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GMM estimation of spatial panels�

F. Mosconey

Brunel Business School
E. Tosettiz

University of Cambridge

Abstract

We consider Generalized Method of Moments (GMM) estimation of a regression model with spatially
correlated errors. We propose some new moment conditions, and derive the asymptotic distribution of the
GMM based on them. The analysis is supported by a small Monte Carlo exercise.

Keywords: Generalized Method of Moments, spatial econometrics.
JEL Code: C2, C5.

1 Introduction

GMM estimation of spatial regression models has been originally advanced by Kelejian and Prucha (1999).
They suggested three moment conditions that exploit the properties of disturbances implied by a standard set
of assumptions. Substantial work has followed their original study. Druska and Horrace (2004) have considered
GMM estimation of a panel regression with time dummies and time-varying spatial weights. Lee and Liu
(2006a) suggested a set of linear and quadratic moment conditions in the errors with inner matrices satisfying
certain regularity properties; Lee and Liu (2006b) have extended this framework to estimate regression models
with higher-order spatial lags. Fingleton (2008a) and Fingleton (2008b) proposed a GMM estimator for spatial
regression models with an endogenous spatial lag and moving average errors. Kelejian and Prucha (2008) have
generalized their original work to allow heteroskedasticity and spatial lags in the dependent variable. This has
been extended by Kapoor et al. (2007) to estimate a spatial panel regression with individual-speci�c error
components.

We focus on GMM estimation of a regression model where the error follows a spatial autoregressive (SAR)
process. We show that there are more moments than those currently exploited in the literature, and derive
the asymptotic distribution of the GMM based on such moments. We perform a small Monte Carlo exercise to
compare the properties of GMM estimators based on di¤erent sets of moments.

2 The framework

Consider the model expressed in stacked form

yt = Xt� + ut; t = 1; :::; T; (1)

ut = �Sut + "t; (2)

where yt = (y1t; :::; yNt)
0,Xt = (x1t; :::;xNt)

0,ut = (u1t; :::; uNt)
0, "t = ("1t; :::; "Nt)

0 and S is N � N spatial
weights matrix. We assume:

�The authors acknowledge �nancial support from ESRC (ref. no. RES-061-25-0317). We have bene�ted from comments by the
partecipants of the III World Spatial Econometrics Association.
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Assumption 1: "it � IIDN(0; �2), with �2 � K <1, for i = 1; :::; N; t = 1; :::; T .
Assumption 2: Xt and "t0 are independently distributed for all t; t0. As N and/or T !1 1

NT

PT
t=1X

0
tXt !

M, where M is �nite and non-singular.
Assumption 3: S has zero diagonal elements; S and (IN � �S)�1 have bounded row and column norms.
Assumption 4: � 2

�
� 1
�S
; 1�S

�
, where �S = max

1�i�N
fj�i (S)jg.

Normality and constant variance of "it stated in Assumption 1 are only taken for ease of exposition, and our
results can be readily extended to the case of non-normal, heteroskedastic variables (see Kelejian and Prucha
(2008) on this). Assumption 4 implies that (2) can be rewritten as ut = R"t;where R = (IN � �S)�1. Let �̂
be the OLS estimator of �. Under Assumptions 1-3, �̂ is consistent for �, as N and/or T tends to in�nity, but,
for � 6= 0, is not e¢ cient. E¢ cient estimation of � can be achieved by estimating the parameters in equation
(2), namely � and �2, and then apply feasible GLS.

3 GMM estimation of SAR processes

Let �0 =
�
�0; �

2
0

�0
be the true parameter vector for (2). Kelejian and Prucha (1999) suggest the following

moments for estimating �0

M1 (�) = E

 
1

NT

TX
t=1

"0t"t

!
� �2 = 0; (3)

M2 (�) = E

 
1

NT

TX
t=1

"0tS
0S"t

!
� �2 1

N
Tr(S0S) = 0; (4)

M3 (�) = E

 
1

NT

TX
t=1

"0tS"t

!
= 0: (5)

Moment (3) is implied by the constant variance of "t; (4) exploits the variance of the spatial lag, S"t; (5) is
based on the covariance between "t and S"t. From (2), the following additional moments can be suggested:

M4 (�) = E

 
1

NT

TX
t=1

u0tut

!
� �2 1

N
Tr
�
RR0� = 0; (6)

M5 (�) = E

 
1

NT

TX
t=1

u0tS
0Sut

!
� �2 1

N
Tr (R0S0SR) = 0; (7)

M6 (�) = E

 
1

NT

TX
t=1

u0tSut

!
� �2 1

N
Tr (R0SR) = 0; (8)

M7 (�) = E

 
1

NT

TX
t=1

u0t"t

!
� �2 1

N
Tr(R) = 0; (9)

M8 (�) = E

 
1

NT

TX
t=1

u0tS
0S"t

!
� �2 1

N
Tr (R0S0S) = 0; (10)

M9 (�) = E

 
1

NT

TX
t=1

u0tS"t

!
� �2 1

N
Tr(R0S) = 0: (11)

Moments (6)-(7) exploit the variance of ut and Sut, respectively; (8), (9) and (11) are based on the covariance
of ut with Sut, "t and S"t, respectively; (10) exploits the covariance between the spatial lags Sut and S"t.

Remark 1 Under �0 = 0, moment (3) would be identical to (6) and (9); (4) would coincide with (7) and (11),
and (5) would be the same as (8) and (10). Hence, when �0 is zero or close to zero we expect the additional
moments (6)-(11) to be redundant.
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In this paper we intend to study the properties of the GMM estimator based on subsets of conditions (3)-(11).
We �rst observe that conditions (3)-(11) contain the following expressions

1

NT

TX
t=1

"0tA`"t; ` = 1; :::; 9; (12)

A1 = IN ; A2 = S
0S; A3 = S;A4 = R

0R; A5 = R
0S0SR;

A6 = R0SR;A7 = R
0; A8 = R

0S0S; A9 = R
0S;

A` having bounded row and column norms. Under Assumption 1, the mean and variance of (12) are1

E

 
1

NT

TX
t=1

"0tA`"t

!
=
1

N
�2Tr (A`) ; ` = 1; :::; r; (13)

V ar

 
1

NT

TX
t=1

"0tA`"t

!
=

1

N2T
�4Tr

�
A2
` +A

0
`A`

�
; (14)

Cov

" 
1

NT

TX
t=1

"0tA`"t

! 
1

NT

TX
t=1

"0tAh"t

!#
=

1

N2T
�4Tr (A`Ah +A

0
`Ah) ; ` 6= h; (15)

Let ûit = yit��̂
0
xit and "̂it = ûit��

PN
j=1 sij ûjt. The sample analogues of (3)-(11) can be obtained by replacing

"t by "̂t and ut by ût. LetM (�) = [M1 (�) ; :::;Mr (�)]
0 be a vector containing r � 9 moments among (3)-(11),

and MNT (�; "̂) = [MNT;1 (�; "̂) ; :::;MNT;r (�; "̂)]
0 be the corresponding sample moments. Given that ûit (and

hence "̂it) is based on a consistent estimate of �, under Assumptions 1-4 the hypotheses of Theorem 1 in Kelejian
and Prucha (2001), and Theorem A1 and Lemma C1 in Kelejian and Prucha (2008) are satis�ed and

[MNT (�; ")� E [MNT (�; ")]]
p! 0; as N and/or T ! 1 (16)

(NT )
1=2
[MNT (�; "̂)�MNT (�; ")]

p! 0; as N and/or T ! 1 (17)

(NT )
1=2
Vr (�)

�1=2
MNT (�; ")

a� N(0; Ir); as N and/or T ! 1 (18)

where Vr (�) = E
�
MNT (�; ")MNT (�; ")

0� is assumed to be non-singular, i.e. �r (Vr (�)) � K > 0. Vr (�)
has (14) on its main diagonal, and (15) as o¤-diagonal elements. The above results hold for N and/or T going to
in�nity. The asymptotic in T can be proved by applying standard multivariate law of large numbers and central
limit theorem, since under Assumptions 1-2 "̂0tA`"̂t (and "0tA`"t), for t = 1; :::; T; are IID. The above results
have been used by Kelejian and Prucha (2008) and Kelejian and Prucha (1999) to prove asymptotic normality
of the GMM based on (3)-(5). We now show that this result continues to hold if the GMM is based on any
subsets of (3)-(11) such that the covariance matrix of the corresponding sample moments is non-singular.

3.1 Estimation

Suppose we select r moments from (3)-(11), such that Vr (�) is non-singular, and letMNT (�; "̂) be the vector of

their sample analogues. The GMM estimator �̂ =
�
�̂; �̂2

�0
is the solution to the following optimization problem

�̂ = argmin
�2�

fMNT (�; "̂)
0QNTMNT (�; "̂)g ; (19)

where� is the parameter space2 , and QNT is a r�r, positive-de�nite weighting matrix satisfying QNT
p!Q:The

following theorem establishes the asymptotic distribution of �̂.

1See Ullah (2004). These results hold under normality of "it, but they can be easily extended to the non-normal case.
2Notice that under Assumption 1 and 4 � is a compact interval.
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Theorem 2 Under Assumptions 1-4, �̂ in (19) is consistent for �0 and, as N and/or T !1,

(NT )
1=2
�
�̂ � �0

�
a� N

�
0; (D0QD)

�1
D0QQ� (�0)QD (D

0QD)
�1
�
; (20)

where D = D (�0; ") = p lim
@
@�MNT (�0; ").

The e¢ cient GMM estimator can be obtained by imposing Q = Q� (�0)
�1, where

Q� (�0) = fE [NT MNT (�0; ")M
0
NT (�0; ")]g (21)

is the optimal weighting matrix. Notice that, under Assumption 1, Q� (�) = NTV (�), and therefore Q� (�)
has as (`; h) element expression (15) multiplied by NT . In practise, Q and D are evaluated at point estimates,

Q�
�
�̂
��1

and D
�
�̂; "̂
�
. In the Appendix we sketch the proof of consistency of �̂ and derive D; and refer to

Kelejian and Prucha (2008), Kelejian and Prucha (1999) for further details on consistency of GMM estimators
of spatial models. We do not report the proof of asymptotic normality of �̂ since, once established (16)-(18),
this is identical to that in Kelejian and Prucha (2008). When conditions (3)-(5) are employed in (19) Q� (�0) is

Q�KP
NT (�) =

�4

N

0B@ 2N 2Tr (S0S) 0

2Tr (S0S) 2Tr
h
(S0S)

2
i

2Tr
�
S0S2

�
0 2Tr

�
S0S2

�
Tr
�
S2 + S0S

�
1CA :

Since �2 enters in Q�KP
NT (�) only as a scale factor, we can compute �̂ in a single step by minimizing (19).

However, in general, � and �2 do enter in the formula for Q�
NT (�). In this case estimation can proceed adopting

a two-stage iterative procedure where in the �rst stage we minimize (19) using Q = Ir, and OLS residuals ûit,

and in the second stage, we employ �̂ to compute Q�
NT

�
�̂
�
and use it in (19). Once estimated �, e¢ cient

estimation of � can be obtained by applying feasible GLS. We next run a Monte Carlo exercise to evaluate and
compare the small sample properties of GMM estimators based on subsets of (3)-(11).

4 Monte Carlo experiments

We consider:

yit = 1 + x1;it + x2;it + uit; i = 1; :::; N ; t = 1; :::; T;

x`;it = 0:6x`;it�1 + �`it; �`;it � IIDN(0; 1� 0:62);

uit = �
NX
j=1

sijujt + "it; "it � IIDN(0; 1):

The values of x`;it and uit are drawn for each i and t, and at each replication. S is a regular lattice where
each unit has two adjacent neighbours and set sij = 1 if i and j are adjacent and sij = 0 otherwise; S is
row-standardized. We experimented with � = 0:0; 0:4; 0:8; and provide results for the following estimators of

� =
�
�; �2

�0
(adopting (21)): �̂

KP

GMM , based on (3)-(5); �̂
(1)

GMM , based on (6)-(8); �̂
(2)

GMM , based on (9)-(11); and

�̂
(3)

GMM , based on (3)-(11). Estimation of � is performed on ûit = yit � �̂ � �̂1x1;it � �̂2x2;it. We assess the
performance of estimators by computing their bias, RMSE, size and power (at 5% signi�cance level). We ran
1; 000 replications for all pairs N = 10; 20; 50;T = 5; 10.

Table 1 shows results for estimators of �. For purpose of comparison, we also provide the quasi-ML estimator

of �, �̂ML. The bias and RMSE of �̂
KP

GMM decrease as N and/or T get large, for all values of �. The size of �̂
KP

GMM

is close to the nominal 5% level for � = 0:0; 0:4, for all N;T larger than 10; while it deviates from the 5% level
when T = 5. When � = 0:8, the empirical rejection frequencies are slightly larger than the nominal 5% level.
We observe that, for a given pair of N and T , larger values of � are associated to smaller RMSEs and higher
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power of �̂
KP

GMM . A similar pattern can be observed for the GMM estimator based on other sets of conditions
(i.e., �̂1;GMM , �̂2;GMM and �̂3;GMM ), and for �̂ML. However, some important di¤erences in the performance of

these estimators can be noted. First, �̂2;GMM performs overall better than �̂
KP

GMM : its bias (in absolute value)

and RMSE are lower than those for �̂
KP

GMM , for all values of �, and the size is very close to 5%, for � = 0:0; 0:4.
In the case � = 0:8, �̂2;GMM is slightly oversized when N and T are small. Notice that results for �̂2;GMM are
very close to outputs for �̂ML in all cases considered. The performance of �̂1;GMM and �̂3;GMM is similar to
that of �̂2;GMM when the � = 0:0; 0:4. For � = 0:8, �̂1;GMM presents some distortions and is characterized by
rejections frequencies larger than 5%, ranging between 6:10% and 14:80%. �̂3;GMM has bias and RMSE similar
to �̂2;GMM , while its size deviates from the 5% level. An explanation for this result is that some moments used
in computing �̂3;GMM might be highly correlated, leading to a nearly-singular Q� matrix.

5 Conclusions

We have introduced new moments in a GMM estimation of a spatial regression model. Given that when � = 0
some of the suggested moments are redundant, we have proposed to use only a subset of the moments in the
estimation procedure. Our Monte Carlo experiments point at conditions (9)-(11) as those that yield the best
performance of the GMM estimator.
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6 Appendix

LetM (�) = [M1 (�) ; :::;Mr (�)]
0 and MNT (�; "̂) = [MNT;1 (�; "̂) ; :::;MNT;r (�; "̂)]

0, and

R (�; "̂) =MNT (�; "̂)
0
Q�
NT (�)MNT (�; "̂) ; Z (�) =M (�)

0
Q�
NT (�0)M (�) :

Consistency of the GMM can be showed by proving:

(I) Identi�cation uniqueness: for all N;T , and for K > 0 : inf�:k���0k2�K jZ (�)� Z (�0)j > 0:

(II) Uniform convergence: limN;T!1 sup� jR (�; "̂)� Z (�)j = 0
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To prove (I), note that

M (�) = �' (�)�D; MNT (�; "̂) = GNT ("̂)' (�)�DgNT ("̂) ;

where (here we provide �;' (�) ;D; whenM (�) contains (3)-(11), but we recall that our analysis is based on
subsets of these moments)

� =

26666666666666666664

�2E
�

1
NT

PT
t=1 u

0
tSut

�
E
�

1
NT

PT
t=1 utS

0Sut

�
�1 0 0 0 0 0 0 0

�E
�

1
NT

PT
t=1 u

0
tS
0S2ut

�
E
�

1
NT

PT
t=1 u

0
tS
02S2ut

�
� 1
N Tr (S

0S) 0 0 0 0 0 0 0

�E
�

1
NT

PT
t=1 u

0
tS
0Sut

�
E
�

1
NT

PT
t=1 u

0
tS
02Sut

�
0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

�E
�

1
NT

PT
t=1 u

0
tSut

�
0 0 0 0 0 0 1 0 0

�E
�

1
NT

PT
t=1 u

0
tS
0S2ut

�
0 0 0 0 0 0 0 1 0

�E
�

1
NT

PT
t=1 u

0
tS
2ut

�
0 0 0 0 0 0 0 0 1

37777777777777777775

;

' (�) =
h
� �2 �2 �2

N Tr
�
RR0� �2

N Tr(R
0S0SR) �2

N Tr (R
0SR) �2

N Tr(R)
�2

N Tr (R
0S0S) �2

N Tr(R
0S)

i0
;

D =
�
I3 I3 I3

�0
; =

h
E
�

1
NT

PT
t=1 u

0
tut

�
E
�

1
NT

PT
t=1 u

0
tS
0Sut

�
E
�

1
NT

PT
t=1 u

0
tSut

� i0
;

and GNT ("̂), gNT ("̂) are the sample analogues of �, . Following Kelejian and Prucha (1999), the proof of
consistency requires the following assumption:

Assumption 5: �0� is non-singular, i.e. its smallest eigenvalue �r (�0�) > 0.

We have, for k� � �0k2 � K > 0,

M (�)
0
Q�
NT (�0)M (�)�M (�0)

0
Q�
NT (�0)M (�0) = [' (�)�' (�0)]0 �0Q�

NT (�0)� [' (�)�' (�0)]
� �r (Q

�
NT (�0))�r

�
��0

�
[' (�)�' (�0)]0 [' (�)�' (�0)] > 0

If moments (6)-(8) alone are included in the analysis, we need to take the following identi�cability conditions:

Assumption 6: 'r(�)� 'r(�0) 6= 0; for all � such that k� � �0k2 � K > 0; and r = 4; :::; 9.

To prove (II), let � = [GNT ("̂) ;�DgNT ("̂)] and P = [�;�D], and notice that

R (�; "̂)� Z (�) � [�0Q�
NT (�)��P0Q�

NT (�)P] k' (�)k2
p! 0

since, under Assumptions 1-4, and given (16), �
p! P, and the elements of ' (�) are bounded.

6.1 The D matrix

D =

2666666666666664

� 2
NT

PT
t=1 û

0
tS
0"̂t �1

� 2
NT

PT
t=1 û

0
tS
20S"̂t � 1

N Tr (S
0S)

� 1
NT

PT
t=1 û

0
tS
0S"̂t � 1

N "̂
0
tS
2ût 0

��2

N Tr
�
RSRR0 +RR0S0R0� � 1

N Tr
�
RR0�

��2

N Tr
�
R0S0R0S0SR+R0S0SRSR

�
� 1
N Tr(R

0S0SR)

��2

N Tr
�
R0S0R0SR+R0SRSR

�
� 1
N Tr (R

0SR)

� 1
NT

PT
t=1 û

0
tSût � �̂2

N Tr (RSR) � 1
N Tr(R)

� 1
NT

PT
t=1 û

0
tS
2ût � �̂2

N Tr (R
0S0R0S) � 1

N Tr(R
0S)

� 1
NT

PT
t=1 û

0
tS
0S2ût � �̂2

N Tr (R
0S0R0S0S) � 1

N Tr (R
0S0S)

3777777777777775
where R is evaluated at �̂:
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