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IMPLICATIONS

Mortality in an at-risk population may be modeled in a state-space framework. The relation of

the hazard rate to particulates (TSP) and other variables and the unobserved population are

estimated using the Kalman Filter and maximum likelihood. The results for daily data from

Philadelphia suggest that both TSP and temperature are risk factors, the effect of both rising at

high temperature levels. The appropriate metric for health damage is the effect of particulates on

life expectancy, which in the context of daily variation is estimated to be on the order of days.

ABSTRACT

A portion of a population is assumed to be at-risk, mortality hazard varying with atmospheric

conditions including total suspended particulates (TSP). This at-risk population is not observed
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and the hazard function is unknown; we wish to estimate these from mortality count and

atmospheric variables. Consideration of population dynamics leads to a state-space

representation, allowing the Kalman Filter to be used for estimation. An implication is that there

is a harvesting effect; high mortality is followed by lower mortality until the population is

replenished by new arrivals.

The model is applied to daily data for Philadelphia, 1973-90. The estimated hazard function rises

with the level of TSP and at the extremes of temperature and also reflects a positive interaction

between TSP and temperature. The estimated at-risk population averages about 480 and varies

seasonally. We find that lags of TSP are statistically significant, but the presence of negative

coefficients suggests their role may be partially statistical rather than biological. In the

population dynamics framework, the natural metric for health damage from air pollution is its

impact on life expectancy. The range of hazard rates over the sample period is 0.07 to 0.085,

corresponding to life expectancies of 14.3 and 11.8 days respectively.

INTRODUCTION

An extensive literature documents evidence that episodes of severe air pollution are associated

with heightened mortality in urban populations. However, the question of whether mortality

occurs within a relatively limited population of frail individuals, or whether the risks are more

diffuse across the general population, has a long history and is still being examined and debated

by researchers.1,2,3
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In this paper, we explore a new approach to modeling the relationship between mortality and

air quality and apply it to daily data from Philadelphia. We take as given that a portion of the

urban population is at-risk, being subject to a probability of death, or hazard rate, that varies with

atmospheric conditions including total suspended particulates (TSP). New entrants replenish the

at-risk population over time. Only mortality and atmospheric conditions are observed, the at-risk

population, new entrants, and the hazard rate being unobserved. Because of the dependence of

mortality on the unobserved at-risk population, the model is not directly estimable as a

regression, but fortunately it may be cast in state-space form. Using the Kalman Filter (KF) we

then infer the hazard rate over time, its relationship to atmospheric variables, and the implied

path of the unobserved at-risk population. In the state-space framework one is able to address the

following questions. What is the size of the at-risk population? What is the life expectancy of

individuals in that population? What is the effect of changes in air quality on that life

expectancy?

The implications of the at-risk population model in state-space form differ fundamentally

from those of linear models based on multiple regression.4 In the latter, a risk factor such as TSP

affects mortality directly and a persistent rise in the level of TSP would imply a persistent rise in

mortality count. In the state-space model the impact of a risk factor such as TSP on mortality is

indirect; it is proportional to the size of the at-risk population on that day which is not observed

directly. If the at-risk population has been depleted by recent mortality, then the impact of risk

factors will be mitigated since it is a temporarily smaller population that is at risk. Indeed, it is

this “harvesting effect” which allows the unobserved at-risk population to be estimated by the

KF. If the higher hazard rate persists, the mortality count will fall back towards its previous
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level, since in the long run mortality is limited to the rate of new arrivals. However, the life

expectancy of those in the at-risk population will fall and this paper presents estimates of that

effect.

MODEL SPECIFICATION AND ESTIMATION

Any population is diminished by deaths and replenished by the arrival of new entrants; in this

case the population of individuals in Philadelphia who are at risk from changing air quality.

Using Pt to denote the number of individuals in the at-risk population at the end of day t, Dt the

number of deaths (mortality) during day t, and Nt the number of new entrants to the at-risk

population during day t, the basic equation of population dynamics is:

tttt DNPP −+= − 1 . (1)

Equation (1) may be viewed as simply an accounting relation that states that the at-risk

population at time t is equal to its previous value plus the number of new entrants less the

number of deaths. The only variable in this relationship that is actually observed in the present

context is the mortality count.

Mortality is influenced by atmospheric variables through a hazard function that operates on

the at-risk population. Listing atmospheric variables in a vector denoted xt, we assume the hazard

function to be the linear combination of these variables, denoted (γ′xt). The atmospheric variables

listed in xt will include measures of air pollution such as TSP and weather variables such as
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average temperature (AVGT). The elements of the vector γ are coefficients that indicate how

each atmospheric variable affects the hazard function. These coefficients are unknown and will

have to be estimated from data. The hazard rate is the value of the hazard function at period t and

it is the expected fraction of deaths in the at-risk population on that date. Some deaths will result

from other factors that affect mortality but which we have not included in xt so there will also be

an error term, denoted et, which is the difference between actual and expected mortality.

We summarize this discussion by the expression:

( ) tttt ePxD +•= − 1'γ . (2)

A constant in the hazard function captures the average level of mortality, so the mean value of

the error term is zero. We seek to estimate the γ vector of coefficients and the time series of the

unobserved at-risk population P from daily data on mortality and atmospheric variables.

Note that equation (2) implies that mortality is a nonlinear function of Pt-1 and the

atmospheric variables, the expected number of deaths being the product of hazard and

population. This implies that mortality cannot be expressed as a linear function of current and

past atmospheric variables with constant coefficients. Indeed, the response of mortality to a

change in atmospheric conditions depends on the time path of past conditions, reflected in the

current level of the at-risk population.
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To complete the model we need to say how Nt, the unobserved number of new entrants to the

at-risk population, evolves through time. In any population, it is the rate of arrival of new

entrants that determines mortality over a long time span. The time series of mortality of those

over 65 in Philadelphia displays remarkably little long-term variation over the fourteen-year

period of our sample. The annual averages fluctuate in a narrow range around the long run

average of 35, ranging from 33 to 37, and ending the period at the upper end of that range.

Further, Dickey-Fuller tests strongly reject non-stationarity or drift over long time horizons.

Given the long run relationship between arrivals and mortality, these all suggest that the rate of

arrivals fluctuates around a long run mean during this period in the Philadelphia population.

With this background, we employ the specification

tt NN η+= , (3)

where N is the average number of arrivals, and ηt is a random deviation.

The fundamental problem of statistical inference in this setting is that the at-risk population is

an unobserved variable. If Pt-1 were observed then one could estimate (2) by least squares,

regressing mortality on variables that would be cross-products of the x’s and Pt-1. However, Pt-1 is

not observed, so the model is non-linear and cannot be expressed as a linear regression.

Fortunately, this model is a member of the class of state-space models that can be made

operational using the Kalman Filter (KF). Briefly, the state-space representation consists of two

equations, a measurement equation and a state equation. The former shows how the variable we

observe and wish to explain depends on unobserved variables called state variables. The latter
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shows how those state variables evolve through time. Thus, equation (2) is the measurement

equation and equations (1) are (3) are combined to form the state equation. The random shocks

in these two equations are assumed uncorrelated in the state-space formulation. Those shocks are

errors in predicting mortality and random arrivals to the at risk population respectively. The

assumption that they are uncorrelated is equivalent to saying that there is a well-defined at-risk

population in the sense that movement of individuals from the population at large to the at-risk

population does not depend on mortality. We want the model to estimate the size of the at-risk

population, so we would not want to exclude a portion of the population that is also at risk.

Given parameter values, we obtain an estimate of the series Pt by “running” the data through the

KF.5,6 The resulting estimated level of Pt, denoted Pt|t, is the minimum mean squared estimate of

Pt based on data up to time t and is referred to as the filtered estimate.

A by-product of the KF is the construction of the Gaussian likelihood function using

Harvey’s prediction-error decomposition.7,8 Maximum likelihood estimation is carried out using

the OPTMUM module of the GAUSS programming language. The prior distribution for the

initial value of the unobserved at-risk population was given a mean of 0 and variance 1000, a

very loose prior distributions that leaves determination of the at-risk population and to be

determined by the data. No prior is required for Nt since it is just a constant plus a random error.

Maximum likelihood estimates of the parameters are computed by maximizing the likelihood

function over the parameter space. This requires that we assume that the error terms in equations

(2) and (3) are Normal, serially random, and uncorrelated with each other as well as with

variables in the model. The error terms cannot be exactly Normal in this context since mortality

is integer valued and non-negative, so what we have is an approximation to maximum likelihood.
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Standard errors for parameter estimates are based on asymptotic distribution theory that may not

be exact in finite samples, but sample size here is very large. The parameters to be estimated are

as follows: the γ vector, the average arrival rate N, and the standard deviations of the two error

terms e and η denoted σe and ση respectively. The t-statistic shown in parentheses under each

point estimate in the tables is based on numerical second derivatives to obtain standard errors.

The value of the log of the likelihood function is also reported since it gives us a basis for

comparing models using likelihood ratio tests or information criteria. For nested models, the

likelihood ratio test is that two times the difference in log likelihood will be approximately chi-

square with degrees of freedom equal to the number of additional parameters in the more

complex model.

We have verified that the algorithm does in fact uncover the underlying parameters and the

at-risk population in a system having the structure of (1) – (3) by confronting it with artificial

mortality data that we generated. Our hazard function was (.1 + .003•xt) where the sequence {xt}

was constructed to mimic the behavior of TSP in the actual data. N was set at the mean mortality

rate in the real data and the standard deviations of the error terms were set at 2 and 3

respectively. Series length was 6000 to be comparable to the daily data we study. To increase the

validity of the experiment, one of us generated the data, providing the other with only the

mortality and TSP series to carry out the estimation. The parameter values were estimated

correctly to within very small tolerances. The accuracy of estimates of the unobserved population

is apparent in Figure 1 where the generated “actual” population is plotted along with the KF

estimates of population over an arbitrary sequence of 400 days. The latter tracks both the local

trend and day-to-day fluctuations. The Kalman filter requires a prior distribution for the
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unobserved state variable Pt at t=0. The results were not sensitive to modifications of this prior.

We found that the estimated Pt moved very quickly from its initial guess value to the correct

level. These results give us added confidence in the validity of our results.

RESULTS FOR THE PHILADELPHIA MORTALITY DATA

We apply the model to daily data for Philadelphia from the period 1973-90 provided to us by

the Electric Power Research Institute. The data set includes daily observations on the number of

non-accident deaths of individuals over age 65, a measure of total suspended particulates (TSP),

and other atmospheric variables including temperature, barometric pressure, and ozone. Our

investigation focused on the relationship of mortality to TSP. Before we were able to estimate

the model, we had to address the problem of missing-observations in the TSP series. Eliminating

periods at the beginning and end of the sample where there are large gaps in the TSP record

leaves a sequence of 5136 consecutive days within which there are only 50 days missing TSP

values. To fill in these gaps we regressed TSP on other atmospheric variables, using the integer

part of the fitted series.

Table 1 displays Maximum Likelihood estimates of the observation and state equations for

six base-line specifications of the x vector that include various combinations of TSP and average

temperature (AVGT), the square of temperature, and the multiplicative interaction of

temperature with TSP. We chose AVGT as a baseline variable because of its strong linear

association with daily mortality. A constant term is included in every case. Model 1 uses only

TSP, which is highly significant. Model 2 adds AVGT, which is also highly significant. Model 3

adds the square of AVGT to allow for a hazard rate that increases at both extremes of
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temperature, and that effect is also significant. Model 4 allows the effect of TSP and AVGT to

each depend on the value of the other by adding the interaction variable AVGT*TSP. That

interaction is significant, while TSP and AVGT alone are much less significant than in Model 3.

Model 5 is included for comparison purposes and uses only the AVGT variables. Model 5 has

roughly the same log likelihood as Model 1 which used only TSP. Finally, Model 6 uses all of

the variable considered in this table: TSP and AVGT, the square of AVGT, and the interaction

AVGT*TSP.

How important is TSP as a predictor of mortality? Comparing the log likelihood for Model 6

with that of Model 5 that does not include either TSP-related variable, the difference in value is

about 14 which is highly significant (p-value is off the chi-square table). How important are the

temperature-related variables? Comparing Model 6 with Model 1 the difference in log

likelihoods is again about 14, and even with 3 additional parameters that difference is

overwhelmingly significant. We also note that although the interaction variable AVGT*TSP has

a t-statistic of only 1.42 in Model 6, when we compare the log likelihood with that of Model 3,

the difference is about 2. That corresponds to a p-value of about .05, supporting a role for the

interaction term. Thus, we regard Model 6 as a reasonable baseline specification. Note that to

interpret the effect of TSP on the hazard rate in Model 6 one needs to keep in mind that the

coefficient of TSP is a linear function of AVGT, so the effect is positive in spite of the negative

coefficient of TSP by itself. We also note that the residuals in the state equation lack serial

correlation as assumed. For Model 6, those residuals display serial correlation of -.012 at lag one

day, -.019 at lag 7 days, and .026 at lag 365 days and none is statistically significant.
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How do TSP and temperature affect the hazard rate? The hazard function of Model 6 implies

that both extremes of temperature are harmful, and that TSP is also harmful with that effect

rising with temperature. At a typical level of TSP, the effect of an increase in temperature from

40F to 90F is an increase in the hazard rate from .07 to .08. At a high temperature of 90F, the

effect of an increase in TSP from zero to the highest levels observed in the sample it to raise the

hazard rate from .075 to .091. Any statements about the effect of TSP on the hazard rate need to

be tempered by the uncertainty connected with these estimates.

Figure 2 plots the KF estimate of the at-risk population and the estimated hazard rate in

Model 6. The estimated at-risk population averages 484, and varies seasonally. Since average

mortality is 35 per day, this implies that about 7% of the at-risk population dies on average per

day. The corresponding time series of the hazard rate in Figure 2 is stable around its mean of

.073, remaining well within the required (0,1) interval for a probability. The hazard rate

fluctuates seasonally as periods of high TSP and temperature extremes reap a grim harvest,

followed by less lethal conditions. As noted above, the mortality series is essentially trendless, so

it is of some interest that the estimated at-risk population series does move higher with time,

from an annual average of around 470 in early years to around 500 at the end. There is a

corresponding and offsetting decline in the hazard rate, moving downward from an annual

average of about .072 in early years to .0716 in later years. This decline in the hazard rate is

driven by declining TSP over the period; from annual averages of about 80 to about 70, the result

of efforts to clean up the air around Philadelphia. A lower hazard rate lengthens life expectancy,

and allows individuals to stay longer in the at-risk population, thereby making that population
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larger. Finally, we note that output from all six models is qualitatively similar in producing

population and hazard rate estimates that are stable and positive.

Does TSP have a cumulative effect on mortality over several days? We investigated this

possibility by adding the level of TSP in preceding days to the list of variables in the hazard

function in Models 1 through 3. The results for adding 4 or 8 lags of TSP are displayed in Table

2 which differs from Table 1 in adding another line listing the likelihood ratio statistic for testing

the null hypothesis that all the added lagged values of TSP have a zero coefficient. What the test

results indicate is that lags of TSP do have explanatory power that is statistically significant, but

the coefficient estimates suggest that the effect is not large. The coefficient of current day TSP is

reduced when lags are added, the first lag is positive and significant, but the second lag is

negative and remaining lags have small estimated coefficients. The sum of all TSP coefficients

for Model 3 is raised, however, by almost half when 8 lags are added. How do we understand a

negative effect of TSP after two days? One explanation is that the apparent effect of lags of TSP

is partially statistical rather than biological. If we measure TSP imperfectly, due to aggregation

over the 24-hour day or extrapolation of atmospheric measurements across a geographical

region, then TSP on adjacent days may contain additional information relevant to the explanation

of mortality. The lag pattern we obtain then may represent, at least in part, a kind of moving

average measure of TSP rather than a biological process. Both factors may well be at work in

producing the pattern seen here.

We have also experimented with adding other atmospheric variables to base-line Model 6.

Barometric pressure on the same day enters the model with a negative and significant coefficient



13

while the coefficients on TSP and AVGT change only slightly. The resulting estimated

population and hazard series are essentially indistinguishable from those of Model 6.

DISCUSSION AND CONCLUSIONS

In thinking about the dynamics of the state-space model we have found it useful to compare it to

the more familiar linear regression or distributed lag model linking mortality to risk factors. The

latter have the form

t

K

k
ktkt xD εβα ++= ∑

=
−

0

. (4)

The impact of xt-k on mortality is given by fixed coefficients in (4), while in the state-space

model the impact depends on the unobserved state variable P. Because this functional

relationship is multiplicative, the state-space model is highly non-linear. In particular, the impact

will be smaller if recent mortality has been high, since the at-risk population will have been

reduced. This harvesting effect is small in the models we estimated, but it is very persistent since

the rate of replenishment of the population by new arrivals is slow. Thus, the relation of past

atmospheric conditions to mortality is highly non-linear in the state-space model.

If we nevertheless run regressions of the form of (4) on the Philadelphia data set with TSP as

the risk factor there is a consistent pattern in the coefficients obtained. For example, with lags up

to seven days the lag zero coefficient is .013, but the sum over lags zero through 7 days is -.041.

The character of the results is not sensitive to including more lags and other variables; the

leading coefficient on TSP is positive but the sum ∑ kβ  is small or negative. Thus, a positive
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association between mortality and TSP on the same day is more than offset by a sequence of

negative coefficients, as predicted by the harvesting effect. The state-space model also predicts

that the sum of coefficients will be small, since over the long run the level of mortality is only

determined by the rate of arrivals, not by risk factors. Thus the state-space model proposed here

helps explain why multiple regression produces results that are otherwise hard to explain, namely

an apparent negative effect of TSP on mortality after a lag.

While an increase in risk factors cannot increase mortality in the long run, life expectancy is

the inverse of the hazard rate, so hazard-causing agents will shorten it. The range of hazard rates

observed in our sample over the sample period is roughly 0.07 to 0.085. Since life expectancy is

the reciprocal of the hazard rate, the former corresponds to a life expectancy in the at-risk

population of 14.3 days, while the latter to 11.8 days, a difference of about 2.5 days on average

for the roughly 500 individuals at-risk in Philadelphia.

In summary, we feel that the state-space approach represents a very promising avenue of

research in modeling the effects of air pollution. Its primary advantage comes from explicit

recognition of the role of population dynamics in mortality, and making use of the Kalman Filter

to estimate the population model directly. The results reported here are preliminary, but suggest

that the approach is practical and provides explanations of otherwise puzzling results from

conventional analysis.
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Table 1. Parameter Estimates for Baseline State-Space Models, Philadelphia Data.

Coefficient Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

1 0.0632924

(8.61)

0.0650052

(9.34)

0.0696869

(8.95)

0.0686944

(7.72)

0.0765619

(8.94)

0.0711416

(1.89)

TSP 0.0000534

(5.60)

0.0000480

(5.50)

0.0000412

(4.09)

-0.000023

(-0.69)

n.a. -0.000007

(-0.21)

AVGT n.a. 0.0001002

(2.96)

-0.000167

(-2.95)

0.0000079

(0.62)

-0.000213

(-1.88)

-0.000168

(-0.21)

AVGT^2 n.a. n.a. 0.0000030

(4.34)

n.a. 0.0000041

(3.35)

0.0000023

(0.28)

AVGT*TSP n.a. n.a. n.a. 0.0000013

(2.28)

n.a. 0.0000009

(1.42)

eσ 5.80991

(76.69)

5.756863

(74.90)

5.754371

(74.15)

5.755896

(73.14)

5.731345

(73.79)

5.754223

(49.13)

ησ 19.7923

(13.63)

19.04966

(14.81)

19.05996

(13.95)

19.18479

(13.39)

18.58655

(14.78)

19.15221

(5.96)

N 35.0947

(126.84)

35.08667

(131.80)

35.08826

(131.73)

35.08771

(130.85)

35.08178

(135.08)

35.08867

(131.02)

lnL -16924.9 -16919.03 -16913.12 -16914.00 -16924.72 -16910.97

Note: t-statistics for the null hypothesis that an individual coefficient is zero are in

parentheses beneath it. The statistic lnL is the log of the likelihood function.
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Table 2. Parameter Estimates for State-Space Models with Lags of TSP, Philadelphia Data.

Coefficient Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b
1 0.061616

(8.62)
0.057272

(8.30)
0.063138

(9.86)
0.058708

(8.76)
0.067901
(10.85)

0.0632121
(16.03)

TSP 0.000043
(4.64)

0.000042
(1.62)

0.000040
(4.76)

0.000040
(4.43)

0.000033
(4.31)

0.000033
(4.58)

TSP(-1) 0.000034
(4.11)

0.000033
(0.94)

0.000030
(3.73)

0.000030
(3.18)

0.000028
(3.33)

0.000027
(n.a.)

TSP(-2) -0.000011
(n.a.)

-0.000011
(-0.22)

-0.000013
(n.a.)

-0.000013
(-4.51)

-0.000015
(-2.38)

-0.000014
(n.a.)

TSP(-3) 0.000009
(2.26)

0.000009
(0.51)

0.000009
(6.11)

0.000008
(n.a.)

0.000007
(n.a.)

0.000007
(n.a.)

TSP(-4) 0.000007
(3.20)

0.000004
(0.41)

0.000005
(n.a.)

0.000002
(0.38)

0.000004
(3.03)

0.000002
(n.a.)

TSP(-5) n.a. 0.000005
(0.39)

n.a. 0.000004
(0.68)

n.a. 0.000004
(n.a.)

TSP(-6) n.a. 0.000010
(1.26)

n.a. 0.000010
(1.58)

n.a. 0.000011
(n.a.)

TSP(-7) n.a. -0.000006
(-0.68)

n.a. -0.000006
(-1.31)

n.a. -0.000006
(n.a.)

TSP(-8) n.a. 0.000000
(0.01)

n.a. -0.000000
(0.05)

n.a. 0.000000
(n.a.)

avgt n.a. n.a. 0.000070
(2.58)

0.000058
(1.22)

-0.000018
(0.00)

-0.000177
(2.44)

avgt^2 n.a. n.a. n.a. n.a. 0.000003
(3.06)

0.000003
(3.41)

eσ 5.80483
(76.22)

5.82535
(79.24)

5.73976
(77.88)

5.79522
(74.44)

5.76622
(78.30)

5.79049
(81.75)

ησ 19.5818
(13.79)

20.0188
(13.54)

19.1180
(15.99)

19.5942
(14.15)

19.1418
(16.43)

19.5993
(15.91)

N 35.0924
(128.18)

35.0979
(124.58)

35.0866
(131.30)

35.0924
(128.04)

35.0877
(131.23)

35.0935
(128.01)

lnL -16906.7 -16884.9 -16904.1 -16882.8 -16898.6 16877.2
LR 36.4*** 80.0*** 38.4*** 72.46*** 29.04*** 67.54***

Notes: LR is the likelihood ratio statistic for testing the null hypothesis that the coefficients

on all lags of TSP are zero; and in each case LR is significant at a p-value below .01.

Individual t-statistics are not available in cases where the standard error could not be

computed. See also the notes to Table 1.
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Figure 1. Comparison of actual at-risk population and Kalman Filter estimate for simulated data.

Figure 2. Estimated Hazard Rate and KF estimate of at-risk population in Model 6.

40

60

80

100

120

140

160

3050 3100 3150 3200 3250 3300 3350 3400

POP_ACTUAL POP_ESTIMATE

0

200

400

600

800

0.065

0.070

0.075

0.080

0.085

0.090

1000 2000 3000 4000 5000

POP6 HAZ6


