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GMM estimation of spatial panels*

F. Mosconef E. Tosettif
Brunel Business School University of Cambridge

Abstract

We consider Generalized Method of Moments (GMM) estimation of a regression model with spatially
correlated errors. We propose some new moment conditions, and derive the asymptotic distribution of the
GMM based on them. The analysis is supported by a small Monte Carlo exercise.

Keywords: Generalized Method of Moments, spatial econometrics.
JEL Code: C2, C5.

1 Introduction

GMM estimation of spatial regression models has been originally advanced by Kelejian and Prucha (1999).
They suggested three moment conditions that exploit the properties of disturbances implied by a standard set
of assumptions. Substantial work has followed their original study. Druska and Horrace (2004) have considered
GMM estimation of a panel regression with time dummies and time-varying spatial weights. Lee and Liu
(2006a) suggested a set of linear and quadratic moment conditions in the errors with inner matrices satisfying
certain regularity properties; Lee and Liu (2006b) have extended this framework to estimate regression models
with higher-order spatial lags. Fingleton (2008a) and Fingleton (2008b) proposed a GMM estimator for spatial
regression models with an endogenous spatial lag and moving average errors. Kelejian and Prucha (2008) have
generalized their original work to allow heteroskedasticity and spatial lags in the dependent variable. This has
been extended by Kapoor et al. (2007) to estimate a spatial panel regression with individual-specific error
components.

We focus on GMM estimation of a regression model where the error follows a spatial autoregressive (SAR)
process. We show that there are more moments than those currently exploited in the literature, and derive
the asymptotic distribution of the GMM based on such moments. We perform a small Monte Carlo exercise to
compare the properties of GMM estimators based on different sets of moments.

2 The framework

Consider the model expressed in stacked form

y: = Xtﬂ+ut7 t= 1a"'aT7 (1)
u = 5Sut + &¢, (2)

where y; = (ylt,...,yNt)',Xt = (xlt,...,th)',ut = (ult,...,uNt)/, g = (Eu,---,ENt)/ and S is N x N spatial
weights matrix. We assume:
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ASSUMPTION 1: ;s ~ IIDN(0,02%), with 02 < K < oo, fori=1,...N,t =1,....T.

ASSUMPTION 2: X, and &, are independently distributed for all ¢,#'. As N and/or T' — ooz S XX, —
M, where M is finite and non-singular.

ASSUMPTION 3: S has zero diagonal elements; S and (Iy — 6S) ™" have bounded row and column norms.

ASSUMPTION 4: § € (—i, i), where pg = 1glia§>§v{|/\i (S)|}.

Normality and constant variance of €;; stated in Assumption 1 are only taken for ease of exposition, and our
results can be readily extended to the case of non-normal, heteroskedastic variables (see Kelejian and Prucha
(2008) on this). Assumption 4 implies that (2) can be rewritten as u; = Rey,where R = (Iy — 0S)™". Let 3
be the OLS estimator of 3. Under Assumptions 1-3, ,3 is consistent for 3, as N and/or T tends to infinity, but,
for § # 0, is not efficient. Efficient estimation of 3 can be achieved by estimating the parameters in equation
(2), namely § and o2, and then apply feasible GLS.

3 GMM estimation of SAR processes

Let 6y = (50,0(2))/ be the true parameter vector for (2). Kelejian and Prucha (1999) suggest the following
moments for estimating 8¢

T
1
M,(60) = E ( s’st) —d% =0, (3)
NT; ¢
1 & 1
My (0) = FE ( e’S’Set> — 02 —Tr(S'S) =0, (4)
NT; ¢ N

T
My(0) = E (A}T;s;sst> ~0. (5)

Moment (3) is implied by the constant variance of e;; (4) exploits the variance of the spatial lag, Se;; (5) is
based on the covariance between &; and Se;. From (2), the following additional moments can be suggested:

M4(0) = FE <NlT iugut> - UQ%TT (RR') =0, (6)
1 &, , 1 -

Ms(0) = E (NT ;uts Sut> — 0?17 (R'S'SR) =0, (7)
1 , 1 .

Ms(0) = E (NT tz_;utsut) — 0?17 (R'SR) =0, (8)
1 < 1

M7 (0) = E (NT ;u;5t> - azﬁTr(R) =0, (9)
1 < 1

Mg (@) = E (NT ;ugs’set> - UQNTT (R'S'S) =0, (10)
1 < 1

My(0) = E (NT ;ugset> - UQNTT(R’S) =0. (11)

Moments (6)-(7) exploit the variance of u; and Suy, respectively; (8), (9) and (11) are based on the covariance
of u; with Suy, €; and Seq, respectively; (10) exploits the covariance between the spatial lags Su; and Se;.

Remark 1 Under 6o = 0, moment (3) would be identical to (6) and (9); (4) would coincide with (7) and (11),
and (5) would be the same as (8) and (10). Hence, when &g is zero or close to zero we expect the additional
moments (6)-(11) to be redundant.



In this paper we intend to study the properties of the GMM estimator based on subsets of conditions (3)-(11).
We first observe that conditions (3)-(11) contain the following expressions

ZetA/st, 0=1,..,9, (12)
NT t=1
Ay = Iy, A,=SS, A;=S,A,=RR, A;=R'SSR,
As = R'SR,A, =R/, A;=R'S'S, Ay=R'S,

A, having bounded row and column norms. Under Assumption 1, the mean and variance of (12) are!

E (NlT ésgAﬁJ = %GQTT (Ay), (=1,..,r, (13)
1 d /! 1 4 2 /
Var (NT g;etAget) = g0 T (A7 +A)A)), (14)
1 1 1, ,
Cov (NT ;EtAe&‘t) (NT ;EtAh€t>] = N27° Tr(A¢Ay + AyAy), 0 #h, (15)

Let @54 = iz —B/xit and &;; = G —0 Ejvzl si; ;. The sample analogues of (3)-(11) can be obtained by replacing
e: by & and u; by ;. Let M (8) = [M1(0), ..., M, (8)]' be a vector containing 7 < 9 moments among (3)-(11),
and My (6,8) = [Mn11(0,8), ..., M7, (0, é)]' be the corresponding sample moments. Given that @;; (and
hence &;;) is based on a consistent estimate of 3, under Assumptions 1-4 the hypotheses of Theorem 1 in Kelejian
and Prucha (2001), and Theorem Al and Lemma C1 in Kelejian and Prucha (2008) are satisfied and

Mpyr (8,6) — E[Mpr (0,¢)]] 20, as N and/or T — oo (16)
(NT)'*[My7 (0,8) — My7 (6,€)] 20, as N andjor T — oo (17)
(NT)?V, ()" *Mnyr (0,€) £ N(0,1,), as N and/or T — oo (18)

where V, (6) = E [Myr (8,€) Myt (0,€)'] is assumed to be non-singular, i.e. A, (V,(0)) > K > 0. V,(6)
has (14) on its main diagonal, and (15) as off-diagonal elements. The above results hold for N and/or T going to
infinity. The asymptotic in 7" can be proved by applying standard multivariate law of large numbers and central
limit theorem, since under Assumptions 1-2 &,A,&; (and €,Ae;), for t = 1,...,T, are IID. The above results
have been used by Kelejian and Prucha (2008) and Kelejian and Prucha (1999) to prove asymptotic normality
of the GMM based on (3)-(5). We now show that this result continues to hold if the GMM is based on any
subsets of (3)-(11) such that the covariance matrix of the corresponding sample moments is non-singular.

3.1 Estimation

Suppose we select  moments from (3)-(11), such that V.. (8) is non-singular, and let M y7(0, &) be the vector of

~ ~ !/
their sample analogues. The GMM estimator 8 = (6 , 62> is the solution to the following optimization problem

0= aregrgin {Mny7(0,8)'QnrMnNT(8,8)}, (19)
€

where © is the parameter space?, and Q7 is a 7 X r, positive-definite weighting matrix satisfying Q NT&Q.The
following theorem establishes the asymptotic distribution of 6.

!See Ullah (2004). These results hold under normality of &;;, but they can be easily extended to the non-normal case.
2Notice that under Assumption 1 and 4 @ is a compact interval.



Theorem 2 Under Assumptions 1-4, 6 in (19) is consistent for 6y and, as N and/or T — oo,

(NT)'* (8- 85) © N (0,(D'QD) "' D'QQ" (8,) QD (D'QD) '), (20)
where D =D (0, ) = plim ZMnyr (60, €).
The efficient GMM estimator can be obtained by imposing Q = Q* (90)_1, where
Q" (60) = {E[NT Mn7 (00, €)My (60, €)]} (21)

is the optimal weighting matrix. Notice that, under Assumption 1, Q* (8) = NTV (6), and therefore Q* (8)

has as (¢, h) element expression (15) multiplied by NT'. In practise, Q and D are evaluated at point estimates,
~\ 1 ~ ~

Q* (0) and D (0, é). In the Appendix we sketch the proof of consistency of @ and derive D, and refer to

Kelejian and Prucha (2008), Kelejian and Prucha (1999) for further details on consistency of GMM estimators

of spatial models. We do not report the proof of asymptotic normality of 6 since, once established (16)-(18),

this is identical to that in Kelejian and Prucha (2008). When conditions (3)-(5) are employed in (19) Q* (8y) is

L[ 2N oTr (S'S) 0
KP(g) = UN °Tr (S'S)  2Tr (S’S)Q} 277 (8'S?)
0 oTr (8'8?) " Tr (S?+8'S)

Since o2 enters in Q3% (0) only as a scale factor, we can compute 6 in a single step by minimizing (19).

However, in general, § and o2 do enter in the formula for Q%1 (). In this case estimation can proceed adopting
a two-stage iterative procedure where in the first stage we minimize (19) using Q =1I,., and OLS residuals ¢,

and in the second stage, we employ 0 to compute Qxrp (9) and use it in (19). Once estimated 6, efficient

estimation of 3 can be obtained by applying feasible GLS. We next run a Monte Carlo exercise to evaluate and
compare the small sample properties of GMM estimators based on subsets of (3)-(11).

4 Monte Carlo experiments

We consider:

Yit = 1+$1,it+$2,it+uitai: 177N7t: 17"'7T7
zoiw = 0.6z04-1 + Veir,veie ~ IIDN(0,1 — 0.6%),
N
Uyp = 52 Sijujt + €it, €it ~ IIDN(0,1).
j=1

The values of x4 ;; and wu;; are drawn for each ¢ and ¢, and at each replication. S is a regular lattice where
each unit has two adjacent neighbours and set s;; = 1 if ¢ and j are adjacent and s;; = 0 otherwise; S is

row-standardized. We experimented with § = 0.0,0.4,0.8, and provide results for the following estimators of

6 = (o, 02)/ (adopting (21)): ég]\lj[M, based on (3)-(5); éSJ)MM, based on (6)-(8); 9(;])\/11\/[, based on (9)-(11); and

~(3 . .
O(Gz)\/[M» based on (3)-(11). Estimation of € is performed on ;; = v — & — B121,i — Ba%2,i. We assess the

performance of estimators by computing their bias, RMSE, size and power (at 5% significance level). We ran
1,000 replications for all pairs N = 10,20,50;7 = 5, 10.

Table 1 shows results for estimators of §. For purpose of comparison, we also provide the quasi-ML estimator

. ~KP ~KP
of §, dprr. The bias and RMSE of 0, decrease as N and/or T get large, for all values of §. The size of 0/,
is close to the nominal 5% level for 6 = 0.0,0.4, for all N, T larger than 10; while it deviates from the 5% level
when T'= 5. When § = 0.8, the empirical rejection frequencies are slightly larger than the nominal 5% level.
We observe that, for a given pair of N and T, larger values of § are associated to smaller RMSEs and higher



power of 6G MM A similar pattern can be observed for the GMM estimator based on other sets of conditions
(i.e. (51 GMM, 52 .amm and (53 amM), and for 5ML However, some 1mp0rtant dlfferenceb in the performance of

these estimators can be noted. First, 52,6; M performs overall better than (5G M its bias (in absolute value)

and RMSE are lower than those for 351\1; , for all values of §, and the size is very close to 5%, for § = 0.0, 0.4.
In the case § = 0.8, SQ,GMM is slightly oversized when N and T are small. Notice that results for 827GMM are
very close to outputs for 5 mr in all cases considered. The performance of SLGM »m and 53,(; MM 1s similar to
that of 327GMM when the 6 = 0.0,0.4. For § = 0.8, 51,GMM presents some distortions and is characterized by
rejections frequencies larger than 5%, ranging between 6.10% and 14.80%. 33’GMM has bias and RMSE similar
to Sg,g MM, while its size deviates from the 5% level. An explanation for this result is that some moments used
in computing 337GMM might be highly correlated, leading to a nearly-singular Q* matrix.

5 Conclusions

We have introduced new moments in a GMM estimation of a spatial regression model. Given that when § = 0
some of the suggested moments are redundant, we have proposed to use only a subset of the moments in the
estimation procedure. Our Monte Carlo experiments point at conditions (9)-(11) as those that yield the best
performance of the GMM estimator.
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6 Appendix
Let M (6) = [My(8),..., M, (0)]" and My (6,8) = [Mn7,1(6,€) ..., M1, (6,8)]’, and
R(0,8) =Mnr(0.8) Qyr () Myr (0,8),  Z(8) = M (8) Qir (80) M (6).
Consistency of the GMM can be showed by proving:

(I) Identification uniqueness: for all N, T, and for K > 0: infg.|9_a,|,>K |Z (0) — Z (60)| > 0.

(IT) Uniform convergence: impy r—.oc supg |R(0,8) — Z (8)| =0



To prove (I), note that
M(8) =T (6) - Dr,

My (6,8) = Gnr (€) ¢ (0) — Dgnr (),

where (here we provide T', ¢ (0) , D, v when M (0) contains (3)-(11), but we recall that our analysis is based on

subsets of these moments)

_9F (ﬁ s u;sut) JER utS'Sut> . .

B (§r L wiS'S)  E (5 DL wS?S%n)  —4Tr(S'S) 0

~E (57 X u;S’Sut) E(§r i UQS’QSut> 0 0

0 0 0 0

r = |0 0 0 0
0 0 0 0

1 T /

—E(~7 Zt:l utSut) 0 0 0

—B ﬁ 23:1 u;S’SZut) 0 0 0

~B (w7 Zthl uQSZut) 0 0 0

06 = |5 & o LTr(RR) STr(R'S'SR) %Tr(R'SR) %Tr(R)

D =

o O O oo+ o o o
SO O O OO O O O
o O O oo o o o
o O H OO0 O o O

2 Tr (R'S'S)

_ O OO0 o o o
_ O O oo o o o o

0

!
2Tr(R'S) |

(I, I; I ]/,'y = [ E (ﬁ Zle u;ut) E (ﬁ 23;1 uQS’Sut) E (ﬁ Zil uQSut) }/,

and Gyt (&), gyt (€) are the sample analogues of T, «. Following Kelejian and Prucha (1999), the proof of

consistency requires the following assumption:

AssuMPTION 5: IVT is non-singular, i.e. its smallest eigenvalue A, (I'T) > 0.

We have, for ||§ — 0|, > K > 0,

M (8) Qivr (80) M () — M (80) Qi (60) M (B0) = [0 (8) — ¢
> A (Qir (00) Ar (TT) [0 (8) — ¢ (80)]' [# (8) — ¢ (80)] > 0

(80)]' T'Qivr (B0) T [0 (8) — ¢ (60)]

If moments (6)-(8) alone are included in the analysis, we need to take the following identificability conditions:

ASSUMPTION 6: ¢,.(0) — ¢,.(0¢) # 0, for all @ such that ||@ — 0¢||, > K >0, and r =4,...,9.

To prove (II), let II = [Gnr (8) , —Dgpnr (8)] and P = [I', —D~y], and notice that

R(0,8)— Z(0) < [I'Qxr (0) I — P'Qir (8) Pl ()], 2 0

since, under Assumptions 1-4, and given (16), IT & P, and the elements of ¢ (8) are bounded.

6.1 The D matrix
[ w7 Z;ﬂ ;S'é,
2. w,s¥se,
— s S w,S'se, — &8,
—2Tr (RSRR’ + RR'S'R/)
—2Tr (R’S'R'S'SR + R'S'SRSR)
—2Tr (R'S'R'SR + R'SRSR)
T ~ 52
— 7 Yo WSy — F?T (RSR)
— 57 S, WS%h, — L Tr (R'S'R'S)

where R is evaluated at 6.

N YL @ S'S%a, — LT (R'S'R'S'S)
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