makes it possible to integrate an incremental verification component (Meseguer (7» into the

modelling environment itself, without placing a heavy burden on the performance of the workbench used.

3. Composition

In this section, we define a binary operator on decision tables that builds a new decision table from the two

argument decision tables. This composition operator will serve as a basis to study the decomposition of decision

tables.

Let T] = (C] ; (1) and T2 = (C2 ; (2) be two decision tables.

The composition of T] and T2 , denoted by T] X T2 ' is the decision table (C; 8) such that:
1. C= C] U C2
2. if c] E C] * and c2 E C2 * and c] U c2 E C* , then 8(c] U c2) = 8t(c]) U 82(c2).

Example 3. (continued from previous example)
Consider the following function from {c, d, e} * into 2ACT (call it 8):

{{c:No, d:No e:Bad} : {x},
{c:No, d:No e:Good}: 0,
{c:No, d:Yes, e:Bad} : {z},
{c;No, d:Yes, e:Good}: 0,
{c:Yes, d:No, e:Bad} : {x},
{c: Yes, d:No, e:Good}: {x},
{c:Yes, d:Yes, e:Bad} : {y, z},
{c:Yes, d:Yes, e:Good}: {y}}.

({ c, d, e} ; 8) is a decision table (call it T). It can be verified that T = T] X T2 .•

Lemma 1 lists some interesting properties of the composition operator.

5

Lemma 1. Let T, T] and T2 be decision tables. Let C <;;;:; I T i.
T X Ic = T = Ic X T
TxT/=T/xT
(Tx T/) X T2 = Tx (T] X T2)

4. Decomposition

(commutativity)
(associativity)

We now formalize the notion of decomposition of decision tables.

•

Let T be a decision table. A decomposition of T is a set of decision tables {T], T2 , ... , Tn} with:
1. n;;:: 2, and
2. T = T/ X T2 X ... X Tn ' and
3. forevery i,jE {1,2, ... ,n} such that ioFj,ITi loFl'0i.

The first condition demands that a decomposition contains at least two components. The second condition

demands that the original table is the composition of the component decision tables. . This means that no

information is lost in the decomposition process. The third condition demands that no two component decision

tables of a decomposition have all conditions in common.

Let T be a decision table and let c E I T I. Clearly, {T, I{c}} is a decomposition of T provided that I T I

contains at least two elements. This shows that every decision table with at least two conditions, has a

decomposition. However, the decomposition {T, I{c}} is not very interesting from our point of view, because it

provides no insight in the structure of T. A decomposition containing an empty decision table is called basic:

A decomposition is called basic if it contains an empty decision table; otherwise it is called nonbasic.

In the next section, we characterize some interesting classes of decompositions.

5. Characterization of Decompositions

5.1. C_disjoint Decompositions

Decomposition {T], T2 , ... , Tn} of decision table T is said to be c_disjoint iff for every i, j E {I, 2, ... , n} such

that i oF j, I Ti I n I Tj I = 0. That is, no two distinct decision tables of a c_disjoint decomposition have

conditions in common.

Example 4.
Consider the following function from (c) * into 2ACT (call it 81):

{{c:No} 0,
{c:Yes} {x}}.

({ c) ; ()1> is a decision table (call it T]).

Consider the following function from {d} * into 2ACT (call it ()2):

{{d:No} : 0,
{d:Yes} : {x}}.

({ d) ; ()2> is a decision table (call it T2).

Let T = T] X T2 . Clearly, {T/ ' T2} is a c_disjoint non basic decomposition of T. •

6

C_disjoint decompositions are interesting. They allow, for example, "executing" component decision tables in

parallel without evaluating the same condition twice.

Not every decision table that has a decomposition, also has a c_disjoint decomposition (example 5).

Interestingly, if a decision table has a c_disjoint basic decomposition, then the conditions appearing in empty

component decision tables are irrelevant for the decision problem at hand (example 6).

ExampleS.
Consider the following function from {c, d} * into 2ACT (call it 8):

({c-:No, d:No}: 0,
{c:No, d:Yes}: 0,
{c: Yes, d:No} : 0,
(c:Yes, d:Yes): (x}).

({ c, d) ; 8) is a decision table (call it T).
Let {T1 , T2} be a c_disjoint decomposition of T. Without loss of generality, I T1 I = {c} and I T2 I = {d}.
Clearly, II T1 II and II T211 must be either 0 or {x}. For T1 and T2 ' four possibilities can occur. By exploring
all possibilities, it can be checked that T1 X T2 is always distinct from T. We conclude by contradiction that T
has no c_disjoint decomposition .•

Example 6.
Consider the following function from {c, d} * into 2ACT (call it 8):

{ {c:No, d:No}: 0,
{c:No, d:Yes}: 0,
{c:Yes, d:No} : {x},
{c:Yes, d:Yes}: (x}).

({ c, d) ; 8) is a decision table (call it T).

Next consider the following function from {c} * into 2ACT (call it 8,):

{(c:No) 0,
{c:Yes} {x}}.

({ c) ; 8,) is a decision table (call it T1).

Clearly, (T1 ' I{ d)} is a c_disjoint basic decomposition of T, which shows that condition d is irrelevant for the
decision domain at hand .•

5.2. A_disjoint Decompositions

Decomposition {T1 , T2 , ... , Tn} of decision table T is said to be a_disjoint iff for every i, j E {I, 2, ... , n}

such that i *" j, II Ti II n II ~ II = 0. That is, no two distinct decision tables of an a_disjoint decomposition have

actions in common.

Example 7.
Consider the following function from (c, d) * into 2ACT (call it 8,):

7

((c:No, d:No}: 0,
(c:No, d:Yes}: 0,
(c:Yes, d:No} : (x},
(c:Yes, d:Yes}: (y}}.

«c, d} ; 8 1> is a decision table (call it T]).

Consider the following function from (d} * into 2ACT (call it 82):

«d:No} 0,
(d: Yes} (z} }.

«d} ; 82> is a decision table (call it T2).

Let T= T] X T2 . Clearly, (T], T2 } is an a_disjoint nonbasic decomposition of T (however, it is not
c_disjoint) .•

A_disjoint decompositions are interesting. For example, if a decision table has an a_disjoint nonbasic

decomposition; then it contains actions that are independent of some conditions.

Let T be a decision table and let eEl TI. Clearly, {T, lIe}} is an a_disjoint basic decomposition of T

provided that I T I contains at least two elements. This shows that every decision table with at least two

conditions, has an a_disjoint basic decomposition. What about a_disjoint nonbasic decompositions? Clearly,

II T II must contain at least two elements for T to have an a_disjoint nonbasic decomposition. However, this

condition is not sufficient, as shown by example 8.

Example 8.
Consider the following function from {c, d} * into 2ACT (call it 8):

{ {c:No, d:No}: 0,
{c:No, d:Yes}: 0,
{c: Yes, d:No} : 0,
{c:Yes, d:Yes}: {x,y}}.

({ c, d} ; 8> is a decision table (call it T).
Let {T], T2} be an a_disjoint nonbasic decomposition of T. Without loss of generality, II T] II = {x} and
II T2 II = {y}. From example 5, it is correct to conclude that {TJ' T2} is not c_disjoint. Without loss of
generality, I TJ I = {c, d} and I T2 I = {c}. By exploring all possibilities, we see that TJ X T2 is always distinct
from T. We conclude by contradiction that T has no a_disjoint nonbasic decomposition .•

5.3. Ca_disjoint Decompositions

Decomposition {TJ , T2 , ... , Tn} of decision table T is said to be ca_disjoint iff it is both c_disjoint and

a_disjoint.

Ca_disjoint decompositions are interesting. If a decision table has a ca_disjoint decomposition, then it contains

knowledge about two independent decision domains. Demonstrably, if a decision table has a c_disjoint basic

decomposition, then it has a ca_disjoint decomposition.

8

5.4. A Comprehensive Example

aNamel

1\
aName2 empty

1\
aName3 aName4

--- ---------/\------------------------
aName5 aName6

1\
aName7 aName8

Fig. 2. Example decompositions.

9

Consider the decision table aNamef (figure 2). First, a c_disjoint basic decomposition is ca..rried out. This

results in, first, the empty decision table f lRank } , and second, the decision table aName2. The latter decision table

can be further "ca_disjoint decomposed", yielding decision tables aName3 and aName4 {if Evaluation = Pos

then Productivity Premium}. A further a_disjoint decomposition of decision table aName3 returns decision

tables aName5 and aName6 {if Absenteeism <= f 0 then Attendance premium}. Finally, decision table aName5

can be "c_disjoint decomposed" into decision tables aName7 {if Seniority> 5 then Bonus} and aName8 {if

Absenteeism <= 10 then Bonus}. Obviously, subsequent decompositions can be considered a single basic

decomposition {lIRank}' aName4, aName6, aName7, aName8}.

6. Criteria for Decomposition Quality

The proposed classification can be used to set up design goals for the decomposition of large decision tables into

smaller components. Importantly, the benefit of a particular decomposition may depend upon the intended use,

like validation, consultation, rule generation, etc. For validation purposes, for instance, ultimate decomposition

is not always recommendable from a readability point of view (as can be seen in figure 2, where the dashed line

indicates the decomposition which is still recommended) :

Ca_disjoint decompositions: Obviously, if a ca_disjoint decomposition is possible, then the original decision

table contains unrelated chunks of knowledge. As a consequence, this type of decomposition always results in a

simplification of the rules represented.

C_disjoint decompositions: On the other hand, c_disjoint decompositions that are not a_disjoint are not

generally recommended. In the above example, the decomposition of aName5 lowers our insight into the

combined influence of Seniority and Absenteeism on Bonus. This, in turn, makes validation more susceptible to

errors.

A_disjoint decompositions: It is discussible whether one should always carry out possible a_disjoint nonbasic

decompositions that are not c_disjoint. In the above example, the decomposition of aName3 may not be

recommendable, at least not for validation purposes, as it does not reveal under which conditions both al and a2

are to be executed. This may be an impediment to validation.

7. Discussion of Related Work

This paper generalizes and formalizes some earlier work on the decomposition of decision tables.

Vanthienen and Snoeck (16) introduce normal forms to "master" the decomposition process. Based on the

equivalence between functional dependencies in database design and (a subset of) propositional logic, they

indicate how normalization theory can be useful to evaluate a decomposition of decision tables. Although there

are major differences between decision table knowledge and database dependencies, the analogy is striking, such

that the normalization rules of database design provide an excellent guideline to evaluate the decomposition of

decision tables. Both normalization of relations and of decision tables has as primary goal to avoid redundancy

10

and to correct anomalies. In addition, the normalization of decision tables simplifies decision tables and

increases their readability.

Normalization rules for decision tables are then used to investigate how and when a decision table can be split

up. Violation of their second normal form, e.g., comes down to the existence of an a_disjoint nonbasic

decomposition. Violation of disjunctive second normal form corresponds to the existence of a ca_disjoint

decomposition. Finally, violation of partially related second normal form comes down to the existence of an

a_disjoint basic decomposition which, however, needs not be c_disjoint. In addition, attention is paid to the

decomposition of decision tables into nested decision table structures.

Hicks (3) distinguishes three cases in which simplification of decision tables is recommended. The first case

deals with dependencies between conditions. In this paper, we assume that all conditions are independent of

each other. The second case concerns the decomposition of a decision table into two decision tables that have

no common conditions or actions. In our framework, such a decomposition is categorized as ca_disjoint.

Finally, the third case deals with simplifications within a single decision table. The work of Hicks is based on

dependencies of the form X ~ Y, expressing a kind of functional dependency between conditions and actions.

Nevertheless, no formal semantics is given. Especially, the use of negated literals, as in A & -B ~ C, is not

explained.

8. Concluding Remarks and Future Research

We gave formal definitions of the decomposition and the composition of decision tables. Furthermore, we

characterized some important classes of decompositions. We end with three topics for future research.

An interesting problem that deserves further attention, is the following task: test whether a given decision

table has a decomposition of a particular type.

In this paper, we concentrated on "flat" decision tables. Vanthienen and Snoeck (16) suggest that some

decompositions may be better represented by nested decision tables. In a nested decision table, a reference to a

decision table can appear anywhere an action or condition can appear. The transition of flat to nested decision

table needs further investigation.

In this study, we made the assumption that conditions are independent of each other. That assumption is

relaxed in related work on decision tables and knowledge based systems, e.g. by recognizing impossible

condition states, as in Vanthienen, Mues, Aerts & Wets (15). Formalization of these issues, however, is a future

research topic.

References .

1. Colomb R. and Chung c., Very Fast Decision Table Execution of Propositional Expert Systems,
Proceedings AAAI90, 671-676, 1990.

2. Cragun B. & Steudel H., A Decision-Table Based processor for Checking Completeness and Consistency
in Rule-Based Expert Systems, Int. Journal of Man-Machine Studies, Vol. 5, 1987,633-648.

3. Hicks R.C.: Minimizing maintenance anomalies in expert systems. Information and Management, 28,
1995,177.

11

4. Kohavi R., A Third Dimension to Rough Sets, Third International Workshop on Rough Sets and Soft
Computing, 1994.

5. Larsen H. & Nonfjall H., Modeling in the Design of a KBS Validation System, Int. Journal of Intelligent
Systems, Vol. 6,1991,759-775.

6. Liu, N., Dillon, T., Detecting of Consistency and Completeness in Expert Systems using Numerical Petri
Nets, in: Gero, J. and Stanton, R. (Ed.), Artificial Intelligence Developments and Applications, North
Holland, 1988, pp. 119-134.

7. Meseguer P., Incremental Verification of Rule-Based Expert Systems, Proc. 10th European Conference on
Artificial.Jntelligence, Wiley, 1992,840-844.

8. Moily J., Murray T.: A modularization approach for Prolog knowledge bases, Information Systems, 6,
1993,405-417.

9. O'Keefe, R. M. and O'Leary, D. E., Expert system verification and validation: a survey and tutorial,
Artificial Intelligence Review, 7, 3-42, 1993.

10. Preece A. & Shinghal R., Foundation and Application of Knowledge Base Verification, Int. Journal of
Intelligent Systems, 9, 683-701, 1994.

11. Puuronen S., A Tabular Rule Checking Method, Proc. Avignon87, Vol. 1, 1987,257-268.
12. Rousset, M., Sur La Validite Des Bases de Connaissances: Ie Systeme COVADIS, Proc. Avignon87, Vol.

1, 1987,pp. 269-282.
13. Vanthienen J. and Dries E., Decision Tables: Refining the Concept and a Proposed Standard, to appear in:

Communications of the ACM.
14. Vanthienen, J., Dries, E., Illustration of a Decision Table Tool for Specifying and Implementing

Knowledge Based Systems, International Journal on Artificial Intelligence Tools, Vol. 3, No.2, 1994, pp.
267-288.

15. Vanthienen, J., Mues, c., Aerts, A., Wets, G., A Modularization Approach to the Verification of
Knowledge Based Systems, Fourteenth International Joint Conference on Artificial Intelligence (nCAI
95), Workshop on Validation & Verification of Knowledge-Based Systems, Aug. 19, 1995, Montreal, pp.
96-102.

16. Vanthienen J., Snoeck M.: Knowledge factoring using normalization theory, Internat. Symposium on the
Management of Industrial and Corporate Knowledge (ISMICK'93), Compiegne, France, 1993.

17. Vanthienen J., Wets G.: Modularization of knowledge based systems. In Proc. of the Third World
Congress on Expert Systems, 5-9 February, 1996, Seoul, Korea. To appear.

18. Zhang D: & Nguyen D., A Tool for Knowledge Base Verification, IEEE Transactions on Knowledge and
Data Engineering, Vol. 6, No.6, Dec. 1994,983-989.

19. Zlatareva N., A Framework for Verification, Validation, and Refinement of Knowledge Bases: The VVR
System, Int. Journal of Intelligent Systems, Vol. 9, 1994, 703-737.

12

