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Abstract

Stock models, in which production is interpreted as if it were the population growth
of a stock, have been the preferred tool for fishery economics since Clark and Munro
(1975) introduced capital theory in these models. Ravn-Jonsen (2009c) applied cap-
ital theory to a model in which the production in the ecosystem is a consequence of
predator–prey interaction and the somatic growth of the predator as a result of this
interaction. By deducing the results of Clark and Munro anew, the assumptions of
the stock model are clarified. Four different biomass measures are introduced in the
ecosystem model as stocks. The optimum point found with the stock model approach
is compared with the optimum point found in the ecosystem model with the capi-
tal value calculations of the occurring rent flow. A comparison shows that the stock
model fails to generate the correct optimal point. The assumptions behind the use
of stock models for species population models are discussed. The population stock
model corresponds to a holistic community view, which has in fact failed to explain
various phenomena.

The production of the marine ecosystem cannot be reduced to a model as if the
production were a consequence of the growth of a stock. The concept of a stock is
rather an illusion, as is the concept of an optimal stock level. It is essential to liberate
fishery economics from a simplified view of population and communities.
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1 Introduction

The introduction of capital theory within fishery economics in a proper setting is nor-
mally attributed to Clark and Munro (1975). Many analyses related to the economics
of the fishery are cast along the concepts and methods introduced in that article, and
Clark and Munro’s golden rule is well known by most fishery economists. Ravn-
Jonsen (2009b) introduced an size-based ecosystem model with quite a different model
concept, and this model is analysed in the context of capital theory in Ravn-Jonsen
(2009c). As the golden rule of Clark and Munro is so well known in fishery economics,
a natural question is: How do the optimum points found by Ravn-Jonsen in the ecosys-
tem model relate to the golden rule? The short answer will be that Ravn-Jonsen is an
ecosystem model, while Clark and Munro is a population model. The models there-
fore explain two different concepts with different positions in Nature’s organisational
hierarchy. Therefore, the findings from the two models cannot be compared.

Such a conclusion will, however, be too superficial. The article of Clark and Munro
does not explicitly define the model as a model for a population of a specific species,
but simply analyses a model of a population. The only link to indicate that the model
may be a species population model is in the reference to Schaefer (1954) regarding
the natural rate of increase as a function of the stock (Clark and Munro, 1975, equa-
tion (2.1)). The analysis of Schaefer is related to the fish population in general (that
is, without a reference to species), but it is applied to the Pacific halibut fishery and
the California sardine fishery, and, therefore, through its application, it is interpreted
as a species population model. The population in the article of Clark and Munro is
therefore probably meant to be a population of a specific species, but by not being
explicit regarding where the model does and does not apply, there is a risk of apply-
ing the model’s concept of stock to issues that are not species population problems.
An example is marine protected areas that are proposed as ecosystem management
tools; however, the models used for analysing the economic consequences are never-
theless often stock models (Armstrong and Skonhoft, 2006; Sanchirico et al., 2006).
So, whether or not Clark and Munro intended to apply the concept of stock models to
anything but the population of a particular species, the concept of stocks is so much a
part of the fishery economics mindset that many researchers will apply it in this way.

In this paper, the results related to the population model of Clark and Munro
(1975), seen as ecosystem models, are compared with the results of the ecosystem
production model of Ravn-Jonsen (2009b,c). As the two models are cast over differ-
ent concepts, in order to make the comparison, the golden rule first has to be deduced
in another way than in how it was found in Clark and Munro (1975). This is done
in order to see what kind of assumptions have to be made in order to move from the
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ecosystem model of Ravn-Jonsen to the stock model of Clark and Munro.

2 Capital theory

Faustmann (1849) introduced the present value of expected rent flows as the value of
capital: The capital value C is defined as:

C =
ˆ ∞

0

e−ρtπ(t) dt (1)

where π(t) is the expected rent from the capital, ρ is the discount rate and t is time.
As a natural consequence, Pressler (1860) introduced1 the maximisation of the capital
value as the management objective:

Objective: max
y

C (2)

where y is a vector of all possible management controls.
The first order conditions for (2) are:

∂C
∂yi

= 0 (3)

That is:

In optimum, the change in capital value will be zero for all marginal
changes in controls.

When (3) is applied to evaluate a management action there is no need to calculate the
total capital value (1), but only to evaluate the changes in rent flow, and hence capital
value, as a consequence of a management action.

The management theory based on Faustmann (1849) and Pressler (1860) is known
within forestry as the “Bodenreinertragslehre”, which in Ravn-Jonsen (2009c) is trans-
lated into ground rent theory. The term “ground” is used to indicate that the resource
under management is based on the nutrition, wind, soil, etc., and the pool of genetic
information. The generated rent is ultimately founded based on the ground.

The present value calculation as a concept for capital valuation entered general
economic theory through Fisher (1906). Clark and Munro (1975) states that the ob-
jective of “capital theory” is to maximise the present value of rent derived from fish-
ing estimated by a stock model. This approach is identical to the ground rent theory

1See Viitala (2006) for a review of present value calculations and management objectives before Faust-
mann (1849) and Pressler (1860).
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if the stock model accounts for all changes with respect to future rent based on the
ground. The difference is that in the Ravn-Jonsen analysis, the objective is subjected
to a ecosystem model, while the objective in Clark and Munro is subjected to a stock
model.

To gain deeper insight into the assumption behind the stock concept, I shall derive
the Clark and Munro golden rule, departing from the general formulated objective
(2). The first step is to divide the rent flow into two periods. In order to get the capital
value, the discounted rent flow from the first management period has to be added to the
discounted rent flow from the second period. For the expectation value of the second
period rent, I shall use the symbol C+. In the present analysis, the management action
under evaluation is an extra harvest h at t = 0. The first period is therefore a point in
time, the discount factor is one, and the rent flow of the period is hp, where p is the net
value of the harvested items, that is, revenue minus variable costs. The second period
expectation value is then:

C+ = lim
a−→0

ˆ ∞
a

e−ρtπ(t) dt

That is the capital value excluding the point t = 0, and the total capital value will then
be:

C = hp+ C+ (4)

If (4) is used as the capital value of objective (2), the first order condition with respect
to harvest h at t = 0 is:

∂

∂h

(
hp+ C+

)
= 0 ⇐⇒ (5)

p = −∂C+

∂h
(6)

In prose the rule (6) states:

In optimum, the net value of one fish will be equal to the decline in capital
value if that fish were removed.

If the present value of the rent flow π(t) is substituted for the capital value, the rule
will now look like:

p = −∂
´∞
0+ e

−ρtπ(t) dt
∂h

(7)
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where 0+ in the limit indicates the rent flow is discontinued at t = 0, and the integral
is calculated for t > 0, excluding the contribution margin at t = 0.

I now assume that the system can be represented by a single state variable—the
stock S—that is calibrated in such a way that the S is negatively affected by the
immediate extra harvest on a one to one basis. The ∂

∂h in (7) can then be substituted
with − ∂

∂S :

p =
∂
´∞
0+ e

−ρtπ(t) dt
∂S

(8)

I next assume that the optimum will be found with a fixed set of controls, and that
this fixed set of controls will lead to a steady state situation for the state variable.2 As
there is only one state variable S in the system, the harvest3 H must be a function of
S when the system is in a steady state:

Ṡ = 0 =⇒ f(S) = H (9)

As the harvest affects the state variable directly, an infinitesimal extra harvest h will
change the stock marginal. In order to maintain the steady state, the controls simul-
taneously change into those that fit the new stock. The system is then momentarily
changed from one steady state into a new steady state. Except at the time of control
change, the harvest will then be constant and so will the rent flow. The rent flow in
(8) can then, if * is the sign for the optimum, be written as a function of the stock
π(t) = π∗ = π(S∗); that is, optimal rent is a function of optimal stock. The integral
in (8) can then be solved:

p =
∂
´∞
0+ e

−ρtπ(t) dt
∂S

(10)

=
∂
´∞
0+ e

−ρtπ∗ dt
∂S

(11)

=
1
ρ

∂π(S∗)
∂S

(12)

and rearranged into:

ρ =
π′s(S

∗)
p

(13)

2Clark and Munro (1975) do not have to make this assumption, but their model has these properties.
3The H represents the total and continuous harvest, while h represents the infinitesimal extra harvest

at t = 0.
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As p is the net value of one fish, the right hand side gives the marginal change in rent
flow with the investment of one monetary unit as a function of the stock. In prose
equation (13) is the rule:

In optimum, the marginal productivity of the stock equals the discount
rate.

As π(S∗) = p(S∗)H(S∗) = p(S∗) f(S∗), equation (13) can be changed into

ρ = f ′s(S
∗) +

p′s(S
∗)

p(S∗)
f(S∗) (14)

The marginal productivity of the capital is then divided into a marginal change in the
harvest, and a relative change in the value of the total harvest as a result of the marginal
stock change—Clark and Munro call the latter the “stock effect.” With regard to the
net value p, Clark and Munro considers only the cost variable and a function of the
stock c = c(S). With this additional assumption, the Clark and Munro golden rule of
optimum is then:

ρ = f ′s(S
∗)− c′s(S

∗) f(S∗)
p(S∗)

(15)

The difference in the approaches of Clark and Munro (1975) and Ravn-Jonsen
(2009c) can be summarised by the following. First, in the optimising method, Clark
and Munro optimise the objective (2) directly, while Ravn-Jonsen uses the first order
condition (3). To use the first order condition, it must be assumed that the optimum
can be found with fixed controls. With this assumption, solutions with, for example,
pulls fishing4 are disregarded. This does not lead to any difference, as the optimum
found by Clark and Munro is a steady state situation. Second, it may be a set of rather
cryptic assumptions that have to be made in order to move from the general valid rule
(7) to the rule of the optimal stock level (13). All these assumptions are, however,
done implicitly when Clark and Munro (1975) assume a stock and that the production
in the system is

∂S

∂t
= f(S)−H (16)

4If the methods of Clark and Munro (1975) is applied to more complex models, as for example age
structured models, the optimum may be found with controls fluctuating over time (see e.g. Botsford, 1981).
This is known as pulls fishing.

11



The stock model assumption (16) seems to be made to facilitate the mathemati-
cal method used in Clark and Munro (1975). In contrast, the Ravn-Jonsen (2009b,c)
model builds on assumptions regarding the production in the ecosystem as driven by
a predator–prey interaction and a somatic growth as a consequence of the predator’s
consumption. In addition, the model builds on a thesis for selecting the concepts for
the model (Ravn-Jonsen, 2009a). This model is, however, not analytically solvable,
but the optimum points are found by use of rule (3) based on numerical analysis of the
experiments.

3 Method and Results

The golden rule of Clark and Munro is a simple analytical result, and it would be nice
if the optimum points found in the model of Ravn-Jonsen could be expressed in sim-
ilarly simple terms. The model then has to be reduced to just one state variable, the
stock. A variable like S can easily be generated, for example, as the biomass of an
appropriate part of the spectrum. The biomass will clearly be negatively affected by
the harvest on a one-to-one basis, as expected in the assumptions when going from
(7) to (13). A difference between the two models is that the model of Ravn-Jonsen
is specifically constructed to analyse the consequences of fishery in relation to the
trophic level—expressed as the size of the fish in the model. In contrast, the model of
Clark and Munro disregards the size of the fish. In order to compare the two models,
experiments are therefore performed with the Ravn-Jonsen model in a manner that se-
cures a constant mean size of harvest. The effect of the change of the production in the
ecosystem with respect to size and the effect of price as a function of size are thereby
minimised. The point of reference for all experiments will be the optimum point for a
discount rate ρ = 0.2, which has a sustainable yield of H = 0.003488 g m−3 year−1

and a mean size of harvest x = 8.856507 corresponding to 7.020 kg.5 Experiments are
therefore preformed on the model with controls to produce a fixed x = 8.856507 and
different sustainable harvest volume H . Rent and population structure are recorded
for the model when convergence to a steady state is reached.

The state variable in the Ravn-Jonsen model is the population density with respect
to size. In figure 1, the population density is shown. The axis above the diagram
indicates the massm of the fish, while the axis below indicates the principal variable x
used in the model, where exp(x) = m. The black line indicates the relative population
density for the optimum point given ρ = 0.2. That is, the population density relative

5The Ravn-Jonsen model operates with a size dimension x equal to the logarithm of the mass of the
fish.
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Figure 1: Population density and stock optimum point given ρ = 0.2. The black line
indicates the relative population density, the pink figure shows the fishing mortality
rate caused be the fishery, and the red curve shows the resulting harvest. The lines at
the top show the mass interval for the different stock definitions: blue for S1, red for
S2, green for S3 and orange for S4
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to the population density in a pristine ecosystem without a fishery. A pink curve shows
the mortality rate imposed by the fishery, and the red curve shows the resulting fishing
mortality and harvest. In order to compare the models, there must be a stock based on
the population density in the experiments. As can be seen from the population density
curve, a stock will be affected by how it is defined. Four different stocks definitions
are employed:

1. The most simple stock S1 will be calculated as the biomass of the entire spec-
trum: x = 0 . . . 14 corresponding to m = 1 . . . 1.2 · 106 g. This is illustrated by
the blue line in figure 1.

2. S1 is to a large extent beyond what is normally considered in stock assessments.
Therefore, the second stock S2 is defined as approximately the section with the
intense fishing mortality x = 7.7 . . . 12.4 corresponding to m ≈ 2.2 . . . 243 kg.
This is illustrated by the red line in figure 1.

3. The third stock S3 is defined as the biomass from approximately the smallest
landed size and up x = 6.9 . . . 14, corresponding to m ≈ 1 . . . 1203 kg. This is
illustrated by the green line in figure 1.

4. A fourth stock S4 is defined as approximately the landed size interval x =
7.3 . . . 12.2 corresponding to m ≈ 1.4 . . . 199 kg; note that this is only slightly
lower than S2. This is illustrated by the orange line in figure 1.

From the experiment’s data, the four different stocks can be compared with the sus-
tainable harvest H . In figure 2, the harvest is plotted against the stocks. While the
mapping of S1 and S3 into harvest H seems to be rather well defined, the mapping of
S2 into H is problematic, with one particular stock level given a range of harvest lev-
els. S4 has a rather odd harvest relation, and the mapping of S4 into H is ambiguous;
or in other words, there is no functional relation of S4 into H .

If the assumptions (16) used in the Clark and Munro model are applied, the growth
function can in equilibrium be determined from (9). The curves in figure 2 then repre-
sent the growth functions fi(Si) given the different stocks i = 1, 2, 3, 4.

Clark and Munro make the following assumptions for the growth function:

f(S) > 0 for 0 < S < K, f(0) = f(K) = 0, f ′′ < 0 (17)

where K is interpreted as the maximum equilibrium stock level. The first assump-
tion is satisfied for all four stocks. The second assumption is satisfied with regard to
f(K) = 0, while with regard to the growth of zero stock, the status is unknown. It
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Figure 2: Harvest plotted against the four different stocks. The purple point indicates
the optimal point found in the Ravn-Jonsen (2009c) model given ρ = 0.2

is, however, impossible to fish the last fish in the model of Ravn-Jonsen. The Ravn-
Jonsen model does not build on the assumption of the production as a function of the
stock. In contrast, the production is caused by a flow up the size spectrum caused
by the somatic growth of individual fish. This flow cannot be stopped by the fishery.
The last assumption regarding concavity is not met by any of the growth functions in
figure 2.

The assumption in (17) is, however, not that important; rather, if version (13) of
the golden rule is applied, it is the shape of the rent function that determines if the
point found by the first order condition (13) is an optimum. In figure 3, the sustainable
rent π is plotted against all four stocks. While the stocks S1, S2 and S3 yield well-
behaving functions, at least around the optimum point, the rent cannot be given as a
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Figure 3: Sustainable rent plotted against the four different stocks. The purple point
indicates the optimal point found in the Ravn-Jonsen (2009c) model given ρ = 0.2

function of S4, as the mapping S4 y π is not unambiguous.
To value if it is actually possible to determine the right point of optimum from the

Clark and Munro view of production, the rule for the optimum as expressed in (13)
will be used, rather than splitting the rule up into fragments as the golden rule (15).
To find the optimum point, the indicator rate

wi =
∂π
∂Si

p
(18)

is calculated. The optimum point can then be found as the point at which wi = ρ.
To compare the different stocks and the model of Ravn-Jonsen, the results have

to be compared over a common dimension. Therefore, the indicator rates are plotted
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against the sustainable harvest in figure 4. The large diagram gives an overview, while
the smaller diagram zooms in around the optimum point. The blue, red, green and
orange lines indicate the wi calculated numeric by applying (18). All four wi lines
cross at one point, at which w = 0; this point is the maximum rent harvest level,
identical to the one found in the analysis of Ravn-Jonsen. The dashed line in the figure
indicates the optimum harvest level for ρ = 0.2 found in Ravn-Jonsen (2009c) by
numerically analysing the rent flow as a consequence of a change in controls. The
grey line indicates the w = 0.2 line, and the optimal harvest level will for each of
the different stocks be where the wi line cross this line. For the orange line belonging
to S4, because of the inexpedient stock properties of S4, the optimum can not be
determined as a optimum harvest level.

4 Discussion

Above the results of the Ravn-Jonsen (2009b,c) model are compared with results from
a stock model approach, as in Clark and Munro (1975). The underlying assumption is
that the Ravn-Jonsen will reflect properties of the production in the ecosystem, as it is
based on a micro production model, and the model concepts are selected from theory
(see Ravn-Jonsen, 2009a). On the other hand, the Clark and Munro model is a model
in which production is modelled as if it were a consequence of a population growth of
a stock. This biological model is justified by a reference to Schaefer (1954), who does
not refer to any theory with regards to the idea of the population growth of a stock
(Schaefer, 1954, equation (1)).

The analysis points to different problems related to the model in which production
in the ecosystem is seen as if it were the consequence of the growth of a stock:

1. The growth functions and derived points of optimum depend on the definition of
stocks. The most stringent definition is the biomass of the biota in the ecosys-
tem above a size well below the minimum landed size. However, as this stock
definition changes relatively little around the points of interest, it will be a bad
indicator.

2. The growth functions do not have the functional shape expected by Clark and
Munro, as stated in (17). In particular, they do not resemble the Verhulst (1838)
logistic growth function, recommended by Clark and Munro and preferred by
many in the fishery economics literature.
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Figure 5: Rent flow diagram. The blue line indicates the rent flow in the Ravn-Jonsen
model as a consequence of a small change in controls in order to increase the sus-
tainable harvest. The red line and pink box indicate the rent flow, as expected by the
assumptions of Clark and Munro. The rent in the pink box falls at t = 0, but as the
other lines indicate a continuous rent flow, it is indicated as a box with the area corre-
sponding to the rent. The point of departure is the optimum point for ρ = 0.2, and the
black line indicates the rent flow if no change was made.

3. The optimum points found with a model in which the production is as if it
were the consequence of the growth of a stock give the wrong points, as seen in
figure 4

To understand why the concept of stock gives the wrong results, I direct the reader

19



to look at the rent flow in figure 5. The blue line in the diagram indicates the rent flow
in the Ravn-Jonsen model with a small change in controls that will eventually lead to a
increase in the harvest but constant mean size. The point of departure is the optimum
point for a discount rate ρ = 0.2. The black horizontal line indicates the rent flow if
no change was made, that is, the alternative rent flow. The two rent flows in the figure,
the blue and black lines, have the same capital value given a discount rate of 0.2009,
not exactly the expected ρ = 0.2. However, as the optimum point in Ravn-Jonsen
(2009c) was found numerically and by interpolation, the deviation is acceptable.

The stock model of Clark and Munro (1975) estimates the rent flow as an in-
stant contribution margin estimated as the difference in stock times the price π(0) =
−∆S p. To illustrate this, a pink polygon where the area equal to −∆S1 p is drawn
in figure 5. Instantly with the additional rent, the rent flow is expected to change into
the sustainable yield rent of the new stock. This is in the figure indicated by the red
line. The width of the pink box will vary depending on the stock definition. For S1,
the width is 0.745 years, as shown in the figure; for S2, the width is 0.120 years; and
for S3, the width is 0.353 years. S4 increases when the harvest increases; therefore,
−∆S4 p is negative. The corresponding rates of returns are w1 = 0.019, w2 = 0.118
and w3 = 0.040, while an analysis with the definition of S4 will see no intertemporal
choice as both short and long term rents are smaller than the rent flow with no changes.

The difference between the rent flow represented by the blue line in figure 5 and
the rent flow represented by the red line and pink box can be summarised by:

1. The short term gain estimated by the stock approach, represented by the pink
box, is wrong. It is too small for all stock definitions; the appropriate size
corresponds to a pink box with a width of about one year.

2. The stock approach overlooks the long-lasting drop in rent after the initial gain,
but before the oscillation is damped and the rent approaches the new sustainable
yield rent.

These two points are a reflection of the assumptions made in order to reduce the gen-
eral rule (7) to the optimal stock rule (13). The stock concept introduced under these
assumptions clearly neglects the dynamics of the system. As the capital theory builds
on a concept where both the amount and time of the rent flow are crucial, a stock con-
cept that neglects the dynamics of the system must be dropped, at least with regards to
the evaluation of the economic consequences of management actions in the ecosystem.

As seen in figure 1, there is an increase in population density below the target
size, known as a trophic cascade. As there will be a short-term gain from lowering
the target, this trophic cascade creates an intertemporal choice. This intertemporal
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balancing problem is neglected by the stock view, as size is disregarded in this view.
The stock view then, in addition to neglecting the dynamics of the ecosystem, neglects
the economic consequences of change in the ecosystem other than those that can be
measured by the stock.

The idea of production as a consequence of the growth of a stock is an illusion.
The primary reason is because the production is caused by the flow of energy from the
primary producers capturing the energy of the sun through the trophic system. There-
fore, and as discussed above, the idea of production as if it were a growth function of
the stock has to be abandoned when discussing production in the ecosystem.

As mentioned in the introduction, Clark and Munro did not state what kinds of
populations their model should represent. It may be rather speculative to suggest that
the model is regarding an ecosystem, and if the model is interpreted as the population
of a single species, the present analysis is not directly related to their model. The
capital theory applied in the analysis assumes, however, that all changes in rent flow
as consequences of management actions are included in the first order condition (3).
By conducting a single species analysis, it is then implicitly assumed that the state of
this population has neither a direct nor indirect influence on other commercial species.
As the production of a population in nature is caused by predation and related somatic
growth, it seems to be a rather speculative assumption. If, however, this assumption is
satisfied, for example, because the species in question is the only commercial species
in the ecosystem, the next question is which assumption is implicitly included in order
to assume that the species population growth can be modelled as if the production
were a consequence of a stock determined population growth. As the production of
the species is caused by interaction with other species and not by the stock in isola-
tion, there is behind the stock-determined growth concept an underlying assumption
of each species having a well-defined proportion of the total community. The propor-
tions of the species in the community can be changed by external forces, for example,
by fishing, but if the fishery is stopped, the community will eventually return to the
original proportions. For a stock model to be true the composition of the community
must be caused by such a self-regulation mechanism. This view of Nature, in which
the destiny of a community is a predefined property of the community, is essentially
the holistic community view that Clements (1916) applied to plant communities. This
view utterly failed to explain the great dust catastrophe in the prairies of North Amer-
ica in the 1930s. Events in which the holistic community view fails are also known
in fishery. One example is the collapse of the New England ground fish fishery in the
1990s: the New England ground fish community has not returned to its previous pro-
portions after the fishery stopped. The population stock growth model is essentially
an application of holism and essentialism to the fish community.
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The consequences of fishery economics focus on models with production as if
it were the growth of stock is that the management primarily focuses on stocks. If
the production of the ecosystem is not determined by the stocks, this focus on stocks
will lead to a poorer management than if a more realistic view of the ecosystem were
applied. For example, a model built on the idea of production as stock growth, will
exhibits a high degree of unpredictability because of the lack of causality between
production and stock.

Conclusion

The production of the marine ecosystem cannot be reduced to a model as if the pro-
duction were a consequence of the growth of a stock. There is no way of defining
a stock that will produce the correct rent flow as a consequence of the stock. The
concept of a stock growth is an illusion and so is the concept of an optimal stock
level. If fishery economics has to contribute to ecosystem management, it is essential
to liberate it from a traditional simplified view on population and communities, and
apply concepts related to the ecosystem, which is founded on philosophical reasoning
and avoids the simplification in developing models without a proper foundation of the
concepts.
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