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Abstract  

This paper reconsiders the question of regional convergence across the US States over 
the long-run. The analysis is carried out over the period 1929-2005. Our analysis 
advocates and implements an Error-Correction-Model (ECM) approach to deal with 
this issue. The aforementioned model is applied in order to assess the possibilities of 
intraregional convergence towards steady-state equilibrium, approximated in terms of 
the State with highest per-capita income in each broad region. Empirical analysis 
suggests a pattern of convergence in accordance with the ECM supporting its validity. 
Further inspection of the results provides an indirect indication of the agglomerative 
effects in shaping the patterns of convergence.        
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1. Introduction  
The publication of the ground breaking work of Baumol (1986) was the spark that 

ignited an enormous interest to the issue of convergence across national economies. 

This issue can also be tackled with respect to different areas within a country, that is 

to say, regions. In the context of regional convergence, the term ‘region’ refers either 

to areas determined according to similarities in geographical characteristics or areas 

corresponding to administrative divisions, which may be arbitrary. As perhaps 

anticipated, recent years have witnessed a growing number of attempts to assess 

regional convergence using extensive datasets, such as the regions of the European 

Union (e.g. Button and Pentecost, 1995; Neven and Gouyette, 1995; Sala-i-Martin, 

1996; Fingleton and McCombie, 1998; Álvarez-Garcia et al., 2004; Ezcurra et al., 

2005) or the regions of individual countries (e.g. Peeters, 2008) and the States of the 

USA (e.g. Christopoulos and Tsionas, 2007; Rey and Montouri, 1999; Bernard, 2001; 

Tsionas, 2000; 2001). Within this literature, convergence is expressed either in terms 



of per-capita income or some other observational variable, such as levels of 

employment or unemployment. In empirical studies, an approach used extensively 

involves deployment of cross-section data. However, the notion of regional 

convergence is characterised by transformations and adjustments, properties that are 

difficult to be examined in such context. This has led to the development of 

alternative methodologies using time-series, generating a considerable empirical 

literature (e.g. Bernard and Jones, 1996; Carlino and Mills, 1993).  

 

The main econometric apparatus in stochastic convergence derives from the theory of 

cointegration analysis. Nevertheless, a test for cointegration does not reveal 

tendencies over the long-run and it is silent to the issue of the adjustment towards 

steady-state equilibrium. In other words, the critical question ‘convergence to what?’ 

remains unanswered. These problems are tackled in a more efficient way employing 

an Error-Correction-Model (hereafter ECM). As a result, there is a plethora of studies 

implementing this model in examining long-run convergence of regional employment 

and unemployment levels towards the respective national levels (e.g. Baddeley et al., 

1998; 2000; Martin and Tyler, 2000; Muscatelli and Tirelli, 2001; Gray, 2004). While 

the ECM offers a thorough perspective to the aforementioned issue, the question of 

long-run income convergence has remained, to our knowledge, a rather unexplored 

area. This is perhaps not so surprising if one takes into account that a definition of 

long-run steady-state equilibrium is easy in the case of variables such as employment 

or unemployment in which the national level is considered (e.g. Martin, 1997; Keil, 

1997; Gray, 2005). Such a definition is not so clear when income convergence is the 

main objective of the analysis.  

 

Notwithstanding the fact that average per-capita income at national level seems to be 

a good candidate for approaching steady-state equilibrium, nevertheless not always 

such a proxy reflects the implied social preferences. A convergence perspective taken 

by society does not coincide necessarily with movement towards an average whereas 

a relatively high level of per-capita income might reflect those preferences in a more 

realistic manner. Seen in this light, a geographical unit with the highest level of per-

capita income, within a given set of areas with close proximity, might constitute an 

appropriate proxy for the steady-state equilibrium.  

 



This idea constitutes the point of departure in the present paper. Using the ECM we 

examine empirically the question of whether the US States move towards alternative 

steady-state equilibria, expressed in terms of the State with the highest per-capita 

income in the Region (hereafter HISR). Additionally, a detailed analysis of the 

adjustment process towards long-run equilibrium is carried out.  

 

Divided into four sections, the rest of this paper is structured in the following manner. 

Section 2 sets the appropriate framework which the empirical analysis will be 

conducted upon. The econometric application takes place in section 3, in conjunction 

with a detailed presentation of the obtained results. Finally, section 4 assesses the 

implications of the results for the debate concerning regional convergence and 

suggests possible avenues for future research.      

 

2. The Empirical Setting 
Traditionally, the econometric methodologies for regional convergence can be 

classified into two approaches; viz. cross-section and time-series. The nature of the 

cross-section approach to convergence is restricted to only two points in time, the 

initial and the terminal year1. Obviously, choosing different initial and terminal years 

could lead to different conclusions. Furthermore, data relating to the interim period 

are not utilised, thus excluding a considerable amount of useful information. Such 

information has the potential to reveal further interesting aspects of the patterns of 

convergence; a phenomenon that varies through time. Such variations are not easily 

detected by an approach utilising cross-section data.    

 

 

                                                 
1 The cross-section approach is encapsulated in the notion of β-convergence, which requires that ‘poor’ 
regions grow faster than ‘rich’ ones. However, several criticisms have been raised against the 
conclusions, which this notion has yielded because of the problem know as ‘regression towards the 
mean’ (‘Galton’s fallacy’). This can lead to a considerable bias to the estimates of the obtained rate of 
convergence (see Bliss, 2000; Cannon and Duck, 2000, among others). This bias casts doubts on the 
econometric estimates of β-convergence regressions, as forcefully argued by Fingleton and McCombie 
(1998). Time-series tests do not suffer from such bias, yielding thus robust estimates of the underlying 
tendencies of convergence within a set of economies. This consideration is the motive for using time-
series in the examination of the convergence hypothesis.       
  



Those problems can be overcome by an alternative approach, based on the concept of 

stochastic convergence using time-series data2. Advocates of this approach (e.g. 

Bernard and Jones, 1996; Bernard and Durlauf, 1995) claim that convergence is, by 

definition, a dynamic concept that cannot be captured by cross-sectional studies3. 

 

The associated convergence tests are based on whether the dispersion in per-capita 

income between two (or more) regions has narrowed during a given time period, and 

all observations from that time period are used (Durlauf and Quah, 1998). Thus, 

convergence is identified, not as a property of the relationship between initial per-

capita income and growth over a fixed sample period, as cross-section studies claim, 

but instead is defined by the relationship between long-run forecasts of the time-series 

in per-capita income. It follows, then, that this approach takes into account all the 

relevant information available throughout the given time period, although it might be 

argued that the issue of choice of time period remains. By definition, the impacts of 

random shocks to national and regional economies are taken into account, in 

predicting long-run trends.  

 

The primary concern of this paper is to provide a detailed examination of the stable 

steady-state equilibrium in the long-run in conjunction with the short-run adjustment 

procedure towards it. While the theory of time-series econometrics provides a wide 

range of methodological tools, the present analysis is based exclusively on the ECM, 

which is discussed next.  

 

The premise upon which time-series convergence is built involves the issue of 

stationarity. A time series, let { },...2,1; =tX t , is said to be stationary if fulfils the 

                                                 
2 Of course, there is an alternative set of tests that lie in between cross-section and time-series tests; this 
approach implements panel-data. Examples of this line of research can be found in the empirical 
studies of Badinger et al., (2004), Esposti and Bussoletti (2008), Byrne et al., (2009), inter alias. 
Nevertheless, using of panel-data, while useful in certain contexts, might be criticised as being 
‘aggregative’, in a similar way with the cross-section data. Furthermore, panel-data are sensitive to the 
choice of time intervals and, consequently, their ability to detect a long-run tendency is limited. 
 
3 There has been an interest in testing for stochastic convergence across the regions of individual 
countries. Such regional studies concentrate to a large extent on the US (e.g. Carlino and Mills, 1993; 
Tsionas, 2000). Empirical studies for stochastic convergence have also been conducted for the regions 
of the UK (e.g. McGuinness and Sheehan, 1998), Austria (Hofer and Wörgötter, 1997), Italy (Proietti, 
2005), Greece (Alexiadis and Tomkins, 2004). 
 



conditions of constant mean and variance over time, i.e. if 

μ=)( tXE , ∞<= 2)( σtXVar , and the (auto) covariances between two different 

points in time, let t  and s , depend only on the absolute difference between them 

( st − ), i.e. when )(),( stXXCov stst ≠= −σ . If one of the above conditions does not 

hold, then the time-series in question is non-stationary. Of course, non-stationary 

series can become stationary by differencing them up to the point where the three 

conditions are hold. The number of times that non-stationary series are required to be 

differenced, as to become stationary, defines the order of integration. In most cases, 

economic time-series have been found to be integrated of order one, i.e. )1(I . The 

order of integration can be determined though the Augmented Dickey-Fuller (ADF) 

test for unit-roots.4          

 

Economic theory investigates equilibrium relationships between variables without 

offering a view of the dynamic adjustments necessary to achieve equilibrium. As a 

result, several models have been developed that contain a long-run (or equilibrium) 

solution and capture adjustments in the short-run.  

 

Despite the fact that several time series can be characterized as non-stationary, it is 

possible that certain combinations among these series to exhibit a common behaviour 

over time. In other words, a (linear) combination of non-stationary series might be 

integrated of a lower order than the individual series themselves, leading to what is 

known as cointegration, as described by Engle and Granger (1987).  

 

The analytical aspect of this process can be described with the aid of the following 

example. Let tX  and tY , denote two time-series of )1(I , with the following long-run 

equilibrium relationship between them:   

tt XY 10 ββ +=                                                                (1) 

and the respected deviations from it calculated as  

ttt XYu 10 ββ −−=                           (2) 

                                                 
4 See Dickey and Fuller (1981).     
 



If the two time-series in question are cointegrated, then it is necessary that the 

deviations should be integrated of a lower order than the individual series, i.e. )0(I . 

 

Following Engle and Granger (1987), the test for cointegration involves three steps. 

First, through an ADF test the order of integration between the two time-series is 

determined. Second, the residuals ( tû ) from regressing equation (1), the cointegrating 

regression, are estimated5. Third, the ADF test6 is applied to specify the order of 

integration of tû . 

 

Having determined the cointegration property, the short-run adjustment process can 

be examined in terms of an ECM, which takes the following form:  

tttt XaauY εΔγΔ +++= − 101ˆ                               (3) 

where Δdenotes the first difference (e.g. 1−−=Δ ttt YYY ) and tε  is a random residual 

series.   

 

In equation (3) 1ˆ −tu  is the error correction term which captures the adjustment towards 

the long run equilibrium (steady state relationship) between tY  and tX  . Of critical 

importance is the parameter γ , which provides an estimate of the speed of this 

adjustment. More specifically, this parameter indicates the proportion of the 

disequilibrium between tY  and tX  that is corrected in the next period. Typically, one 

would expect that parameter 0<γ . The argument runs as follows. Assuming that tY  

was below its equilibrium level in period 1−t  (so that 0ˆ 1 <−tu ), then tY  needs to be 

increased )0( >Δ tY  in an attempt to achieve equilibrium, implying that the value of 

the parameter γ  should be negative. 

 

                                                 
5 The vector ]ˆˆ[ 10 ββ  is known as the ‘cointegrating vector’.  
 
6 Given that the obtained residuals are estimates, i.e. have not been derived from the original time-
series, the critical values given by Dickey and Fuller (1981) are inappropriate. Instead the relevant 
critical values for this test can be found in the work of MacKinnon (1996).  
 



Having outlined the empirical setting, the next section proceeds by examining the data 

used in the econometric analysis, followed by a presentation and a detailed 

explanation of the results.  

 

3. Income Convergence across the US States   
The discussion in Section 2 made clear that the ECM is an appropriate tool for 

examining long-run relationships between time-series, with the additional advantage 

of providing an estimate for the rate at which the adjustment process takes place. It 

follows, therefore, that the ECM is an effective approach in the study of long-run 

patterns in regional convergence.      

 

As mentioned in introductory section, the ECM has implemented extensively in 

analysing regional disparities in terms of unemployment in which the national rate 

approximated steady-state. Such an approach inevitably leads to different patterns in 

the convergence behaviour of regions. This is not, perhaps, surprising since 

unemployment rates differ between regions due to differences in regional 

endowments (e.g. population, resources). Furthermore, it is reasonable to assume that 

those differences affect not only unemployment, but also, and perhaps to a greater 

extent, income differences, providing thus ample justification for using the ECM.  

    

An important issue in this context is defining an appropriate proxy for steady-state 

equilibrium. While the level of per-capita income at national level seems to be a good 

candidate, nevertheless, does not take into account the local spillovers generated by 

geographical proximity. The national level of per-capita income is, essentially, a 

weighted average of all the local economies in a country. Such a measure ignores the 

fact that spillovers diffuse relatively faster towards neighbouring areas rather than to 

the nation as a whole. With this consideration in mind, it is reasonable to assume that 

the process of income convergence implied by the ECM would be more pronounced 

within a set of localities with close geographical proximity (physically contiguous 

localities). Consequently, the locality with the highest income in this set is chosen to 

approximate steady-state equilibrium. In this case the adjustment process would be 



faster since it is enhanced by geographical proximity7, avoiding thus any downward 

biases imposed by the national level proxy.         

 

This paper addresses the issue of long-run regional convergence in terms of per-capita 

income across the US States over the period 1929-2005. The regional groupings used 

are those delineated by the Bureau of Economic Analysis (BEA). In doing so, we 

implement an ECM in which the State with highest per-capita income in each BEA 

Region approximates steady-state equilibrium.      

 

For each state, an ECM is estimated, which appears in the following form:  

itHISRiiiiHISRiiit ttt
yyyaay εββθ ++−+Δ+=Δ

−−
)]([

11 1010       (4) 

where i denotes a given state in a given BEA Region, y is the natural logarithm of 

per-capita income and the subscript HISR  stands for the state with the highest per-

capita income in each BEA Region. Following the discussion in Section 2, the 

parameter θ  measures the adjustment rate or to which extend the gap between a 

state’s per-capita income and per-capita income in HISR in one period is corrected in 

the next period.      

  

Equation (4) does not take into account the effects of structural breaks. In relevant 

empirical studies across the BEA Regions of the US, the application was enhanced by 

the introduction of structural breaks (e.g. Tsionas 2001). While the absence of them 

might constitute a criticism to our approach, since it is possible to introduce such 

consideration in an ECM, nevertheless the primary question to be tackled with is 

intraregional convergence (amongst the states within a broad region) and not 

interregional convergence, as it was the case in previous studies.    

  

Before estimating the ECM in equation (4), the available time-series are tested for 

cointegration using the methodology proposed by Engle and Granger (1987). 

According to the ADF and Philips-Perron (1988) (PP) tests8, all the states are )1(I  for 

                                                 
7 Such, spatial, effects can be approximated in various ways. For example Quah (1996) examining 
spatial clusters across Europe, normalises per-capita income in a region by the average of all the 
physically surrounding regions. While this is an innovative approach in capturing spatial effects in a 
time-series context, it is difficult to be applied in an ECM.  
 
8 See Table A in the Appendix.  



1% level of significance, with the exemption of the state of Idaho, where only the 

ADF test fails to accept the hypothesis of stationarity of the first difference. Following 

this process, an ADF test is conducted for unit-root in the estimated residuals obtained 

from the cointegrated equation: 

tHISRiiit yy 10 ββ +=                      (5) 

 

The relevant results for every state in each BEA Region are set out on Table 1 

together with the estimated coefficients from equation (5) and the coefficient of the 

error-correction term ( iθ ). Table 1 reports also the short-run relation between a state’s 

per-capita income and HIRS ( 1ia )9.  

[Table 1 around here] 

According to the results of the ADF tests, 11 states do not appear to cointegrate with 

their relevant HISR. Obviously, the property of convergence does not characterise 

these states (22% of the total) and the ECM does not apply in such cases. 

Nevertheless, the results are reported for the sake of convenience and to provide some 

indications of the underlying process of convergence. A striking fact from the results 

on Table 1 is that in the Mideast, no state is able to converge with the HISR (District 

of Columbia). In the case of New York, the next state with the highest income in the 

region of Mideast, the ADF test is statistically significant only marginally (at 10% 

level), however, the error-correction term turns to be statistically insignificant. 

Bearing this in mind, it might be argued that District of Columbia is, in fact, an outlier 

and therefore not representative of the underlying tendencies. To verify this further, 

we conduct a similar analysis where each HISR is tested for convergence with the 

District of Columbia (Table 2).  

[Table 2 around here] 

As it becomes apparent from the obtained results, the ADF test do not confirm the 

hypothesis of cointegration in most of the examined cases; only two cases yield 

marginally significant test values. Yet, the estimated error-correction terms appear to 

                                                 
9 We also conduct the usual Ramsey RESET test (Ramsey, 1969) for the null hypothesis of non 
misspecification errors. A misspecification may arise due to omitted variables, incorrect functional 
form and correlation between the residuals and the dependent variable. The null hypothesis is not 
rejected for level 1%, 5% and 10% level of significance if the associated p-values are greater than 0.01, 
0.05 and 0.1, respectively. The p-values for this test are given in Table B in the Appendix.  
  



be statistically insignificant in all cases, enhancing therefore the argument that the 

District of Columbia is an outlier.           

 

In this case a choice for an alternative HISR in the region of Mideast must be made. 

Choosing the state with the second highest per-capita income, namely New York, 

produces the results in Table 3.  

[Table 3 around here] 

As it might expected the states in Mideast exhibit tendencies towards convergence 

with New York. Thus, the particular state cannot be considered as an outlier and, 

consequently, is an appropriate proxy for steady-state equilibrium in the region of 

Mideast. This is established further by testing for convergence between the state of 

New York and the remaining HISRs (Table 4); a process yielding better results 

compared to those using the state of District of Columbia.  

[Table 4 around here] 

Nevertheless, the property of convergence is not apparent amongst all HIRSs. As the 

results indicate the cointegration ADF test is statistically significant at 10% level for 

California, Wyoming and Florida while Connecticut appears to produce the most 

robust results. It is worth noting that the aforementioned state exhibits the higher rate 

of adjustment among all the HISRs.  

 

Insofar, the analysis has shown the classification of the US states according to their 

convergence behaviour, namely converging and non-converging towards a HISR. The 

underlying structure of the ECM implies that convergence occurs towards different 

steady-state equilibria, approximated in terms of the HISRs. This brings into 

consideration the hypothesis of ‘club-convergence’. However, the fact that 

convergence is apparent amongst most HISRs suggests that the US states as a whole 

are in a process towards long-run overall convergence.  

       

Figure 1 shows the geographical location of the converging and non-converging states 

identified using the ECM10. As it might be expected most converging states share a 

common border with a HISR suggesting, thus, the existence of a strong geographical 

component in the process of convergence. Striking exemptions of this pattern are the 
                                                 
10 See Table C in the Appendix for the abbreviations used in Figures 1 and 2. 
 



non-converging states of Vermont and Pennsylvania which fail to converge with their 

respective HISRs. It is beyond argument that neighbouring to a relatively prosperous 

state might cause beneficial effects. In the case of the two aforementioned states, such 

effects do not seem to have an impact on their convergence behaviour towards steady-

state equilibrium, irrespective of their physical proximity to a HISR, viz. New York. 

Absence of impacts due to geographical proximity to a HISR is also identified for the 

states of Alabama and Georgia; two non-converging states located close to Florida, 

the state with the highest per-capita income in the region of South-East. Similarly, the 

convergence pattern of Oregon and New Mexico seems to be ‘indifferent’ to the 

proximity to California and Arizona, respectively. Finally, in the case of Kentucky, 

proximity to two HISRs (Illinois and Missouri) is a factor unrelated to the shape of the 

convergence behaviour of that particular state.   

[Figure 1 around here] 

A factor that appears to be common in most cases mentioned above is that the HISRs 

in question contain big agglomerations (e.g. New York City, Los Angeles, etc). It is 

almost an article of faith in economic geography that agglomerations cause negative, 

as well as, positive effects in the area where located. However, the exceptional cases 

discussed here, imply that close proximity to a state containing an agglomerative 

centre might cause adverse effects to the convergence paths of the surrounding states.    

 

Nevertheless, that there will be exceptions does not invalidate our ECM approach, or 

make it inapplicable. As can be seen from Figure 1, an ECM is in a position to 

describe adequately the convergence path for the vast majority of the US states.     

 

A further advantage of the ECM is that it allows for a distinction of the converging 

states based on the rate at which cover the distance between long-run equilibrium. For 

each converging state the calculation of the years (n) to adjust is made for the 95% of 

the disequilibrium according to the following formula:  

i

n
θ

)05.0ln(
−=                        (6)  

[Table 5 around here] 

Table 5 shows the adjustment parameters together with the years required for 

deviations from steady-state equilibrium to almost dissipate. Following that the 

structure of ECM in this paper implies different steady-state equilibria, a variation in 



the adjustment rate is somehow anticipated. Based on the estimated rates, it might be 

argued that the majority of converging states follows a relatively slow adjustment 

process. In particular, 43% of the US states converge towards their steady-state 

equilibria at a rate in the range between 10% and 30%. Fewer states (12%) exhibit 

faster rates of adjustment (in the range between 40% and 60%).  

 

The geographical distribution of the converging states according to their speed of 

adjustment is illustrated by Figure 2.  

[Figure 2 around here] 

The picture that appears is considerably more complicated to that revealed by Figure 

1. This is to be expected, since in the convergence-classification exercise a new 

dimension is added. States are now ordered by their adjustment rates, which show a 

high degree of diversity causing difficulties in detecting an underlying pattern. 

Nevertheless, at a glance, it is suffice to state that a kind of ‘clustering’ is evident for 

four states located in the north part of the country (North Dakota, South Dakota, 

Minnesota and Wisconsin).   

 

4. Conclusions  
For more than twenty years the question of income convergence has caused one of the 

most remarkable debates in economics. Different empirical studies using various 

econometric techniques in diverse contexts were conducted. For the US states and 

regions, especially, the issue of income convergence has generated, and continues to 

do so, a vast literature. Our paper, however, does not simply add to the list of 

successful tests of income convergence across the US states. Most importantly, by 

implementing an ECM, our study provides an alternative econometric technique that 

allows a more thorough and detailed perspective in this topic. The ECM is extensively 

used in analysing convergence in terms of employment/unemployment. To our 

knowledge, such a model has not been deployed in assessing convergence 

possibilities regarding per-capita income. By testing this hypothesis across the US 

states, utilising an ECM, this paper extends the applicability of this model. 

             

Following the econometric estimations, reported in Section 3 of the present paper, the 

hypothesis that the US states move towards different steady-state equilibria appears to 



be confirmed. This comes as a natural outcome of the ECM proposed in this paper. 

Steady-state equilibrium is now expressed in a more elaborated way compared to a 

simple measure of average per-capita income. To be more concrete, the state with the 

highest per-capita income in a region is applied in an attempt to depict the long-run 

equilibrium. Such a proxy also allows for the effects stemming from geographical 

proximity to be taken into account in a time-series framework, leading to one of the 

major findings in this paper. The empirical application has made us suspicious 

regarding the positive effects of agglomerations in promoting the process of income 

convergence in surrounding states. Hence, it might be argued that the relative 

convergence effects of agglomerations are examined in a more effective manner 

within the ambit of an ECM, providing thus a ‘nexus’ between time-series and spatial 

analysis. We are aware that more factors are required in order to obtain a more clear 

view of such issues. However, the framework introduced in this paper is flexible 

enough as to allow for more extensions. What is then the purpose of such a paper? 

Perhaps our main intention is to provoke further interest in the applicability of models 

based on the structure of error-correction mechanisms in examining the morphology 

of income convergence across spatial units.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: ECM, US States, 1929-2005 

Region 1(Far West) ADF test 
0iβ  1iβ  iθ  1ia  

HISR: California 
Nevada  -0.505*** 

[0] 
0.093** 
(0.043) 

      0.988*** 
(0.005) 

-0.532*** 
(0.159)† 

      1.125*** 
(0.168) 

Oregon -2.460 
[1] 

-0.534*** 
(0.052) 

     1.040*** 
(0.006) 

-0.151** 
(0.063)† 

       1.166*** 
(0.062) 

Washington -2.774* 
[1] 

-0.569*** 
(0.045) 

      1.053*** 
(0.005) 

-0.147** 
(0.062)† 

        1.165*** 
(0.056) 

 

Region 2 (Great Lakes) ADF test 
0iβ  1iβ  iθ  1ia  

HISR: Illinois      
Indiana -3.384*** 

[0] 
-0.519*** 

(0.043) 
1.038*** 
(0.005) 

-0.275*** 
(0.055) ‡ 

      1.206*** 
(0.055) 

Michigan -4.823*** 
[1] 

-0.153*** 
(0.035) 

1.001*** 
(0.004) 

-0.463*** 
(0.092)† 

      1.244*** 
(0.058) 

Ohio -5.400*** 
[2] 

-0.155*** 
(0.023) 

1.004*** 
(0.003) 

-0.395*** 
(0.075) ‡ 

      1.105*** 
(0.035) 

Wisconsin -2.849* 
[10] 

-0.541*** 
(0.024) 

1.044*** 
(0.030) 

-0.343*** 
(0.125) † 

      1.029*** 
(0.070) 

 

Region 3 (Mideast) ADF test 
0iβ  1iβ  iθ  1ia  

HISR: District of Columbia    
Delaware -1.595  

[0] 
-0.15  

(0.096) 
-0.983*** 

(0.011) 
-0. 091  

(0.065) † 
1.051*** 
(0.228) 

Maryland -1.997  
[1] 

-0.903*** 
(0.102) 

1.078*** 
(0.012) 

-0.025  
(0.043) 

0.966*** 
(0.113) 

New Jersey -2.218  
[1] 

-0.649*** 
(0.100) 

1.059*** 
(0.011) 

-0.032  
(0.046) ‡  

0.991*** 
(0.188) 

New York -2.707*  
[2] 

-0.224*** 
(0.079) 

1.010*** 
(0.009) 

-0.061  
(0.052) ‡ 

0.941*** 
(0.237) 

Pennsylvania -2.210  
[2] 

-0.784*** 
(0.109) 

1.053*** 
(0.012) 

-0.047  
(0.059) ‡ 

1.067*** 
(0.236) 

 

Region 4 (New 
England)     

ADF test 
0iβ  1iβ  iθ  1ia  

HISR: Connecticut      
Maine -3.286** 

[1] 
-0.539*** 

(0.037) 
1.012*** 
(0.004) 

-0.235** 
(0.101) † 

0.929*** 
(0.072) 

Massachusetts -3.482** 
[1] 

-0.199*** 
(0.031) 

1.007*** 
(0.003) 

-0.234*** 
(0.054) † 

0.764*** 
(0.029) 

New Hampshire -3.678*** 
[1] 

-0.682*** 
(0.034) 

1.046*** 
(0.004) 

-0.169** 
(0.066) ‡ 

0.843*** 
(0.078) 

Vermont -2.155  
[0] 

-0.744*** 
(0.041) 

1.037*** 
(0.005) 

-0.105** 
(0.053) 

0.922*** 
(0.043) 

Rhode Island -2.530 
 [0] 

0.078*** 
(0.029) 

0.964*** 
(0.003) 

-0.139** 
(0.066) † 

0.813*** 
(0.030) 

 

 



Region 5 (Plaines) ADF test 
0iβ  1iβ  iθ  1ia  

HISR: Missouri      
Kansas -2.667*  

[0] 
-0.373*** 

(0.051) 
1.043*** 
(0.006) 

-0.257*** 
(0.053) ‡ 

1.349*** (0.075) 

Minnesota -4.212*** 
[0] 

-0.266*** 
(0.022) 

1.038*** 
(0.002) 

-0.388*** 
(0.101) ‡ 

1.028*** (0.046) 

Iowa -2.744*  
[1] 

-0.145*** 
(0.049) 

1.015*** 
(0.006) 

-0.553*** 
(0.127) ‡ 

1.410*** (0.067) 

Nebraska -4.630*** 
[0] 

-0.289*** 
(0.046) 

1.033*** 
(0.005) 

-0.467*** 
(0.135) ‡ 

1.251*** (0.066) 

North Dakota -3.040** 
[0] 

-0.930*** 
(0.122) 

1.092*** 
(0.015) 

-0.316*** 
(0.063) ‡ 

1.671*** (0.173) 

South Dakota -3.557*** 
[0] 

-0.876*** 
(0.097) 

1.085*** 
(0.012) 

-0.379*** 
(0.093) ‡ 

1.729*** (0.123) 

 

Region 6 (Rocky 
Mountains) 

ADF test 
0iβ  1iβ  iθ  1ia  

HISR: Wyoming      
Idaho -3.881*** 

[4] 
-0.285*** 

(0.055) 
1.012*** 
(0.007) 

-0.580** 
(0.242) ‡ 

1.076*** 
(0.154) 

Montana -2.870*  
[1] 

0.074*  
(0.039) 

0.977*** 
(0.005) 

-0.411*** 
(0.118) ‡ 

1.001*** (0.040) 

Utah -3.130**  
[0] 

-0.192*** 
(0.046) 

1.000*** 
(0.005) 

-0.245** 
(0.095) † 

0.924*** (0.107) 

Colorado -2.891* 
 [0] 

-0.404*** 
(0.042) 

1.048*** 
(0.005) 

-0.282*** 
(0.070) 

0.838*** (0.055) 

 

Region 7 (South East) ADF test 
0iβ  1iβ  iθ  1ia  

HISR: Florida      
Arkansas -2.882*  

[0] 
1.068*** 
(0.051) 

1.086*** 
(0.006) 

-0.206** 
(0.090) ‡ 

1.103*** (0.099) 

Alabama -2.437  
[3] 

-0.996*** 
(0.049) 

1.084*** 
(0.006) 

-0.128* 
(0.076) † 

1.134*** (0.099) 

Georgia -2.140 
 [0] 

-0.802*** 
(0.041) 

1.075*** 
(0.005) 

-0.095* 
(0.055) † 

1.001*** (0.068) 

Kentucky -2.587 
 [0] 

-0.592*** 
(0.044) 

1.043*** 
(0.005) 

-0.165*** 
(0.053) ‡ 

1.017*** (0.103) 

Louisiana -2.838* 
 [1] 

-0.331*** 
(0.040) 

1.015*** 
(0.005) 

-0.173** 
(0.071) 

0.963*** (0.060) 

Mississippi -3.265** 
[0] 

-1.321*** 
(0.055) 

1.104*** 
(0.007) 

-0.293*** 
(0.104) † 

1.310*** (0.139) 

North Carolina -3.067** 
[0] 

-0.798*** 
(0.040) 

1.072*** 
(0.005) 

-0.179* 
(0.105) † 

0.981*** (0.111) 

South Carolina -3.143** 
[0] 

-0.994*** 
(0.048) 

1.084*** 
(0.006) 

-0.153* 
(0.083) † 

1.006*** (0.104) 

Tennessee -2.639*  
[3] 

-0.719*** 
(0.031) 

1.062*** 
(0.004) 

-0.226** 
(0.103) † 

1.057*** (0.101) 

Virginia -4.171*** 
[1] 

-0.402*** 
(0.032) 

1.047*** 
(0.004) 

-0.252** 
(0.105) † 

0.835*** (0.125) 

West Virginia -3.798*** 
[2] 

-0.047  
(0.033) 

0.979*** 
(0.004) 

-0.283*** 
(0.081) † 

0.902*** (0.105) 

 



Region 8 (South West) ADF test 
0iβ  1iβ  iθ  1ia  

HISR: Arizona      
New Mexico -2.300  

[0] 
-0.570*** 

(0.050) 
1.049*** 
(0.006) 

-0.085  
(0.058) † 

0.938*** (0.079) 

Oklahoma -2.843*  
[1] 

-0.690*** 
(0.048) 

1.069*** 
(0.006) 

-0.148** 
(0.063) 

0.994*** (0.055) 

Texas -3.804*** 
[0] 

-0.512*** 
(0.033) 

1.059*** 
(0.004) 

-0.247** 
(0.124) ‡ 

0.887*** (0.063) 

Notes: Figures in parentheses are standard errors, ***, **, * denote significance at 1%, 5% and 10%, respectively. In 
the ADF test equation only constant is included. The maximum lag length in ADF test is determined using the 
Schwarz information criterion. The number of lag lengths is in brackets. † and ‡ denote that the estimated standard 
errors are corrected using the heteroscedasticity consistent covariance matrix estimator proposed by White (1980) 
and heteroscedasticity autocorrelation consistent covariance matrix estimator, proposed by Newey and West 
(1987a,b), respectively.  

 

Table 2: District of Columbia – outlier  

HISR: District of Columbia 
 ADF test 

0iβ  1iβ  iθ  1ia  

California -2.281 
[1] 

-0.167  
(0.113) 

1.001*** 
(0.013) 

-0.041 
 (0.052) ‡ 

0.995*** (0.224) 

Illinois -0.992 
[0] 

-0.468*** 
(0.128) 

1.029*** 
(0.015) 

-0.049  
(0.055) ‡ 

1.121*** (0.287) 

Connecticut -2.754*  
[1] 

-0.541*** 
(0.093) 

1.055*** 
(0.011) 

-0.074  
(0.052) ‡ 

0.987*** (0.215) 

Missouri -2.161 
 [2] 

-1.102*** 
(0.143) 

1.078*** 
(0.016) 

-0.018  
(0.046) ‡ 

1.016*** (0.236) 

Wyoming -1.357 
 [0] 

-0.793*** 
(0.152) 

1.052*** 
(0.017) 

-0.048  
(0.047) ‡ 

1.068*** (0.190) 

Florida -2.843* 
 [2] 

-1.488*** 
(0.152) 

1.121*** 
(0.017) 

-0.017  
(0.057) ‡ 

1.017*** (0.230) 

Arizona -2.174 
 [1] 

-1.075*** 
(0.153) 

1.070*** 
(0.017) 

-0.047  
(0.059) ‡ 

1.121*** (0.269) 

Notes: Figures in parentheses are standard errors, ***, **, * denote significance at 1%, 5% and 10%, respectively. In 
the ADF test equation only constant is included. The maximum lag length in ADF test is determined using the 
Schwarz information criterion. The number of lag lengths is in brackets. ‡ denotes that the estimated standard errors 
are corrected using heteroscedasticity autocorrelation consistent covariance matrix estimator, proposed by Newey 
and West (1987a, b), respectively. 

 

 

 

 

 

 

 

 

 



Table 3: New York as an Alternative HISR for Mideast   
Region 3 (Mideast) ADF test 

0iβ  1iβ  iθ  1ia  

HISR: New York     
Delaware -4.188*** 

[1] 
0.200*** 
(0.048) 

0.974*** 
(0.005) 

-0.275*** 
(0.075) 

1.117*** 
(0.077) 

Maryland -4.683*** 
[1] 

-0.669*** 
(0.044) 

1.067*** 
(0.005) 

-0.173** 
(0.069) ‡ 

1.019*** 
(0.083) 

New Jersey -3.913*** 
[1] 

-0.422*** 
(0.031) 

1.049*** 
(0.004) 

-0.206*** 
(0.064) ‡ 

1.065*** 
(0.056) 

Pennsylvania -2.587 
[1] 

-0.563*** 
(0.041) 

1.044*** 
(0.005) 

-0.177*** 
(0.059) ‡ 

1.160*** 
(0.050) 

Notes: Figures in parentheses are standard errors, ***, **, * denote significance at 1%, 5% and 10%, respectively. 
In the ADF test equation only constant is included. The maximum lag length in ADF test is determined using the 
Schwarz information criterion. The number of lag lengths is in brackets. ‡ denotes that the estimated standard 
errors are corrected using heteroscedasticity autocorrelation consistent covariance matrix estimator, proposed by 
Newey and West (1987a, b), respectively. 

 

Table 4: Convergence between HISRs    

HISR: New York  
 ADF test 

0iβ  1iβ  iθ  1ia  

California -2.764 * 
[2] 

0.038 
(0.049) 

0.993*** 
(0.006) 

-0.156** 
(0.065) ‡ 

1.113*** (0.068) 

Illinois -1.476 
[0] 

-0.265*** 
(0.060) 

1.022*** 
(0.007) 

-0.103*** 
(0.038) 

1.200*** (0.048) 

Connecticut -5.215*** 
[1] 

-0.308*** 
(0.038) 

1.044*** 
(0.004) 

-0.251*** 
(0.079) ‡ 

1.119*** (0.055) 

Missouri -2.241 
[0] 

-0.893*** 
(0.071) 

1.071*** 
(0.008) 

-0.069** 
(0.032) 

1.085*** (0.049) 

Wyoming -2.761 * 
[1] 

-0.582*** 
(0.100) 

1.044*** 
(0.012) 

-0.084* 
(0.053) ‡ 

1.107*** (0.101) 

Florida -2.892 * 
[1] 

-1.270*** 
(0.081) 

1.114*** 
(0.009) 

-0.108** 
(0.050) † 

1.174*** (0.108) 

Arizona -2.140 
[0] 

-0.870*** 
(0.086) 

1.064*** 
(0.010) 

-0.140** 
(0.062) ‡ 

1.255*** (0.109) 

Notes: Figures in parentheses are standard errors, ***, **, * denote significance at 1%, 5% and 10%, respectively. In 
the ADF test equation only constant is included. The maximum lag length in ADF test is determined using the 
Schwarz information criterion. The number of lag lengths is in brackets. † and ‡ denote that the estimated standard 
errors are corrected using the heteroscedasticity consistent covariance matrix estimator proposed by White (1980) 
and heteroscedasticity autocorrelation consistent covariance matrix estimator, proposed by Newey and West 
(1987a,b), respectively.  

 

 

 

 

 

 

 

 



Table 5: Adjustment Process  

State Speed of Adjustment Years to Adjust (n) 

Idaho 0.58 
5 

Iowa 0.553 
5 

Nevada 0.532 
6 

Nebraska 0.467 
6 

Michigan 0.463 
6 

Montana 0.411 
7 

Ohio 0.395 
8 

Minnesota 0.388 
8 

South Dakota 0.379 
8 

Wisconsin 0.343 
9 

North Dakota 0.316 
9 

Mississippi 0.293 
10 

West Virginia 0.283 
11 

Colorado 0.282 
11 

Delaware 0.275 
11 

Indiana 0.275 
11 

Kansas 0.257 
12 

Virginia 0.252 
12 

Texas 0.247 
12 

Utah 0.245 
12 

Maine 0.235 
13 

Massachusetts 0.234 
13 

Tennessee 0.226 
13 

New Jersey 0.206 
15 

Arkansas 0.206 
15 

North Carolina 0.179 
17 

Maryland 0.173 
17 

Louisiana 0.173 
17 

New Hampshire 0.169 
18 

South Carolina 0.153 
20 

Oklahoma 0.148 
20 

Washington 0.147 20 
 

 



 
Figure 1: Converging States, US, 1929-2005 
 
 



 
Figure 2: Adjustment Rates  
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Appendix 
Table A:  Phillips-Perron test for Levels  

State  Prob. Bandwidth Obs 
ALABAMA  0.9577  3.0  76 
ARIZONA  0.9719  2.0  76 
ARKANSAS  0.9570  4.0  76 
CALIFORNIA  0.9832  3.0  76 
COLORADO  0.9789  2.0  76 
CONNECTICUT  0.9912  2.0  76 
DELAWARE  0.9887  3.0  76 
DISTRICT_OF_COLUMBIA  0.9996  4.0  76 
FLORIDA  0.9641  3.0  76 
GEORGIA  0.9496  3.0  76 
IDAHO  0.9575  7.0  76 
ILLINOIS  0.9809  3.0  76 
INDIANA  0.9640  2.0  76 
IOWA  0.9705  0.0  76 
KANSAS  0.9584  1.0  76 
KENTUCKY  0.9658  3.0  76 
LOUISIANA  0.9449  3.0  76 
MAINE  0.9863  2.0  76 
MARYLAND  0.9885  3.0  76 
MASSACHUSETTS  0.9959  4.0  76 
MICHIGAN  0.9731  1.0  76 
MINNESOTA  0.9804  2.0  76 
MISSISSIPPI  0.9589  3.0  76 
MISSOURI  0.9761  4.0  76 
MONTANA  0.9681  2.0  76 
NEBRASKA  0.9681  2.0  76 
NEVADA  0.9744  1.0  76 
NEW_HAMPSHIRE  0.9904  4.0  76 
NEW_JERSEY  0.9881  4.0  76 
NEW_MEXICO  0.9545  3.0  76 
NEW_YORK  0.9928  4.0  76 
NORTH_CAROLINA  0.9509  3.0  76 
NORTH_DAKOTA  0.9314  2.0  76 
OHIO  0.9766  2.0  76 
OKLAHOMA  0.9577  3.0  76 
OREGON  0.9661  2.0  76 
PENNSYLVANIA  0.9853  3.0  76 
RHODE_ISLAND  0.9952  3.0  76 
SOUTH_CAROLINA  0.9360  3.0  76 
SOUTH_DAKOTA  0.9467  2.0  76 
TENNESSEE  0.9644  3.0  76 
TEXAS  0.9609  3.0  76 
UTAH  0.9720  1.0  76 
VERMONT  0.9898  3.0  76 
VIRGINIA  0.9730  4.0  76 
WASHINGTON  0.9694  2.0  76 



WEST_VIRGINIA  0.9787  2.0  76 
WISCONSIN  0.9780  2.0  76 
WYOMING  0.9796  3.0  76 

Note: In the test equation only constant is included. 

Phillips-Perron test for first difference  

State  Prob. Bandwidth Obs 
D(ALABAMA)  0.0001  4.0  75 
D(ARIZONA)  0.0006  12.0  75 
D(ARKANSAS)  0.0000  0.0  75 
D(CALIFORNIA)  0.0051  21.0  75 
D(COLORADO)  0.0014  11.0  75 
D(CONNECTICUT)  0.0007  14.0  75 
D(DELAWARE)  0.0000  4.0  75 
D(DISTRICT_OF_COLUMBIA)  0.0006  6.0  75 
D(FLORIDA)  0.0026  6.0  75 
D(GEORGIA)  0.0020  7.0  75 
D(IDAHO)  0.0000  16.0  75 
D(ILLINOIS)  0.0001  10.0  75 
D(INDIANA)  0.0000  10.0  75 
D(IOWA)  0.0000  5.0  75 
D(KANSAS)  0.0006  19.0  75 
D(KENTUCKY)  0.0000  9.0  75 
D(LOUISIANA)  0.0020  11.0  75 
D(MAINE)  0.0009  8.0  75 
D(MARYLAND)  0.0024  11.0  75 
D(MASSACHUSETTS)  0.0009  8.0  75 
D(MICHIGAN)  0.0000  14.0  75 
D(MINNESOTA)  0.0001  10.0  75 
D(MISSISSIPPI)  0.0000  3.0  75 
D(MISSOURI)  0.0015  12.0  75 
D(MONTANA)  0.0000  9.0  75 
D(NEBRASKA)  0.0000  5.0  75 
D(NEVADA)  0.0000  5.0  75 
D(NEW_HAMPSHIRE)  0.0011  8.0  75 
D(NEW_JERSEY)  0.0051  9.0  75 
D(NEW_MEXICO)  0.0002  9.0  75 
D(NEW_YORK)  0.0059  9.0  75 
D(NORTH_CAROLINA)  0.0001  5.0  75 
D(NORTH_DAKOTA)  0.0000  1.0  75 
D(OHIO)  0.0001  11.0  75 
D(OKLAHOMA)  0.0001  12.0  75 
D(OREGON)  0.0012  13.0  75 
D(PENNSYLVANIA)  0.0015  8.0  75 
D(RHODE_ISLAND)  0.0001  9.0  75 
D(SOUTH_CAROLINA)  0.0001  5.0  75 
D(SOUTH_DAKOTA)  0.0000  1.0  75 
D(TENNESSEE)  0.0003  4.0  75 
D(TEXAS)  0.0030  13.0  75 
D(UTAH)  0.0012  11.0  75 



D(VERMONT)  0.0017  12.0  75 
D(VIRGINIA)  0.0000  3.0  75 
D(WASHINGTON)  0.0085  21.0  75 
D(WEST_VIRGINIA)  0.0001  8.0  75 
D(WISCONSIN)  0.0006  32.0  75 
D(WYOMING)  0.0000  36.0  75 

    Note: In the test equation only constant is included. 
 

ADF test for levels   

State Prob. No of Lags   Max Lag Obs 
ALABAMA  0.8272  1  11  75 
ARIZONA  0.8642  2  11  74 
ARKANSAS  0.8080  1  11  75 
CALIFORNIA  0.9071  2  11  74 
COLORADO  0.8871  2  11  74 
CONNECTICUT  0.9516  2  11  74 
DELAWARE  0.9461  1  11  75 
DISTRICT_OF_COLUMBIA  0.9951  2  11  74 
FLORIDA  0.7963  2  11  74 
GEORGIA  0.8039  1  11  75 
IDAHO  0.9325  1  11  75 
ILLINOIS  0.9104  1  11  75 
INDIANA  0.8791  1  11  75 
IOWA  0.9705  0  11  76 
KANSAS  0.8611  1  11  75 
KENTUCKY  0.8616  1  11  75 
LOUISIANA  0.7381  2  11  74 
MAINE  0.9400  2  11  74 
MARYLAND  0.8881  11  11  65 
MASSACHUSETTS  0.9707  1  11  75 
MICHIGAN  0.8798  1  11  75 
MINNESOTA  0.9343  1  11  75 
MISSISSIPPI  0.8186  1  11  75 
MISSOURI  0.9011  1  11  75 
MONTANA  0.9798  0  11  76 
NEBRASKA  0.9797  0  11  76 
NEVADA  0.9805  0  11  76 
NEW_HAMPSHIRE  0.9576  1  11  75 
NEW_JERSEY  0.9298  1  11  75 
NEW_MEXICO  0.6691  9  11  67 
NEW_YORK  0.9383  1  11  75 
NORTH_CAROLINA  0.8454  1  11  75 
NORTH_DAKOTA  0.9374  0  11  76 
OHIO  0.9046  1  11  75 
OKLAHOMA  0.8088  1  11  75 
OREGON  0.8464  2  11  74 
PENNSYLVANIA  0.9351  1  11  75 
RHODE_ISLAND  0.9696  1  11  75 
SOUTH_CAROLINA  0.8212  1  11  75 



SOUTH_DAKOTA  0.9520  0  11  76 
TENNESSEE  0.2792  3  11  73 
TEXAS  0.8040  2  11  74 
UTAH  0.7720  2  11  74 
VERMONT  0.9429  1  11  75 
VIRGINIA  0.9089  1  11  75 
WASHINGTON  0.8323  2  11  74 
WEST_VIRGINIA  0.9186  1  11  75 
WISCONSIN  0.8607  1  11  75 
WYOMING  0.8925  1  11  75 

Note: In the test equation only constant is included. The number of lags for the ADF test was chosen 
according to the Schwarz information criterion.  

 
 ADF test for first difference   

States  Prob. No of Lags   Max Lag Obs 
D(ALABAMA)  0.0000  0  11  75 
D(ARIZONA)  0.0061  4  11  71 
D(ARKANSAS)  0.0000  0  11  75 
D(CALIFORNIA)  0.0014  0  11  75 
D(COLORADO)  0.0003  0  11  75 
D(CONNECTICUT)  0.0000  1  11  74 
D(DELAWARE)  0.0000  0  11  75 
D(DISTRICT_OF_COLUMBIA)  0.0014  1  11  74 
D(FLORIDA)  0.0000  1  11  74 
D(GEORGIA)  0.0005  0  11  75 
D(IDAHO)  0.1824  7  11  68 
D(ILLINOIS)  0.0001  0  11  75 
D(INDIANA)  0.0000  0  11  75 
D(IOWA)  0.0001  11  11  64 
D(KANSAS)  0.0001  0  11  75 
D(KENTUCKY)  0.0000  0  11  75 
D(LOUISIANA)  0.0001  1  11  74 
D(MAINE)  0.0000  1  11  74 
D(MARYLAND)  0.0000  1  11  74 
D(MASSACHUSETTS)  0.0003  0  11  75 
D(MICHIGAN)  0.0000  0  11  75 
D(MINNESOTA)  0.0000  0  11  75 
D(MISSISSIPPI)  0.0000  0  11  75 
D(MISSOURI)  0.0003  0  11  75 
D(MONTANA)  0.0000  0  11  75 
D(NEBRASKA)  0.0000  0  11  75 
D(NEVADA)  0.0000  0  11  75 
D(NEW_HAMPSHIRE)  0.0003  0  11  75 
D(NEW_JERSEY)  0.0014  0  11  75 
D(NEW_MEXICO)  0.0000  3  11  72 
D(NEW_YORK)  0.0019  0  11  75 
D(NORTH_CAROLINA)  0.0000  0  11  75 
D(NORTH_DAKOTA)  0.0000  0  11  75 
D(OHIO)  0.0000  0  11  75 



D(OKLAHOMA)  0.0019  11  11  64 
D(OREGON)  0.0000  1  11  74 
D(PENNSYLVANIA)  0.0003  0  11  75 
D(RHODE_ISLAND)  0.0000  0  11  75 
D(SOUTH_CAROLINA)  0.0000  0  11  75 
D(SOUTH_DAKOTA)  0.0000  0  11  75 
D(TENNESSEE)  0.0001  0  11  75 
D(TEXAS)  0.0000  1  11  74 
D(UTAH)  0.0002  0  11  75 
D(VERMONT)  0.0004  0  11  75 
D(VIRGINIA)  0.0000  0  11  75 
D(WASHINGTON)  0.0000  1  11  74 
D(WEST_VIRGINIA)  0.0000  0  11  75 
D(WISCONSIN)  0.0009  0  11  75 
D(WYOMING)  0.0003  0  11  75 

Note: In the test equation only constant is included. The number of lags for the ADF test was 
chosen according to the Schwarz information criterion.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table B: Ramsey RESET Test  p-value 
Region 1(Far West)  
California  
Nevada 0.048 
Oregon 0.164 
Washington 0.371 
Region 2 (Great Lakes)  
Illinois  
Indiana 0.057 
Michigan 0.014 
Ohio 0.138 
Wisconsin 0.039 
Region 4 (New England)  
Connecticut  
Maine 0.534 
Massachusetts 0.060 
New Hampshire 0.001 
Vermont 0.019 
Rhode Island 0.760 
Region 5 (Plaines)  
Missouri  
Kansas 0.498 
Minnesota 0.178 
Iowa 0.312 
Nebraska 0.108 
North Dakota 0.121 
South Dakota 0.116 
Region 6 (Rocky Mountains)  
Wyoming  
Idaho 0.628 
Montana 0.684 
Utah 0.776 
Colorado 0.119 
Region 7 (South East)  
Florida  
Arkansas 0.057 
Alabama 0.128 
Georgia 0.309 
Kentucky 0.061 
Louisiana 0.611 
Mississippi 0.224 
North Carolina 0.069 
South Carolina 0.160 
Tennessee 0.003 
Virginia 0.101 
West Virginia 0.001 
Region 8 (South West)  
Arizona  
New Mexico 0.000 
Oklahoma 0.006 
Texas 0.013 

 
 
 
 
 



 
 

 p-value 
New York  

California 0.020 
Illinois 0.061 

Connecticut 0.189 
Missouri 0.760 
Wyoming 0.713 

Florida 0.000 
Arizona 0.414 

 
 

 p-value 
New York  
Delaware 0.146 
Maryland 0.025 

New Jersey 0.002 
Pennsylvania 0.757 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table C: The States used in the empirical analysis 
Alabama (ALB) 
Arizona (ARZ) 
Arkansas (ARK) 
California (CLF) 
Colorado (CLR) 
Connecticut (CNT) 
Delaware (DLW) 
District of Columbia (DCL) 
Florida (FLR) 
Georgia (GRG) 
Idaho (IDH) 
Illinois (ILL) 
Indiana (IND) 
Iowa (IOW)  
Kansas (KNS)  
Kentucky (KNT) 
Louisiana (LUS) 
Maine (MA) 
Maryland (MRL) 
Massachusetts (MSC) 
Michigan (MCH) 
Minnesota (MNN) 
Mississippi (MSS) 
Missouri (MSR) 
Montana (MNT) 
Nebraska (NBR) 
Nevada (NV) 
New Hampshire (NH) 
New Jersey (NJ) 
New Mexico (NM) 
New York (NY) 
North Carolina (NC) 
North Dakota (ND) 
Ohio (OH) 
Oklahoma (OKL) 
Oregon (ORG) 
Pennsylvania (PNN) 
Rhode Island (RI) 
South Carolina (SC) 
South Dakota (SD) 
Tennessee (TNN) 
Texas (TX) 
Utah (UT) 
Vermont (VRM) 
Virginia (VRG) 
Washington (WSH) 
West Virginia (WV) 
Wisconsin (WSC) 
Wyoming (WYM)  

 


