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Abstract

Objective:  Although there is a growing body of literature on sample size in multilevel or 

hierarchical modeling, few studies have examined the impact of group size < 5.   

Design:  We examined the impact of a group size less than five on both a continuous and 

dichotomous outcome in a simple two-level multilevel model utilizing data from two 

studies.  

Setting:  Models with balanced and unbalanced data of group sizes 2 to 5 were compared 

to models with complete data.  Impact on both fixed and random components were 

examined.

Results:  Random components, particularly  group-level variance estimates, were more 

affected by small group size than were fixed components.  Both fixed and random 

standard error estimates were inflated with small group size.  Datasets where there are a 

large number of groups yet all the groups are of very small size may fail to find or even 

consider a group-level effect when one may exist and also may be under-powered to 

detect fixed effects.   

Conclusions:  Researchers working with multilevel study designs should be aware of the 

potential impact of small group size when a large proportion of groups has very small (< 

5) sample sizes.      



INTRODUCTION

With the growing availability of linked individual- and community-level data, 

investigators may find themselves with many places sampled throughout a country but 

few respondents per contextual group (be it neighborhood or other grouping) (1).   The 

degree to which this occurs will of course depend on the level of grouping and survey 

design, but will be most pronounced when the census tract or block group is utilized.  

In general, it has been shown that when interested in a higher-level, contextual 

effect (i.e., between-group variance) the number of groups appears to be more important 

in a multilevel analysis than the group size  (2, 3).   Although there is a growing body of 

literature on the effects of group size (i.e., number per group) and on the number of 

groups in multilevel or hierarchical modeling (4-8), few studies have examined the 

impact of group sizes less than five (1).  As Clarke points out, such situations are 

increasing due to the availability of geographically-referenced national survey data and 

multilevel studies that will follow.   Clarke found, using Monte Carlo simulated data, that 

two-level multilevel models can be reliably estimated with small group sizes of an 

average of only five observations per group; however, with extremely small group sizes, 

group level variance estimates may be overestimated.  Disaggregating the multilevel 

design may increase the risk of Type I error.  

Our objective was to examine the impact of a group size less than five on both 

fixed and random components in a simple two-level multilevel model, with a sufficient 

number of groups to test random slope variances (3, 9-11).   While like Clarke (1) we also 

use continuous and dichotomous outcomes, balanced and unbalanced data, and examine 
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extremely small group sizes, we focus on both the fixed as well as random components 

and based simulations on real data with two different group sizes. 

METHODS

We utilize data from two multilevel studies in the United States, both with 

information on body mass index (BMI).  One study examined influences on BMI with 

data obtained from Louisiana driver’s license records from 1997 and included 223,747 

nested in 459 census tracts (taken as the “neighborhood” unit).   The second study 

included BMI data on 2881 randomly sampled individuals from 217 census tracts in 

Louisiana and Los Angeles County, California surveyed between 2004 and 2005.    

Outcomes

BMI was determined using reported heights and weights and calculated using the 

Centers for Disease Control (CDC) formula1 (i.e., (weight in pounds / (height in inches)2 ) 

X 703).   BMI was examined as a continuous outcome of interest, while overweight or 

obesity was examined as a dichotomous outcome.  Overweight or obesity was defined as 

a BMI of 25 or greater.  According to CDC definition, an adult who has a BMI between 

25 and 29.9 is considered overweight; a BMI of 30 or higher is considered obese.  

BMI and obesity / overweight were chosen as outcomes given their universal 

measurement across studies utilized and the fact that BMI has been shown to have a 

moderately high (e.g., > 4.0%) intraclass correlation coefficient (ICC) in our previous 

research.  Group-level influences on individual outcomes are often expressed as the ICC, 

calculated for our linear model as:            

1 BMI defined by CDC in:.  http://www.cdc.gov/nccdphp/dnpa/bmi/index.htm, 
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where Vneighborhood = variance between census tracts or neighborhoods and Vindividual = 

variance among individuals within neighborhoods.  An ICC at or above 2% is suggestive 

of a potential higher level effect (e.g., neighborhood) and worth examining in a multilevel 

framework (12).

The prevalence of obesity or overweight in the DMV study sample was 48.1% 

and mean BMI (SD, one standard deviation) was 25.5 (5.1).  The prevalence of obesity or 

overweight in the Alcohol Marketing study was 59.1% (58.6% in CA and 59.6% in LA 

respondents) and mean BMI was 27.0 (6.0). 

Independent Variables

While the primary models examined were empty random coefficient models (i.e., 

no independent variables included), to determine the impact on basic random and fixed 

components we also ran models with one group-level covariate, socioeconomic status 

(SES), and individual age in years as the individual covariate.   SES and age were chosen 

given their association with BMI in previous research and availability across the two data 

sets.   The socioeconomic index was calculated for all tracts as the sum of z-scores of 

three factors in the U.S. Census:  % with less than high school education, % living in 

poverty, and % of males not in the labor force.  

Simulation Models and Procedures

Two primary simulations were performed using data from both studies and two 

different models, one a linear random coefficients model (BMI as outcome) and one a 

logistic random coefficients model (obesity or overweight as outcome).   All analyses 

        V
neighborhood

 
                                      X 100%
V

neighborhood
 +  V

individual
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were conducted in SAS version 9, with PROC MIXED used for continuous and PROC 

GLIMMIX for dichotomous outcomes.  Restricted maximum likelihood (REML) 

estimation was employed for all models. 

Variations in group size were based on randomly sampling the number per tract 

using PROC SURVEYSELECT.   The simulations included:  a) holding the group size 

constant for all study census tracts and varying the size from 2 to 5 within tracts, and b) 

setting the group size to five or less for a portion—5, 10, 25, 50, 75, and 90 %—of the 

tracts and varying the size within those tracts from 2-5 individuals per tract.  Simulations 

were run on 1) the empty linear and logistic models, 2) linear and logistic models with a 

group-level covariate (SES), and 3) linear and logistic models with an individual-level 

covariate (age).  Five samples / simulations were run for each combination and the 

average estimates taken.

In all models particular attention was paid to the estimates and standard errors for 

both the fixed and random components, including measures of the group- or tract-level 

influence or the variance in individual outcomes that can be attributed to differences 

between census tracts or groups (3, 12).  These measures are particularly useful when 

examining group-level influences on health or other outcomes.  

For the logistic model, the ICC was calculated by following the linear threshold 

model or latent variable model method formula of Snijders (3) based on an underlying 

continuous variable with  Vindividual = П2 / 3 (i.e., 3.29).  This assumes that the unobserved 

individual variance follows a logistic distribution, so that the variance of a standard 

logistic distribution is П2 / 3.  However, the pseudo ICC for non-linear models may be 

difficult to understand in epidemiological terms and therefore we also calculated and 
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examined the Median Odds Ratio (MOR) as described by Merlo and colleagues (13). 

The MOR, like the ICC calculation using the linear threshold model method, is 

independent of the prevalence of the outcome.   It represents the median value of the odds 

ratio for all possible comparisons of individuals from a lower to higher risk area.  High 

group-level variation in the risk (i.e., greater group-level influence) would result in higher 

MOR values, while low group-level variation in risk would result in lower MOR values 

(i.e., close to 1.0).   The MOR was calculated as:

where Vneighborhood = variance between neighborhoods.  

RESULTS

Table 1 presents the results of the empty random effects linear regression model 

from the DMV study data, with the full sample results included in the first column.  The 

average number of individuals per tract was 447 (range = 4 – 1549).   With all sampled 

subjects per tract included, a significant amount of the variance in BMI was apportioned 

to the census tract or neighborhood level, evidenced by the ICC (4.23%).   As shown in 

the second through fifth columns, inflated standard errors in both fixed and random 

components were evident when all tracts have two, three, four, or five individuals per 

tract.  With respect to the fixed parameter estimates, a small group size appeared to have 

little impact on the intercept.  

The amount of bias observed in the variance components of the random effects, 

however, was not negligible.  As more individuals were added to the tract, the amount of 

exp[ 0.95(√Vneighborhood)]
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variation from the full sample observed in variance components estimates was greatly 

reduced and differences in either direction were observed.   One key observation, 

however, was that the between-tract random variance component only became significant 

when the group size reached five per group (Z = 3.22, two-sided P < 0.05).   

Table 1 also presents the results of the empty random effects logistic regression 

model from the DMV study data, with the full sample included in the first column. 

Results are similar to those observed for the linear outcome, with upward differences of 

more than 100% in standard error components of both the fixed and random effects when 

all tracts had two to five individuals per tract.  With smaller group sizes, the variance 

estimates tended to be lower than those for the full study population, with the greatest 

differences observed for between-tract variance. 

Although not shown, when a neighborhood-level measure (SES) was added to the 

linear or logistic regression empty models, differences in fixed and random component 

estimates and standard errors patterns were identical to those seen in the empty models. 

Similar results were also seen when the individual-level factor of age was added to the 

models. 

Area of residence again appears relevant for understanding variations in 

individual BMI and obesity and overweight patterns in the Alcohol Marketing Study 

data, as shown in the first columns of Table 2 for linear and logistic models (ICC=4.32% 

and MOR=1.10).   The average group size in this original data was 16 (range = 1 – 50). 

Observed differences in fixed and random component standard error, variance and 

parameter estimates in this study data was nearly identical to that seen in the DMV study 

data as the number of individuals per tract for all tracts was varied from two to five. 
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However, even with a group sample size of five, the between-tract variance estimates 

were not significant (compared to the full model).  Although not shown, results from 

models that include a tract-level (SES) or individual-level (age) variable were also similar 

to DMV study data in their impact on estimates. 

Because it would rarely be the case that all groups would have very small sample 

sizes (e.g., all with only 2 individual per tract), we ran more realistic simulations where 

we varied the proportion of all tracts that were randomly sampled to yield two to five 

individuals per tract.  Table 3 presents the results of the empty linear regression random 

coefficients model for BMI from the DMV Study data, with 2 people randomly sampled 

per tract for 10, 25, 50, 75 and 90% of tracts.   Comparing results in columns 2 – 6 of 

Table 3 to the full model results in column 1, the observed differences seen in fixed and 

random components are similar in direction to those seen when all tracts had two to five 

respondents, although not as drastic.  With only 10% of tracts with two individuals per 

tract, standard error estimates for fixed effects exhibited a difference of less than 10%. 

As the group size decreased across tracts with an increasing proportion of tracts with two 

individuals per tract, the inflation in the standard errors became greater.  Differences in 

the standard error of random components were also observed and greatest when 50 to 

90% of tracts had only two individuals per tract.  In comparison, upward biases observed 

in the fixed and random parameter estimates were all less than 5-10%, with greater biases 

observed when a greater proportion of the tracts had only two individuals per tract. 

When 90% or more of tracts had only two individuals per tract, the ICC was more than 

25% higher than in the original full model. 
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As shown in the bottom half of Table 3, the observed differences in the logistic 

regression model were somewhat similar to those in the linear model in terms of the 

impact on fixed effects and the inflation of standard errors.   

Shown in Table 4 are the results from the linear random effects model from the 

DMV Study data, with the addition of a group- (SES) and individual-level (age) covariate 

to models with two individuals per tract for 10 to 90% of tracts.   The great reduction in 

explained group-level variance with SES added to the model was similar across 

simulations from 10 to 90%.   Nonetheless, the differences observed in these models as 

the proportion of tracts with two individuals per tract increased resulted in similar 

changes to the fixed and random component standard errors and parameter estimates.  In 

terms of a group-level effect, even with 90% of the tracts having two individuals per 

tract, the between-tract variance remained significant (Z = 6.92), albeit substantially 

lower than that seen in the full model.  

The same trends were observed when an individual-level covariate (age) was 

added to the empty models, as shown in the bottom panel of Table 4.   We also examined 

results when both an individual and group-level covariate were added to the empty 

models and findings were similar, although standard errors became even more inflated as 

a greater proportion of tracts had a small (n=2) group size.   Inflation of the standard 

errors was even more apparent when additional covariates were added to the models (data 

not shown). 

Although not shown, the results of models from DMV Study data where 10 to 

90% of tracts had three, four, or five individuals per tract were very similar to those seen 
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by randomly selecting two individuals per tract, with inflated standard error estimates and 

minimal bias in the fixed parameter and random variance estimates.   

Similar models with the number of individuals per tract (two to five) varied for 

five to 90% of tracts were run with data from the Alcohol Marketing Study.  Results 

revealed that the magnitude and direction of observed differences were nearly equivalent 

to those observed with the DMV Study data, albeit not as consistent.  As was the case 

with the DMV Study data, differences in fixed and random components were greatest 

when 50% or more of tracts had only two individuals per tract, particularly for between-

tract variance component estimates. 

Similar differences were observed for the logistic model.  Biases in the ICC and 

MOR for the logistic models were minimal.    

DISCUSSION

In general, the fixed effects parameter estimates, including models with intercept 

alone as well as with covariates included, do not appear to be affected by small group 

size.   Random components appear to be more impacted by small group size, with upward 

bias in the random between-group variance component estimates and downward bias in 

the within-group variance component estimates observed in this study.    Not until a 

group size of five was the between-tract random variance component significant even 

with 459 groups, at a relatively high ICC (4.23%).   In the Alcohol Marketing Study, 

however, even with all groups at a group size of five, the between-tract variance 

estimates were still not significant, perhaps reflecting the smaller number of groups 

(N=217) in that study. 
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Large differences in the standard errors of both fixed and random components 

were apparent.  While somewhat expected due to decreasing sample size, given the lack 

of a generally applicable formula for the standard error with REML estimators (2), it is 

difficult to tell whether the inflation is beyond what would be expected by increasing 

sample error.   As the group size increased, the standard errors (for both fixed and 

random components) and random variance estimates begin to approach those seen in the 

full data sets.   

Our conclusion of small group size’s impact on fixed parameter effects is similar 

to Clarke’s (1), however, we find differences with respect to the effect on standard error 

estimates and to random components.  While this study is not without its limitations and 

assuming that our number of groups is sufficiently large, our findings have implications 

for research into not only group-level effects on individual outcomes, but also on 

individual-level factors.   With respect to group-level effects, if the ICC or MOR or 

equivalent measure is used as the primary judge of the relative importance of a 

neighborhood-level risk factor, then conclusions will depend on the type of outcome and 

regression model.  When all (or nearly all) groups have a small group size, the ICC 

calculation is biased either upward or downward.  This noise could be due to the use of 

real data.   The ICC or MOR does not appear to be as impacted by small group size in the 

case of the logistic model with the latent variable approach (3) for ICC calculation in a 

logistic model.   

Beyond the ICC or MOR estimates, however, is the case of even considering 

group-level effects.  If a substantial proportion of groups have a small number per group 

so that the standard error of the random between-group variance is inflated to the degree 
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that an insignificant between-group variance is observed, then researchers may conclude 

(despite the value of the ICC or other measure of clustering) that there is no group-level 

effect or that there is no need to consider a group-level factor (or multilevel analysis) 

when, in fact, there may be.  This would have implications for the type of analyses 

chosen as well as conclusions drawn and may be even more important when the number 

of groups is small.   Such conclusions would lead one to perhaps disaggregate into 

traditional ordinary least squares or logistic regression, which would result in increased 

risk of Type I error (1).

Results suggest that with group sizes of less than five, the between-tract random 

variance component may fail to reach statistical significance, even for a relatively high 

ICC or when one may expect a group-level effect.  Such a situation could very well occur 

once data is stratified or a particular subgroup of the population is singled out, e.g. black 

female adolescents.   To examine what would happen with an even smaller number of 

groups and small group size we ran additional simulations.  Using the same simulations 

in terms of the proportion of tracts with a group size of 2 to 5 and an overall number of 

groups of 20 and 30, inflation (i.e., > 100%) in the between-group standard error 

compared to the full model with 20 or 30 per group begins even with 5% of tracts having 

a group size of two.   

If the significance of a fixed component parameter estimate is used to judge the 

importance of a group-level effect, our findings suggest that such inferences may be 

under-powered with small group size.  The same would hold true for individual-level 

fixed effects parameters, given the inflated standard errors of fixed effects components. 

While the number of groups remains important when investigating group-level or 
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contextual effects, the group size should also be taken into account.   Researchers 

working with multilevel study designs should be aware of the potential impact of small 

group size when a large proportion of groups has very small (< 5) sample sizes.   
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Table 1.  

Impact of Group Size on Empty Model for Body Mass Index from DMV Study Data – Linear Random Effects 
Model

N per Census Tract (N = 459 tracts)

n=4-1549, 
average=447 a

n=2 n=3 n=4 n=5

Intercept 25.5985 25.7111 25.6808 25.7215 25.4540
   Standard error 0.05143 0.1689 0.1469 0.1286 0.1193

Random Effects
Variance between tract intercepts 1.1357 0.6290 1.5899 0.9898 1.4914
    Standard error 0.08023 1.1940 0.7607 0.5609 0.4625
Variance within tracts  24.5154 24.9286 24.9366 26.3888 25.1619
    Standard error 0.07378 1.6455 1.1639 1.0057 0.8314

ICC 4.23% 2.46% 5.99% 3.62% 5.60%

Impact of Group Size on Empty Model for Obesity or Overweight in DMV Study Data – Logistic Random 
Effects Model

N per Census Tract (N = 459 tracts)

n=4-1549, 
average=447 a

n=2 n=3 N=4 n=5

Intercept 0.4851 0.4760 0.4891 0.4975 0.4984
   Standard error 0.004124 0.01143 0.01689 0.01388 0.01191

Random Effects
Variance between tract intercepts 0.007068 0.01244 0.01160 0.007630 0.003407
    Standard error 0.000515 0.004259 0.01170 0.006959 0.004902
Variance within tracts 0.2431 0.2371 0.2386 0.2426 0.2467
    Standard error 0.000732 0.007835 0.01575 0.01132 0.009403

ICC b 0.21% 0.38% 0.35% 0.23% 0.10%
Median Odds Ratio (MOR) b 1.08 1.11 1.11 1.09 1.06

a Based on full sample of individuals included in study, range and average per tract.  Other individuals per tract (group size) 
randomly selected.
b ICC with individual-level variance calculated using the formula of Snijders based on an underlying continuous variable with  Vindividual = П2 

/ 3 (Snijders and Bosker, 1999).  Because of limitations of the ICC for non-linear outcomes, the Median Odds Ratio (MOR) (Merlo et al., 
2004) was also calculated. 

 



Table 2.  

Impact of Group Size on Empty Model for Body Mass Index from Alcohol Marketing Study Data – Linear 
Random Effects Model

N per Census Tract (N = 217 tracts)

n=1-50, 
average=16 a

n=2 n=3 n=4 n=5

Intercept 27.0348 26.8738 27.1318 26.8479 25.4540
   Standard error 0.1465 0.2143 0.2903 0.2600 0.1193

Random Effects
Variance between tract intercepts 1.5583 1.8189 1.6542 1.2718 1.1198
    Standard error 0.4235 1.0458 2.5502 1.7727 0.9656
Variance within tracts 34.5218 28.0653 28.8118 35.0699 34.9479
    Standard error 0.9945 1.6925 3.2001 2.6582 1.8412

ICC 4.32% 6.22% 5.43% 3.50% 3.10%

Impact of Group Size on Empty Model for Obesity or Overweight in Alcohol Marketing Study Data – Logistic 
Random Effects Model

N per Census Tract (N = 217 tracts)

n=1-50, 
average=16 a

n=2 n=3 n=4 n=5

Intercept 0.5924 0.6125 0.5770 0.5814 0.5658
   Standard error 0.01203 0.02674 0.01793 0.01898 0.02136

Random Effects
Variance between tract intercepts 0.01062 0.03737 0.01489 0.01072 0.008022
    Standard error 0.002948 0.01843 0.007045 0.008200 0.01115
Variance within tracts 0.2314 0.2008 0.2295 0.2330 0.2381
    Standard error 0.006683 0.02139 0.01210 0.01401 0.01757

ICC b 0.32% 1.12% 0.45% 0.33% 0.24%
Median Odds Ratio (MOR) b 1.10 1.20 1.12 1.10 1.09

a Based on full sample of individuals included in study, range and average per tract.  Other individuals per tract (group size) 
randomly selected.
b ICC with individual-level variance calculated using the formula of Snijders based on an underlying continuous variable with  Vindividual = П2 

/ 3 (Snijders and Bosker, 1999).  Because of limitations of the ICC for non-linear outcomes, the Median Odds Ratio (MOR) (Merlo et al., 
2004) was also calculated. 
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Table 3.  

Impact of Group Size = 2 on Empty Model for Body Mass Index from DMV Study Data – Linear Random Effects 
Model

% of Tracts with 2 per Tract

n=4-1549, 
average=447 a

10 25 50 75 90

Intercept 25.5985 25.5846 25.6379 25.5653 25.5716 25.5981
   Standard error 0.05143 0.05456 0.05745 0.09219 0.07099 0.1269

Random Effects
Variance between tract intercepts 1.1357 1.1627     1.0892     1.1609      1.1772      1.4113
    Standard error 0.08023 0.08646 0.08977 0.1715      0.1185      0.2936
Variance within tracts 24.5154 24.4896 24.7601 24.2987 24.1826 23.9069
    Standard error 0.07378 0.07781    0.08556    0.1480    0.1033    0.2249

ICC 4.23% 4.53% 4.21% 4.56% 4.64% 5.58%

Impact of Group Size = 2 on Empty Model for Obesity or Overweight in DMV Study Data– Logistic Random 
Effects Model

% of Tracts with 2 per Tract

n=4-1549, 
average=447 a

10 25 50 75 90

Intercept 0.4851 0.4842    0.4881    0.4832    0.4793    0.4826
   Standard error 0.004124 0.004407 0.004588 0.005821 0.007696 0.01132

Random Effects
Variance between tract intercepts 0.007068 0.007329 0.006646 0.007447 0.007256 0.009267
    Standard error 0.000515 0.000562 0.000562 0.000767 0.001072 0.002099
Variance within tracts 0.2431 0.2429 0.2436    0.2423 0.2427    0.2421
    Standard error 0.000732 0.000772 0.000842 0.001035 0.001478 0.002276

ICC b 0.21% 0.23% 0.20% 0.23% 0.22% 0.28%
Median Odds Ratio (MOR) b 1.08 1.09 1.08 1.09 1.08 1.10

a Based on full sample of individuals included in study, range and average per tract.  Other individuals per tract (group size) 
randomly selected.
b ICC=Intraclass correlation coefficient (with individual-level variance calculated using the formula of Snijders based on an underlying 
continuous variable with  Viindividual= П2 / 3 (Snijders and Bosker, 1999).  Because of limitations of the ICC for non-linear outcomes, the 
Median Odds Ratio (MOR) (Merlo et al., 2004) was also calculated. 
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Table 4.  

Impact of Group Size = 2 on Model with Group-Level Covariate – DMV Study Data – Linear Random Effects Model

% of Tracts with 2 per Tract

n=4-1549, 
average=447 a 

10 25 50 75 90

Intercept 25.6206 25.6145 25.6040 25.5767 25.6515 25.6802   
   Standard error 0.02956 0.03132 0.03530 0.05929 0.04532 0.07760

Socioeconomic status -0.3380 -0.3303 -0.3295 -0.3475 -0.3257 -0.4009 
   Standard error 0.01119 0.01181 0.01347 0.02204 0.03657 0.03186

Random Effects
Variance between tract 
intercepts

0.3318 0.3367 0.3614 0.3602 0.4046 0.4377

    Standard error 0.02611 0.02780 0.03232 0.05586 0.04480 0.06324
Variance within tracts 24.5155 24.5673 24.5051 24.2583 24.8719 23.4227
    Standard error 0.07378 0.07795 0.08487 0.1439 0.1055 0.2140

ICC 1.34% 1.35% 1.45% 1.46% 1.60% 1.83%

Impact of Group Size = 2 on Model with Individual-Level Covariate – DMV Study Data – Linear Random Effects 
Model

% of Tracts with 2 per Tract

n=4-1549, 
average=447 a 

10 25 50 75 90

Intercept 23.5233 23.5213 23.5327 23.4005 23.4115 23.7263
   Standard error 0.06094 0.06374 0.06995 0.08502 0.1127 0.1660

Age 0.05020 0.05009 0.04993 0.05285 0.05211 0.05018
   Standard error 0.000712 0.000752 0.000823 0.001023 0.001514 0.002294

Random Effects
Variance between tract 
intercepts

1.2290 1.2071 1.2267 1.2260 1.0492 1.1383

    Standard error 0.08616 0.08915 0.1000 0.1231 0.1514 0.2641
Variance within tracts 23.9728 23.9254 24.0049 23.6985 24.2722 25.1346
    Standard error 0.07214 0.07606 0.08366 0.1022 0.1553 0.2396

ICC 4.89% 4.80% 4.86% 4.92% 4.14% 4.30%

a Based on full sample of individuals included in study, range and average per tract.  Other individuals per tract (group size) 
randomly selected.
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