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An investigation on the use of copulas 
when calculating general cash flow distributions 

Marc Goovaerts*,t, Ann De Schepper:!:, Yong Hua*, 
Grzegorz Darkiewicz*, David Vyncke* 

Abstract 
In a paper of 2000, Kaas, Dhaene and Goovaerts investigate the present 

value of a rather general cash flow as a special case of sums of dependent risks. 
Making use of comonotonic risks, they derive upper and lower bounds for the 
distribution of the present value, in the sense of convex ordering. These bounds 
are very close to the real distribution in case all payments have the same sign; 
however, if there are both positive and negative payments, the upper bounds 
perform rather badly. In the present contribution we show what happens when 
solving this problem by means of copulas. The idea consists of splitting up the 
total present value in the difference of two present values with positive pay­
ments. Making use of a copula as an approximation for the joint distribution 
of the two sums, an approximation for the distribution of the original present 
value can be derived. 

Keywords: cash flow, present value, convex order, copula, distribution. 

1 Description of the problem 

Consider a general series of deterministic payments 001, 002, ... , an due at times 1, 
2, ... , n, which can be positive as well as negative. The present value for this cash 
flow can be written as 

n 

S = '2.:: a i e-Y(i), (1) 
i=l 

where the stochastic variables Y (i) are defined as Y (i) = Y1 + Y2 + ... + Yi and where 
the variables Yi represent the stochastic continuous compounded rate of return over 
the period [i - 1, i]. 
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Following the classical assumption, the random variables Yi are independent and 
normally distributed and hence the prices are lognormally distributed. For the 
parameters of the distributions, we use the notations 

/Li = E[YiJ, 0-; = Var[Yi] (2) 

and 

/L(i) = E[Y(i)] = L ~Lj, er(i) = Var[Y(i)] = L erJ. (3) 
j=l j=l 

In contrast to the risks Yi, the variables Y (i) and thus also the discounted payments 

ooie-Y(i) in the cash flow are mutually dependent. Therefore, it is nearly impossible 
to derive the exact distribution of the sum S. 

In order to solve this problem, Kaas, Dhaene and Goovaerts [9] present bounds in 
convexity order that make use of the concept of comonotonic risks. This means 
that they replace the original sum S by a new sum, for which the components have 
the same marginal distributions as the components in the original sum, but with 
the most "dangerous" dependence structure (see Section 2 for details about these 
concepts). The advantage of working with a sum of comonotonic variables has to be 
found in the fact that the calculation of the distribution of such a sum is quite easy. 

It is shown in [9] that the convex upper bound equals 

Su = t OOi e -~L(i) + sign(ooi)er(i)<I>-l(U), (4) 
i=l 

where U is a Uniform(O,l) random variable and where <I> is the standard normal 
cumulative distribution function. 

If desirable and if more detailed information about the components in the sum is 
available, this upper bound can be improved by conditioning on a random variable 
Z that is defined as 

n 

Z = Lf3iYi, (5) 
i=l 

for which it is necessary to know the correlation with each risk Y(i), 

Pi = Corr[Y(i), Z]. (6) 
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Kaas, Dhaene and Goovaerts [9] show that by conditioning on this Z, the upper 
bound in (4) can be improved to the closer bound 

S . - ~ . -f..L(i) - PW(i)<I>-l(U) + sign(ai)yh - P[ (}(i)<I>-l(V) 
2U - L a 2 e , (7) 

i=l 

where U and V are two mutually independent Uniform(O,l) random variables, lll­

dependent of the variable Z. 

Since successive variables Y (i) represent sums that only differ in one term, they 
are rather strongly (and positively) dependent, explaining the good performance of 
both bounds. Indeed, the bounds make use of the "strongest possible" dependence 
between the discount factors. However, this strong affinity between exact and ap­
proximate distributions only holds in case all payments ai have the same sign. When 
both positive and negative payments occur, the performance of the upper bound and 
of the improved upper bound is much worse. This is completely due to the negative 
dependence structure between terms with different signs. 

The conditioning on a random variable Z as in (5) can also be used to construct 
a lower bound for the original present value, corresponding to a sum that is less 
"dangerous" than the original sum. This lower bound equals 

S _ ~ . -f..L(i) - PW(i)<I>-l(U) + -21 (1 - P[) (}(i) 
l- L a 2e , (8) 

i=l 

with U a Uniform(O,l) distributed random variable. In contrast with the upper 
bounds, this lower bound seems to perform much better for cash flows with payments 
with mixed signs. However, due to these mixed signs, the lower bound no longer 
consists of a sum of comonotonic risks. As a consequence, its distribution is more 
difficult to obtain. 

In this paper we aim at deriving a new accurate and efficient approximation which 
can be used in case the payments do have such mixed signs. We will show how 
such an approximation can be constructed by the introduction of copulas within the 
framework of comonotonicity. The paper is organized as follows. First, the concepts 
of convex ordering and of copulas are explained in Section 2. Afterwards in Sec­
tion 3, we introduce our methodology and we derive the approximation. Numerical 
illustrations are presented in Section 4. 
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2 More about the concepts 

2.1 Convex order and comonotonic risks 

Many financial and actuarial applications are faced with the difficulty or impossi­
bility of finding an analytic expression for the distribution of a stochastic quantity. 
In many cases, this difficulty arises from the presence of dependent components in 
this quantity. Also in the current case, the stochastic variables Y(i) in (1) and thus 

the discounted payments OOie - Y (i) are dependent, since they are constructed as 
successive series of the same sequence of independent variables. 

The method of convex upper bounds is extremely helpful to deal with this kind of 
problems. As explained in the introduction, we replace the exact but incalculable 
distribution by an approximate and simpler distribution associated with a variable 
that is more dangerous than the original one. For details, see [2, 3, 7, 8, 15]. 

In order to illustrate the fact that convex order nicely suites the notion of danger­
ousness, we mention three equivalent characterizations of this concept where all the 
expectations are assumed to exist. 

A variable W is said to be an upper bound for V in convexity order, notation 
V ::;cx W, if 

a) E [u(V)] ::; E [u(W)] for each convex function u : lR ---> lR; 
since convex functions take on their largest values in the tails, the variable W 
is more likely to take on extreme values than the variable V and thus W is 
more dangerous. 

b) E [u( - V)] ~ E [u( - W)] for each concave function u : lR ---> lR; 
each risk averse decision maker prefers a loss V over a loss Wand thus the 
variable W is more dangerous. 

c) E[V] = E[W] and E[(V - k)+] ::; E[(W - k)+] for each value of k; 
the financial loss of realizations exceeding a retention k, or stop-loss premium, 
is always larger for W than for V and thus the variable W is more dangerous. 

The equivalence of conditions a) - c) is discussed in e.g. [2]. As a consequence, 
replacing a variable V with unknown distribution by a variable W with known 
distribution but larger in convex ordering can be seen as a prudent strategy. 

If in addition to this upper bound W a lower bound can be found as well, this 
provides us with a measure for the reliability of the upper bound. 
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Returning to the cash flow problem, the following theorem summarizes an important 
result regarding this idea, in that it shows how to construct such convex larger sums. 
A proof can be found in [7]. 

Proposition 2.1. Consider a sum of functions of random variables 

(9) 

where the functions (Pt : lR -----7 lR : x f---7 (Pt (x) are all increasing or all decreasing. The 
variable 

(10) 

with U an arbitrary random variable that is uniformly distributed on [0, 1] then 
defines an upper bound in convexity order, i. e. V :::::cx W. 

The notation FXj is used for the distribution function of X j , or 

(11) 

and the inverse function is defined as 

(12) 

One of the advantages of this method is the fact that, due to the construction of the 
variable W, the distribution of the bound can be determined rather easily by means 
of 

Fw(s) = Ps (13) 

with Ps defined implicitly by 

n 

L ¢i (FXi1(PS)) = s. (14) 
i=l 

2.2 Copulas 

A copula C is a function that maps the marginals Fl and F2 of a bivariate distribu­
tion F to the joint distribution in a unique way: 

C(u,v): [0,1] X [0,1]-----7 [0,1]: (u,v) f---7F(Fl1(u),F2~1(v)) (15) 

such that 
C(H (x), F2 (y)) = F(x, y). (16) 
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One of the most important examples of copulas is the Gaussian copula. In the 
bivariate case it can be parameterized by a single parameter p as follows: 

(17) 

where Hp(Sl' S2) is a bivariate normal distribution function with mean ° and covari­
ance matrix 

z==(~ ~). 
This family arises naturally in the case of multivariate normal distributions. How­
ever they may also appear in many situations where the corresponding marginal 
distributions are not normal. Consider for example a multivariate normal vector 
Y = (Y1 , Y2, . .. , Yn). Then the vector 

exp(Y) = ( exp(Yd, exp(Y2 ), ... ,exp(Yn )) (18) 

will still have a Gaussian copula although the corresponding marginal distributions 
are now lognormal. 

The family of Archimedean copulas is another very important class of copulas 
widely used in statistical applications. An Archimedean copula is given by the 
formula 

C(u,v) = 'Ij;-l['Ij;(u) +'Ij;(v)] (19) 

where the copula generator 'Ij; : [0,1] -----7 [0, +00] is continuous, strictly decreasing 
and convex. Archimedean copulas are always symmetric (i.e. C(u, v) = C(v, u)), 
associative (i.e. C(C(u,v),w) = C(u,C(v,w))) and their diagonal section is always 
smaller than the identity functions (i.e. C (u, u) :S u). It can be proved that the last 
two properties characterize the family of Archimedean copulas (see [11]). 

Three special copulas are very illustrative: 

• C1 (lL, v) = uv 

represents the case of independent underlying variables; 

• C2 (u, v) = min(u, v) 

is an upper bound, representing the case of most related pair of variables with 
given marginals; 
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• C3 (1l,v)=max(0,1l+v-1) 

is a lower bound, representing the case of most antithetic pair of variables. 

If (X, Y) has the bivariate distribution function F, with marginals FI and F2 , and 
if C is a copula as in (16), then Spearman's rho is given by 

Ps(X,Y) = 12J"{ C(1l,v)dlldv-3. 
J(O,1)2 

(20) 

The relation between Spearman's rho and Pearson correlation is given by 

(21 ) 

see e.g. [4]. 

Note that also Kendall's T can be expressed in terms of the copulas. The appropriate 
formula is given below: 

T = 4J" { C(ll,v)dC(ll,v)-1. 
J[O,lj2 

(22) 

There are several possibilities to generate copulas that correspond to couples of 
variables with given correlation Ps. 

The first method is based on deriving the copula as a convex combination combina­
tion of the three copulas mentioned above, 

(23) 

One can try to solve the following system of equations derived explicitly from the 
definitions of the three copulas and formula (22): 

{ 

PI,P2,P3 2: 0 
PI + P2 + P3 = 1 
P2 - P3 = Ps 
PI + 2p§ + ~PIP2 + 1PIP3 + 2P2P3 - 1 = T. 

(24) 

Unfortunately the unique solution (in the case Ps # 0) of the last three equations: 

(25) 
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may not fall into the set F = {(x, y, z)lx, y, z ~ o}. In such a case, as well as in the 
case when Ps = 0, one may consider the following minimization problem. Define the 
set 

S={(x,y,z)lx,y,z~Oandx+y+z=l}. (26) 

Then the weights (p1,P2,P3) can be chosen as 

arg min ((y - z - Ps)2 + (x2 + 2y2 + ~xy + ixz + 2yz - 1 - T?). (27) 
(x,y,z)ES 3 3 

A second natural approach is to fit an appropriate Gaussian copula (17). The 
most natural choice of Gaussian copula is based on fitting the Pearson's correlation 
coefficient pp. However it is also possible to fit on the basis of Spearman's Ps or 
Kendall's T because of the 1-1 correspondence with P given by the formulae: 

and 

(see e.g. [10]). 

Ps = ~ arcsin (Pp) 
7r 2 

2 
T = - arcsin(pp) 

7r 

A third approach generates an Archimedean copula called the Gumbel copula 

C( u, v; Ps) = exp { - ((-log u)l/!1 + (-log v)l/!1)!1} 

with (3 ~ 0 being the unique solution of the equation 

[1 [1 e-((-logu)l/ i3 +(-lOgv)l/!3t dudv = ~(Ps + 3). 
Jo Jo 12 

(28) 

(29) 

(30) 

(31 ) 

Note that a positive correlation corresponds to a value of (3 smaller than one, a 
negative correlation to a value larger than one. More details about copulas can be 
fuundin~, 5, 6, 13, 1~. 

3 Construction of the distribution function 

3.1 Summary of the method 

Since the approximation described in Section 1 performs excellent in case all pay­
ments are equally signed, it seems very reasonable to split up the total present value 

n 

S = L CYi e-Y(i) (32) 
i=l 
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into two separate parts, representing the positive and negative payments respectively. 
This means that we write the sum S as 

S = S+ - S- (33) 

where the terms are defined as 

n 

S+ = '2)ai)+ e-Y(i) (34) 
i=l 

and 
n 

S- = I) -ai)+ e-Y(i). (35) 
i=l 

The expression (x)+ is used as a short-hand notation for max(x, 0). 

Since each of the sums S+ and S- refers to a situation with exclusively positive cash 
flow payments, the results of [9] can be used to find an adequate approximation for 
the distribution function of both sums. 
Starting from these two approximate distribution functions, the idea then consists 
of constructing an adequate approximation for the joint distribution function of S+ 
and S-, for which we will use the notation H: 

(36) 

If this approximation is available, an integration leads to an (approximate) distri­
bution for the difference of both sums. 

3.2 Upper bounds for S+ and S-

As explained before, very close upper bounds for S+ and S- can be found by 
applying the method of [9]. This results in (see (4)) 

and 

n 

S;:; = '2:(ai)+ exp (-fL(i) + O"(i)<p-l(UI)) 
i=l 

n 

S;; = '2:(-ai)+exp (-fL(i) +0"(i)<P- 1 (U2 )) 

i=l 

with U1 and U2 Uniform(O,l) random variables. Note that 
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Due to the construction of these sums (see Section 2) their distribution can be 
derived rather easily. Indeed, we have 

and 
Fs;; (s) = Prob[S~ :s: s] = <I>(ws ), 

with Vs and Ws defined implicitly by 

and 

n 

L(ai)+ exp (-f-L(i) + CT(i)Vs) = S 

i=l 

n 

L( -ai)+ exp (-f-L(i) + CT(i)Ws) = S. 

i=l 

3.3 Joint distribution of S+ and S-

(40) 

( 41) 

( 42) 

( 43) 

The following step consists of mapping the two approximate distributions for the 
sums into an approximation for their joint distribution. This approach is very rea­
sonable: the distributions of st and S;; are both very close to the distributions of 
S+ and S- and in addition they are very well calculable in contrast with the exact 
distributions. 
This mapping can be done by means of a copula if next to the approximate distri­
butions the correlation of S+ and S-, or a good estimate, is known. We then get 
a bivariate distribution for which the marginals are equal to the approximate dis­
tributions of the two terms in the difference and for which the underlying variables 
have approximately the correct correlation. 

In other words, we construct a copula C (u, Vi ps) with PS the estimated correlation 
between S+ and S-, or 

(44) 

The copula can be approximated by one of the methods described in Section 2.2, i.e. 
by fitting a Gaussian copula (17), by means of a suitable combination of the special 
copulas (23) and (24) or by means of a Gumbel copula (30). In the latter case, the 
value of (3 has to be determined as the unique solution of (31). In Section 3.4 we 
discuss how to choose the appropriate method. 

The question still remaining is how to find an estimation PS of the correlation Ps. 
We propose three alternatives. 
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1. Since st and S;; are very close to the original sums S+ and S-, an obvious 
option is the use of the correlation Ps (st, S;;), for which we know that 

( 45) 

Since both (approximate) distributions are known, a suitable value for this 
correlation can be found by simulation. 

2. As this sinmlation can be rather time consuming, a better solution consists of 
an estimation by means of the correlation between the first order approxima­
tions of S+ and S-. 

This can be done by defining the random variables 

with parameters 

A + = ~j=l pjY; 
A - = ~j=l pjY;, 

pj = ~~=j(ak)+e-lL(k) 
Pj = ~~=j(ak)_e-lL(k). 

( 46) 

(47) 

In that case, A + and A-are linear transformations of the first order approx­
imations to S+ and S- respectively. Indeed, the sum S+ e.g. can be written 
as 

and thus the first order approximation equals 

S+ ;::j 

;::j 

;::j 

;::j 

~~=l(ai)+e-lL(i) (1- ~~=1(Y; - ILj)) 

C - ~~=1 (ai)+e- lL(i) ~~=1 Y; 
C - ~j=l Y; ~~j(ai)+e-lL(i) 
C-A+, 

( 48) 

( 49) 

with C chosen appropriately (see e.g. [16]). Note that this approximation is 
only accurate if the differences Y; - ILj, or equivalently the volatilities rTj, are 
sufficiently small. 

The Pearson correlation of the couple (A +, A -) can be calculated easily as 

pp(A +, A -) = ~~=1 pi pi . 
V~~=l (pn2V~~1 (Pi-)2 

(50) 
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Since (A +, A -) has a bivariate normal distribution, the Spearman correlation 
can then be found from formula (28). 

As the numerical illustrations will indicate (see Section 4), this second estimate 
seems to perform excellent, in that it is just as accurate as the simulated value, 
but much more easy to calculate. This result should not surprise, because we 
expect that a sample of the variables distributed as (S+, S-) will have ranks 
very close to the corresponding sample of variables of the form (A+,A-). It 
is well known that em.pirical versions of Ps and T depend only on the sample 
ranks. 

3. Finally, one can simply use the Gaussian copula with the Pearson's correlation 
coefficient pp(A+,A-) (see (50)). This choice can be motivated as follows. 
As mentioned before the dependency structure of the bivariate distribution 
(S+, S-) is similar to the dependency structure of its first order approximation 
(A+,A-). Therefore, it looks reasonable to use the copula of (A+,A-) to 
approximate the joint distribution of discounted cash flows, which is precisely 
the Gaussian copula with parameter Pp (A + , A -). 

3.4 A choice of the fitting method - a simulation study 

In this section we perform a simulation study of a simple cash flow of future payments 
of the form: 

where Yi are independent, normally distributed, with the mean f..l = 0.07 and the 
standard deviation (J = 0.1. It is a special case of our situation of interest, however it 
is representative in this sense that some features of the copula (like the tail behavior) 
observed in this simplified situation will be expected to hold true in general. 

We consider the joint distribution (S+, S-), where 

S+ = exp( -Y1 ) + exp( -Y1 - Y2 - Y3 ), 

S- = exp( -Y1 - Y2 ) + exp( -Y1 - Y2 - Y3 - Y4 ). 

(52) 

(53) 

We have simulated 10.000.000 random pairs (S+, S-). In our simulation study we 
perform the analysis on the basis of so-called dependence measures X and X (see [1]) 
for the empirical copula and theoretical copulas considered in the paper. 
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3.4.1 The dependence measure X 

A definition of the measure X arises naturally from the concept of tail independence. 
Consider any bivariate random vector (X, Y). One says that (X, Y) is tail indepen­
dent if 

X = lim Pr(V > uiU > u) = 0, 
u-->l 

(54) 

where U = Fx(X) and V = Fy(Y). One can easily verify that Pr(V > uiU > u) rv 

2 - logl~~i~)u)), where C(·,·) denotes an appropriate copula. In practice it is often 
convenient to study a function: 

X(u) = 2 _ 10g(C(u, u)) 
log( u) 

(55) 

(obviously limu-->l X(u) = X). Note that the values of function X(u) belong to the 
interval (-00,1). 
It is straightforward to show that for the Gumbel (extreme value) copula X( u) is con­
stant. Thus studying empirical estimates of the function X(u) provides an excellent 
diagnostic check about the adequacy of fitting Gumbel copula. 

3.4.2 The dependence measure X 

The function X ( u) is not a sufficient tool to study the tail dependence of an underly­
ing bivariate distribution. The most difficult problem to overcome is the estimation 
of very high quantiles (our simulation allows for reliable estimates up to the 99.999% 
quantile and it does not seem to suffice). To get some complementary information 
it is useful to study a dual function X( u) defined as follows: 

_ 210g(1-u) 
X(u) = 10g(C(u,u)) -1, (56) 

where C(u,v) = 1 - u - v + C(u,v). Some properties of the function X are given 
below: 

• -l::;X::;l 

• For tail dependent LV.'S limu-->l X(u) = 1 

• For tail independent LV.'S lim supu--> 1 X(u) < 1. 

Thus the tail independence can be characterized by the following equivalent condi­
tions: 

(X, Y) is tail independent ¢::::::?- lim X(u) = 0 ¢::::::?-limsupx(u) < 1. (57) 
u-->l u-->l 
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3.4.3 An analysis of measures X(ll) and X(ll) for (S+, S-) 

On Figure 1 the graphs of X and X of the empirical copula of the pair (S+, S-) are 
compared to the copulas fitted on the basis of Spearman's (Ps = 0.88998) and/or 
Kendall's (T = 0.71312) coefficients, as described in Section 2.2. The graphs were 
obtained on the basis of arguments up to 0.99999 which has significant influence on 
the obtained picture - it is well-known that X for the Gaussian copula converges to 
o (the Gaussian copula is tail independent) while X for the Gumbel copula and the 
mix of copulas has to converge to 1 - thus the final values visible on the graphs are 
still quite far from the limits. 
The picture is very suggestive: the fits provided by a mix of copulas and Gumbel 
copula is in this case very bad. In particular the hypothesis of X being constant for 
the pair (S+, S-) (what is true for Gumbel copula) has to be rejected. On the other 
hand the fit provided by a Gaussian copula is excellent. 
However one thing requires a further investigation. In general it is not clear whether 
the pair (S+, S-) is tail independent or not. For higher quantiles one of two things 
given below must happen: 

• if (S+, S-) is tail independent then X converges to 0 while X converges to 

b < 1; 

• if (S+, S-) is tail dependent then X converges to a > 0 while X converges to 1. 

From the picture there are no clear premises which of the two possibilities holds 
true. It is well known that the Gaussian copula itself is tail independent, see e.g. [1]. 

The measure 'chi' The dual measure 'chi dashed' 

- empirical copula 
"'"'' Gaussian copula 
- -,- mi~ of copulas 
--- Gumbelcopula 

00 0.2 0.4 0.6 08 10 0.0 0.2 0.6 0.8 10 

Figure 1: Functions X and X for the empirical copula of (S+, S-) 
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In Table 1 some empirical results for higher quantiles are provided. One can ob­
serve that the results are not so smooth anymore. While the sample size seems 
to be large enough to estimate with a reasonable precision univariate higher quan­
tiles, an estimation of the bivariate cumulative distribution function becomes very 
inadequate. 

Empirical Gaussian 
u X(u) X(u) X(u) X(u) 

0.9999900 0.3599948 0.8369867 0.3012353 0.8112380 
0.9999925 0.3733295 0.8458796 0.2946738 0.8123443 
0.9999950 0.3799975 0.8531032 0.2857220 0.8138429 
0.9999965 0.2857121 0.8186440 0.2781215 0.8151063 
0.9999975 0.2799985 0.8203572 0.2711759 0.8162541 
0.9999980 0.1499984 0.7473788 0.2666854 0.8169930 
0.9999985 0.0666653 0.6639739 0.2610278 0.8179206 
0.9999990 0.0999991 0.7142857 0.2532967 0.8191825 
0.9999993 0.1428566 0.7585434 0.2467212 0.8202513 
0.9999995 0.1999996 0.8002943 0.2407034 0.8212261 

Table 1: Estimates of X and X for high quantiles 

The results contained in Table 1 suggest that for the pair (S+, S-) it is more likely 
that X converges to 0 than X converges to 1. The values of the function X also 
vary significantly, however they do not have any tendency to increase any more 
while the values of X apparently decrease. The last increase seems to result from 
estimation inadequacies. One has to note that a pace of convergence of X for the 
Gaussian copula is very slow. We can expect that the copula of (S+, S-) will behave 
similarly. 

There are other heuristic arguments supporting the Gaussian copula. 

a) The copula of the random vector 

is Gaussian itself (compare to (18)). So the couple (S+, S-) is created as a 
linear transformation of a random vector with the dependence structure given 
by a Gaussian copula. One can expect that the copula of (S+, S-) should 
inherit some properties of the Gaussian copula, especially the tail behavior. 

b) Recall that the estimated values of Spearman's and Kendall's correlations for 
(S+, S-) are given by Ps = 0.88998 and T = 0.71312. Suppose that we treat 
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Ps as fixed. We compute TGauss from the formulae (28) and (29) as follows: 

2 . ( . (7rPS )) TGauss = - arCSlll 2 SIn - = 0.71085, 
7r 6 

(59) 

which is surprisingly close to the estimated value of T. 

In this analysis we have used the values of Ps and T estimated from the simulated 
sample. However very close results can be obtained by approximations derived from 
a first order approximation described in Section 3.3. Indeed, using the formula (50) 
one obtains P~ = 0.90067, which gives consequently p~ = 0.89218 and TA = 0.71385, 
which are very close to the simulated values. Thanks to this approximation the whole 
methodology does not depend on simulation. 

3.5 Distribution of the present value 

Suppose that the exact bivariate distribution of S+ and S- is expressed by means 
of a copula as 

Prob[S+::; s+,S-::; s-] 

C (Fs+ (s+), Fs- (s-); Ps) . (60) 

Then, starting from this joint distribution, the cumulative distribution function of 
the difference S = S+ - S- can be written as 

Fs(s) 

where U(x) denotes the Heaviside function, or 

U(x) = { ~ 

16 

if 
if 

x~O 

x < O. 

(61 ) 

(62) 



Splitting up the integration over 11" and carrying through the integration over v, this 
results in 

Fs(s) 

(63) 

Substituting S:; and S;; for S+ and S- in (63) respectively provides us with a 
appropriate approximation Fscop for the distribution of the present value (1): 

(64) 

Note that in case we use a Gaussian parameterized by Pp = p, the partial derivative 
of (17) can be written in a very simple form 

(65) 

The derivatives of the other copulas considered can also be expressed easily. For the 
mix of special copulas, we have 

and for the Gumbel copula we find 

1 ( ),6-1 ~(_logli)1/,6-1 (-logli)l/,6 + (-logv)l/,6 

exp { - (( -logli)l/,6 + (_logv)l/,6),6} . (67) 
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4 Numerical illustration 

In this last section, we examine the accuracy and efficiency of our approximation, 
compared to the exact distribution of the present value obtained by Monte-Carlo 
simulation and also compared to the comonotonic bounds in [9]. We show results 
for the cumulative distribution function of the present value in two examples with 
different cash flow structures: 

-1 
+1 

-1 
+1 

i = 1, ... ,5 
i = 6, ... ,20, 

i = 1,3,5, ... , 19 
i = 2,4,6, ... ,20. 

The parameters of the lognormal distributions are chosen as in [9], i.e. Iti = It = 
0.07 and (J"i = (J" = 0.1. For the construction of the copula, we decided to use a 
Gaussian copula (see Subsection 3.4). Following the methods of Subsection 3.3, for 
the first cash flow, the estimated values for the correlation and for the corresponding 
parameters p computed from (28) are 

• Ps(S;;, S;;) = 0.6391160 and pp(S;;, S;;) = 0.656859; 

• Ps(A+,A-) = 0.6344521 and pp(A+,A-) = 0.6522439. 

Due to the specific structure of the second cash flow, the correlation is much higher: 

• Ps(S;;, S;;) = 0.9929377 and pp(S;;, S;;) = 0.9935884; 

• Ps(A+,A-) = 0.9928121 and pp(A+,A-) = 0.9934742. 

For both examples, we first computed the quantiles of the variables S;; and S;;. 
Afterwards, a simulation provided us with the first estimator Ps (S;;, S;;), while the 
second estimator Ps(A+,A-) obviously followed from (28) and (50). Note that the 
estimates Ps (S;;, S;;) and Ps (A +, A -) are very similar. 

Figure 2 shows the quantiles for the present value of the cash flow with negative 
payments in the beginning and positive payments afterwards. One can see that 
the convex upper bound Su performs very badly. On the other hand, our copula 
approximations Scop (we have calculated the approximation only for Ps(A+,A-)) 
seem to be very accurate in approximating the exact distribution. The convex lower 
bound Sl performs best. 
The same and more pronounced observations can be made for the cash flow with 
payments with alternating signs for which graphs are shown in Figure 3. 
In Table 2 and 3 the numerical values for some upper quantiles are provided. In 
general they confirm the observations made on the basis of graphical illustrations. 
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q LowB MCSim CopAppr ComUpB 
0.750 3.5159 3.5136 3.5843 4.2861 
0.900 4.9045 4.8963 5.1536 6.4487 
0.950 5.8851 5.8847 6.2964 7.9282 
0.975 6.8406 6.8500 7.3559 9.3450 
0.990 8.0885 8.0885 8.8204 11.1716 
0.995 9.0300 9.0902 9.9422 12.5400 
0.999 11.2519 11.3996 12.6233 15.7310 

Table 2: Upper quantiles of the approximations derived for the first cashflow 

q LowB MCSim CopAppr ComUpB 
0.750 -0.2585 -0.2610 -0.2494 1.5399 
0.900 -0.1640 -0.1638 -0.1350 3.3359 
0.950 -0.1100 -0.0983 -0.0534 4.4781 
0.975 -0.0523 -0.0365 0.0278 5.5249 
0.990 0.0108 0.0442 0.1365 6.8233 
0.995 0.0551 0.1036 0.2207 7.7667 
0.999 0.1498 0.2441 0.4241 9.8955 

Table 3: Upper quantiles of the approximations derived for the second cashflow 

5 Some comments on the convex order and conclusions 

In Kaas, Dhaene and Goovaerts [9] both convex upper and lower bounds have been 
derived for a present value of future cash flow with stochastic interest rates, i.e. one 
has 

(68) 

There are several benefits of their approach. As mentioned before, the random dis­
tribution of S is not mathematically easy tractable. One possibility to solve this 
problem is to substitute the distribution of S by a handy distribution of its lower 
bound Sz, which provides an excellent approximation. In actuarial applications 
however the upper bound Su should draw even more attention, because it is more 
consistent with the principle of "actuarial prudence". In the case of annuities with 
stochastic interest rates the analysis relies for example on the assumption that the 
interest rates follow a Black-Scholes model, i.e. the volatility is constant and that 
the logreturns are normally distributed. These assumptions have been questioned in 
the financial literature. Also the estimates of fL and 0" are burdened with an error. 
For these reasons it is recommended to use the upper bound Su as an approxima-
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tion of the real distribution, because it allows to take possible additional negative 
discrepancies into account. 

In this contribution we have considered cashfiows with payments of mixed signs 
for which the comonotonic upper bound Su performs rather poorly. We propose to 
substitute this upper bound by a new approximation Scop :::;cx SUo This approach 
allows for significant improvement of the fit to the original distribution. Although 
one cannot prove that S :::;cx Scop, it is intuitively clear that Scop is more risky than 
the original distribution and that it can playa role of an upper bound. Indeed, if the 
pairs (X, Y) and (Xu, Yu), with X :::;cx Xu and Y :::;cx Yu, have identical conditional 
increasing copulas then X + Y :::;cx Xu + Yu, see [12]. In this setting X and Y play 
the role of S+ and -S- respectively. The Gaussian copula is conditional increasing 
if p ~ O. For both cashfiows given, the convex ordering can be easily verified from 
the graphs as the distribution function of Scop crosses the distribution of S only once. 
According to [2] this condition is sufficient to have convex ordering. An overview of 
stop-loss premiums for both cases provided in Tables 4 and 5 also suggests that the 
idea of substituting S by Scop is reasonable. 

d E(S - d)+ E(Scop - d)+ 
0 2.5666 2.5693 
2 0.9626 1.0219 
4 0.2610 0.3217 
6 0.0617 0.0922 
8 0.0133 0.0254 

Table 4: Stop-loss premiums for the first cashfiow and their approximations 

d E(S - d)+ E(Scop - d)+ 
-0.50 0.1546 0.1578 
-0.25 0.0216 0.0281 
-0.10 0.0042 0.0080 
0.00 0.0014 0.0034 
0.05 0.0008 0.0022 

Table 5: Stop-loss premiums for the second cashfiow and their approximations 
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Figure 2: Cumulative distribution for the present value of the first cash flow, with 
and without the convex upper bound 
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Figure 3: Cumulative distribution for the present value of the second cash flow, with 
and without the convex upper bound 
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