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Abstract. Recently there has been a growing interest in the decomposition of knowledge based systems and 

decision tables. Much work in this area has adopted an informal approach. In this paper, we first formalize 

the notion of decomposition, and then we study some interesting classes of decompositions. The proposed 

classification can be used to formulate design goals to master the decomposition of large decision tables into 

smaller components. Importantly, carrying out a decomposition eliminates redundant information from the 

knowledge base, thereby taking away -- right from the beginning -- a possible source of inconsistency. This, 

in tum, tenders subsequent verification and validation more smoothly. 

1. Introduction 

The decomposition of knowledge based systems is recognized as an important research issue, e.g. in Kohavi (4), 

and Moily & Murray (8). In this paper, we look at the decomposition of knowledge bases that consist of 

decision tables. Decision tables store rules of the form if condition(s) then action(s). They have been 

successfully applied in the construction, validation & verification and implementation of expert systems. The 

success of decision tables can probably be attributed to the availability of an intuitive and simple tabular 

representation. Unfortunately, arbitrarily built decision tables and knowledge bases may grow very large, 

which, in turn, may compromise our insight in the rules represented. A solution is to decompose decision tables 

into smaller independent components, which are easier to manage. 

Relatively few studies concern the decomposition of decision tables (examples are Hicks (3), Vanthienen & 

Snoeck (16». Moreover, some work in this area suffers from a lack of formality. In this paper, we formalize 

the notion of decomposition in terms of its inverse operator, viz. composition. Not every decomposition is 

beneficial. 1.'herefore, we define some interesting classes of decompositions that are helpful to the 

decomposition process. 

This paper is organized as follows. The next section introduces some preliminary concepts about decision 

tables and (verification and validation of) knowledge based systems. Section 3 and 4 concern the composition 

and the decomposition of decision tables respectively. Section 5 characterizes some important classes of 

decompositions. Criteria to guide the decomposition decision are elaborated in section 6. Some related work is 

discussed in section 7. Finally, section 8 contains concluding remarks. 

To appear in New Review of Applied Expert Systems, 1996 



2. Decision Tables, Modularization and Verification & Validation 

2.1. Preliminaries 

In this section; the notion of decision table is formally defined. We assume the existence of the following 

pairwise disjoint sets: 

a set COND of conditions, 
a set ACT of actions, 
a set VAL of condition values. 

Every condition is associated with a domain of condition values, as follows: 

We assume the existence of a total function Dom from COND into 2 VAL, the powerset of VAL, such that for 

every c E COND, Dom(c) contains at least two distinct elements. 

Let C be a set of conditions (i.e., C ~ COND). 

A condition state over C is a total function cr from C into VAL such that for every c E C, cr(c) E Dom(c). 

The set of all condition states over C is denoted by C*. 

Example 1. Let c, d, e E COND with Dom( c) = Dom( d) = {Yes, No} and Dom( e) = {Good, Bad}. 
{c: Yes, d:No, e:Good} is a condition state over {c, d, e}. • 

A decision table is a pair (C; D), where C is a non-empty set of conditions and D is a total function from C* 

into 2ACT . 

Let T = (C ; D) be a decision table. We write I T I as a syntactic shorthand for C. We write II T II for the 

smallest set of actions containing D(s) as a subset whenever s E C*. 

We write Ic for the decision table (C; D) with for every s E C*, D(s) = 0. Ic is called an empty decision 

table. 

Clearly, Ilc 1= C and IIIc II = 0. 

Example 2. Let x, y, Z E ACT. 
Consider the following function from {c, d} * into 2ACT (call it D! ): 

{ {c:No, d:No}: 0, 
{c:No, d:Yes}: 0, 
{c:Yes, d:No} : {x}, 
{c:Yes, d:Yes}: {y}}. 

({ c, d) ; D!) is' a decision table (call it TI ). 

I TIl = {c,d} and II TIll = {x,y}. 

Consider the following function from {d, e} * into 2ACT (call it ( 2 ): 
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{{d:No, e:Bad} : {x}, 
{d:No, e:Good}: 0, 
{d:Yes, e:Bad} : {z}, 
{d:Yes, e:Good}: 0 }}. 

({ d, e) ; 82> is a decision table (call it T2 ). • 

In our definition of decision table, we abstract from the graphical representation of decision tables. Two tabular 

representations of decision table T] of example 2 are shown in figure 1. We assume that it is intuitively clear 

how a decisiol1 table can be represented in a tabular format. The abstraction we use suffices to study the notion 

of decomposition. 

c N Y d N Y 

d - N Y c N Y N Y 

x - X - x - X - -

Y - - X y - - - X 

Fig. 1. Two tabular representations of the same decision table. 

2.2. The Need for Modularization 

Knowledge based system (KBS) development can benefit from modularization for a number of reasons: 

Typical approaches in KBS development start from a model that is gradually constructed through interaction 

with the expert. (Automated) modularization techniques here can provide important feedback to experts and 

engineers on the overall knowledge structure. In order to support the modeling phase, modularization 

techniques should, therefore, aim at generating a structure that matches real-world constructs as closely as 

possible. 

With respect to KBS maintenance, it should be clearly understood that maintainability is one of the factors that 

will have an impact on modularization decisions. Particularly, it is desirable to bundle components that deal with 

the same SUbtopic into the same module, table or packet, since this will reduce the risk of incompleteness and/or 

creating inconsistencies when changing the knowledge base in respect to that SUbtopic. 

Both in verification and validation (V & V), modularization can be considered a very important concept. Most 

research in verification ('building the system right') concentrates on domain-independent techniques such as 

anomaly detection, aimed at detecting abuse or unusual use of the knowledge representation scheme used 

(O'Keefe and O'Leary (9». Validation ('building the right system') often boils down to constructing and 

evaluating test cases, combined with visual inspection of the knowledge. Since verification algorithms. and 

extension checks in particular, face a combinatorial explosion as the size of the knowledge base increases, 

. attempts to Qvercome this problem include partitioning the knowledge base. Although this approach 
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dramatically reduces the time needed to check each individual module, the possibility of inter-modular 

anomalies that arise due to dependencies between (components of) different modules is nevertheless not ruled 

out. It can be easily understood that modularization theory can be of assistance in selecting a partitioning that 

minimizes the presence of inter-modular dependencies, thereby reducing the need for time-expensive inter

modular checks. 

Not only in verification, but also in validation, modularization theory can play an important role, providing a 

basis for generating an ensemble of test cases with respect to a specific sUbtopic. In addition, visualization of 

each of these modules will facilitate direct examination of the knowledge by the expert. 

Execution speed may become a critical factor in real world problem solving, due to the growth in inferencing 

process time as the knowledge base becomes larger. Enhancing efficiency can be performed by modularizing the 

knowledge bas.e or transforming it into other representations (such as decision tables, as indicated in Colomb & 

Chung (1». Furthermore, a combination of both approaches, that is, modularizing a knowledge base into a 

structure of decision tables might be appropriate in a number of cases. 

2.3. Decision Tables and V &V of Knowledge Based Systems 

Detection of anomalies, although considered an important part of KBS reliability assurance (O'Keefe and 

O'Leary (9», is rarely incorporated into KBS building tools, as indicated in Preece & Shinghal (10). As a result, 

verification is in practice seldom integrated into the modelling phase, but performed afterwards on the 

implemented system, by means of a stand-alone verification tool. We however believe that the inclusion of this 

verification component into an earlier development phase would strongly improve the process of knowledge 

acquisition and representation, and prevent expensive errors. 

Problems of validation and verification have led to the occasional use of schemes, tables or similar techniques in 

knowledge representation. It has been reported earlier, e.g. in Colomb & Chung (1), Cragun & Steudel (2), 

Puuronen (11), Vanthienen & Dries (14), that the decision table technique is able to provide for extensive 

validation and verification assistance. Most of the common validation problems can easily be solved using 

decision tables, as described in Vanthienen, Mues, Aerts & Wets (15): 

• Consistency and Correctness of Knowledge 

Dividing knowledge over a large number of rules, designed independently, may lead to problems of 

inconsistency, such as: Conflict, Cyclical rules, Invalid attribute values, Unreachable conditions. 

• Non-redundancy of Knowledge 

Redundancy may considerably harm efficiency. The main problem with redundancy, however, is not 

inefficiency, but maintenance and the risk of creating inconsistencies. Common problems are: Subsumption, 

Redundant premises, Redundant rules. 

• Completeness of Knowledge 

No current system is able to incorporate all knowledge, but within the specific problem area, the following 

omissions often occur: Missing knowledge, Unused attribute values or combinations, Unreachable conclusions. 
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The definition of a decision table, as proposed in this paper, only allows for single-hit tables, in which every 

possible case is included in one (completeness criterion) and only one (exclusivity criterion) column. It can 

easily be understood that the exclusivity criterion is a very important item in the verification of a decision table, 

since it will enable the prevention of duplicate, subsumed and ambivalent column pairs. The completeness 

criterion, too, has an important impact on verification, more specifically, where unused inputs are concerned. 

Although the use of decision tables has been proposed before in V&V literature, our viewpoint also differs from 

these other approaches, because we advocate the use of decision tables as a modelling technique on its own, and 

not merely as a means towards verification of rule-based systems. As pointed out in Preece & Shinghal (10), 

tools that verify rule-bases after operationalizing them into decision table format, generally fail to find anomalies 

that stretch beyond simple pairs of rules. In our opinion, using the decision table formalism as a modelling 

instrument offers significant advantages in verification, because its structured nature eliminates, for a large 

number of anomaly types, the need for a translation into some other operational form, such as Petri nets, first 

order logic, etc. (Larsen & Nonfjall (5), Zhang & Nguyen (18), Zlatareva (19), Liu & Dillon (6», in order to 

detect them. This makes it possible to integrate an incremental verification component (Meseguer (7» into the 

modelling environment itself, without placing a heavy burden on the performance of the workbench used. 

3. Composition 

In this section, we define a binary operator on decision tables that builds a new decision table from the two 

argument decision tables. This composition operator will serve as a basis to study the decomposition of decision 

tables. 

Let T] = (C] ; ( 1) and T2 = (C2 ; ( 2) be two decision tables. 

The composition of T] and T2 , denoted by T] X T2 ' is the decision table (C; 8) such that: 
1. C= C] U C2 
2. if c] E C] * and c2 E C2 * and c] U c2 E C* , then 8(c] U c2) = 8t(c]) U 82(c2). 

Example 3. (continued from previous example) 
Consider the following function from {c, d, e} * into 2ACT (call it 8): 

{{c:No, d:No e:Bad} : {x}, 
{c:No, d:No e:Good}: 0, 
{c:No, d:Yes, e:Bad} : {z}, 
{c;No, d:Yes, e:Good}: 0, 
{c:Yes, d:No, e:Bad} : {x}, 
{c: Yes, d:No, e:Good}: {x}, 
{c:Yes, d:Yes, e:Bad} : {y, z}, 
{c:Yes, d:Yes, e:Good}: {y}}. 

({ c, d, e} ; 8) is a decision table (call it T). It can be verified that T = T] X T2 .• 

Lemma 1 lists some interesting properties of the composition operator. 
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Lemma 1. Let T, T] and T2 be decision tables. Let C <;;;:; I T i. 
T X Ic = T = Ic X T 
TxT/=T/xT 
(Tx T/) X T2 = Tx (T] X T2) 

4. Decomposition 

(commutativity) 
(associativity) 

We now formalize the notion of decomposition of decision tables. 

• 

Let T be a decision table. A decomposition of T is a set of decision tables {T], T2 , ... , Tn} with: 
1. n;;:: 2, and 
2. T = T/ X T2 X ... X Tn ' and 
3. forevery i,jE {1,2, ... ,n} such that ioFj,ITi loFl'0i. 

The first condition demands that a decomposition contains at least two components. The second condition 

demands that the original table is the composition of the component decision tables. . This means that no 

information is lost in the decomposition process. The third condition demands that no two component decision 

tables of a decomposition have all conditions in common. 

Let T be a decision table and let c E I T I. Clearly, {T, I{c}} is a decomposition of T provided that I T I 

contains at least two elements. This shows that every decision table with at least two conditions, has a 

decomposition. However, the decomposition {T, I{c}} is not very interesting from our point of view, because it 

provides no insight in the structure of T. A decomposition containing an empty decision table is called basic: 

A decomposition is called basic if it contains an empty decision table; otherwise it is called nonbasic. 

In the next section, we characterize some interesting classes of decompositions. 

5. Characterization of Decompositions 

5.1. C_disjoint Decompositions 

Decomposition {T], T2 , ... , Tn} of decision table T is said to be c_disjoint iff for every i, j E {I, 2, ... , n} such 

that i oF j, I Ti I n I Tj I = 0. That is, no two distinct decision tables of a c_disjoint decomposition have 

conditions in common. 

Example 4. 
Consider the following function from (c) * into 2ACT (call it 81 ): 

{{c:No} 0, 
{c:Yes} {x}}. 

({ c) ; ()1> is a decision table (call it T]). 

Consider the following function from {d} * into 2ACT (call it ()2): 

{{d:No} : 0, 
{d:Yes} : {x}}. 

({ d) ; ()2> is a decision table (call it T2 ). 

Let T = T] X T2 . Clearly, {T/ ' T2} is a c_disjoint non basic decomposition of T. • 
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C_disjoint decompositions are interesting. They allow, for example, "executing" component decision tables in 

parallel without evaluating the same condition twice. 

Not every decision table that has a decomposition, also has a c_disjoint decomposition (example 5). 

Interestingly, if a decision table has a c_disjoint basic decomposition, then the conditions appearing in empty 

component decision tables are irrelevant for the decision problem at hand (example 6). 

ExampleS. 
Consider the following function from {c, d} * into 2ACT (call it 8): 

( {c-:No, d:No}: 0, 
{c:No, d:Yes}: 0, 
{c: Yes, d:No} : 0, 
(c:Yes, d:Yes): (x}). 

({ c, d) ; 8) is a decision table (call it T). 
Let {T1 , T2} be a c_disjoint decomposition of T. Without loss of generality, I T1 I = {c} and I T2 I = {d}. 
Clearly, II T1 II and II T211 must be either 0 or {x}. For T1 and T2 ' four possibilities can occur. By exploring 
all possibilities, it can be checked that T1 X T2 is always distinct from T. We conclude by contradiction that T 
has no c_disjoint decomposition .• 

Example 6. 
Consider the following function from {c, d} * into 2ACT (call it 8): 

{ {c:No, d:No}: 0, 
{c:No, d:Yes}: 0, 
{c:Yes, d:No} : {x}, 
{c:Yes, d:Yes}: (x}). 

({ c, d) ; 8) is a decision table (call it T). 

Next consider the following function from {c} * into 2ACT (call it 8, ): 

{(c:No) 0, 
{c:Yes} {x}}. 

({ c) ; 8,) is a decision table (call it T1 ). 

Clearly, (T1 ' I{ d)} is a c_disjoint basic decomposition of T, which shows that condition d is irrelevant for the 
decision domain at hand .• 

5.2. A_disjoint Decompositions 

Decomposition {T1 , T2 , ... , Tn} of decision table T is said to be a_disjoint iff for every i, j E {I, 2, ... , n} 

such that i *" j, II Ti II n II ~ II = 0. That is, no two distinct decision tables of an a_disjoint decomposition have 

actions in common. 

Example 7. 
Consider the following function from (c, d) * into 2ACT (call it 8, ): 
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( (c:No, d:No}: 0, 
(c:No, d:Yes}: 0, 
(c:Yes, d:No} : (x}, 
(c:Yes, d:Yes}: (y}}. 

«c, d} ; 8 1> is a decision table (call it T]). 

Consider the following function from (d} * into 2ACT (call it 82 ): 

«d:No} 0, 
( d: Yes} ( z} }. 

«d} ; 82> is a decision table (call it T2 ). 

Let T= T] X T2 . Clearly, (T], T2 } is an a_disjoint nonbasic decomposition of T (however, it is not 
c_disjoint) .• 

A_disjoint decompositions are interesting. For example, if a decision table has an a_disjoint nonbasic 

decomposition; then it contains actions that are independent of some conditions. 

Let T be a decision table and let eEl TI. Clearly, {T, lIe}} is an a_disjoint basic decomposition of T 

provided that I T I contains at least two elements. This shows that every decision table with at least two 

conditions, has an a_disjoint basic decomposition. What about a_disjoint nonbasic decompositions? Clearly, 

II T II must contain at least two elements for T to have an a_disjoint nonbasic decomposition. However, this 

condition is not sufficient, as shown by example 8. 

Example 8. 
Consider the following function from {c, d} * into 2ACT (call it 8): 

{ {c:No, d:No}: 0, 
{c:No, d:Yes}: 0, 
{c: Yes, d:No} : 0, 
{c:Yes, d:Yes}: {x,y}}. 

({ c, d} ; 8> is a decision table (call it T). 
Let {T], T2} be an a_disjoint nonbasic decomposition of T. Without loss of generality, II T] II = {x} and 
II T2 II = {y}. From example 5, it is correct to conclude that {TJ' T2} is not c_disjoint. Without loss of 
generality, I TJ I = {c, d} and I T2 I = {c}. By exploring all possibilities, we see that TJ X T2 is always distinct 
from T. We conclude by contradiction that T has no a_disjoint nonbasic decomposition .• 

5.3. Ca_disjoint Decompositions 

Decomposition {TJ , T2 , ... , Tn} of decision table T is said to be ca_disjoint iff it is both c_disjoint and 

a_disjoint. 

Ca_disjoint decompositions are interesting. If a decision table has a ca_disjoint decomposition, then it contains 

knowledge about two independent decision domains. Demonstrably, if a decision table has a c_disjoint basic 

decomposition, then it has a ca_disjoint decomposition. 
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5.4. A Comprehensive Example 

aNamel 

1\ 
aName2 empty 

1\ 
aName3 aName4 

--- ---------/\------------------------
aName5 aName6 

1\ 
aName7 aName8 

Fig. 2. Example decompositions. 
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Consider the decision table aNamef (figure 2). First, a c_disjoint basic decomposition is ca..rried out. This 

results in, first, the empty decision table f lRank } , and second, the decision table aName2. The latter decision table 

can be further "ca_disjoint decomposed", yielding decision tables aName3 and aName4 {if Evaluation = Pos 

then Productivity Premium}. A further a_disjoint decomposition of decision table aName3 returns decision 

tables aName5 and aName6 {if Absenteeism <= f 0 then Attendance premium}. Finally, decision table aName5 

can be "c_disjoint decomposed" into decision tables aName7 {if Seniority> 5 then Bonus} and aName8 {if 

Absenteeism <= 10 then Bonus}. Obviously, subsequent decompositions can be considered a single basic 

decomposition {lIRank}' aName4, aName6, aName7, aName8}. 

6. Criteria for Decomposition Quality 

The proposed classification can be used to set up design goals for the decomposition of large decision tables into 

smaller components. Importantly, the benefit of a particular decomposition may depend upon the intended use, 

like validation, consultation, rule generation, etc. For validation purposes, for instance, ultimate decomposition 

is not always recommendable from a readability point of view (as can be seen in figure 2, where the dashed line 

indicates the decomposition which is still recommended) : 

Ca_disjoint decompositions: Obviously, if a ca_disjoint decomposition is possible, then the original decision 

table contains unrelated chunks of knowledge. As a consequence, this type of decomposition always results in a 

simplification of the rules represented. 

C_disjoint decompositions: On the other hand, c_disjoint decompositions that are not a_disjoint are not 

generally recommended. In the above example, the decomposition of aName5 lowers our insight into the 

combined influence of Seniority and Absenteeism on Bonus. This, in turn, makes validation more susceptible to 

errors. 

A_disjoint decompositions: It is discussible whether one should always carry out possible a_disjoint nonbasic 

decompositions that are not c_disjoint. In the above example, the decomposition of aName3 may not be 

recommendable, at least not for validation purposes, as it does not reveal under which conditions both al and a2 

are to be executed. This may be an impediment to validation. 

7. Discussion of Related Work 

This paper generalizes and formalizes some earlier work on the decomposition of decision tables. 

Vanthienen and Snoeck (16) introduce normal forms to "master" the decomposition process. Based on the 

equivalence between functional dependencies in database design and (a subset of) propositional logic, they 

indicate how normalization theory can be useful to evaluate a decomposition of decision tables. Although there 

are major differences between decision table knowledge and database dependencies, the analogy is striking, such 

that the normalization rules of database design provide an excellent guideline to evaluate the decomposition of 

decision tables. Both normalization of relations and of decision tables has as primary goal to avoid redundancy 
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and to correct anomalies. In addition, the normalization of decision tables simplifies decision tables and 

increases their readability. 

Normalization rules for decision tables are then used to investigate how and when a decision table can be split 

up. Violation of their second normal form, e.g., comes down to the existence of an a_disjoint nonbasic 

decomposition. Violation of disjunctive second normal form corresponds to the existence of a ca_disjoint 

decomposition. Finally, violation of partially related second normal form comes down to the existence of an 

a_disjoint basic decomposition which, however, needs not be c_disjoint. In addition, attention is paid to the 

decomposition of decision tables into nested decision table structures. 

Hicks (3) distinguishes three cases in which simplification of decision tables is recommended. The first case 

deals with dependencies between conditions. In this paper, we assume that all conditions are independent of 

each other. The second case concerns the decomposition of a decision table into two decision tables that have 

no common conditions or actions. In our framework, such a decomposition is categorized as ca_disjoint. 

Finally, the third case deals with simplifications within a single decision table. The work of Hicks is based on 

dependencies of the form X ~ Y, expressing a kind of functional dependency between conditions and actions. 

Nevertheless, no formal semantics is given. Especially, the use of negated literals, as in A & -B ~ C, is not 

explained. 

8. Concluding Remarks and Future Research 

We gave formal definitions of the decomposition and the composition of decision tables. Furthermore, we 

characterized some important classes of decompositions. We end with three topics for future research. 

An interesting problem that deserves further attention, is the following task: test whether a given decision 

table has a decomposition of a particular type. 

In this paper, we concentrated on "flat" decision tables. Vanthienen and Snoeck (16) suggest that some 

decompositions may be better represented by nested decision tables. In a nested decision table, a reference to a 

decision table can appear anywhere an action or condition can appear. The transition of flat to nested decision 

table needs further investigation. 

In this study, we made the assumption that conditions are independent of each other. That assumption is 

relaxed in related work on decision tables and knowledge based systems, e.g. by recognizing impossible 

condition states, as in Vanthienen, Mues, Aerts & Wets (15). Formalization of these issues, however, is a future 

research topic. 
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