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Abstract: Some analytic simulation techniques for the analysis
of the reduced form and of the dynamic properties of econometric
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methods available for linear models.
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1. Introduction

The evaluation of an econometric model as a simultaneous equations
3ystem and the analysis of its dynami¢ properties are crucial steps in
the model bullding process, particularly when the model is used for
forecasting and for simulating alternative economic policies.

In contrast with linear econometric models, where analytic methods are
always applicable, in nonlinear models one must generally resort to
simulation techniques.

Purpese of this paper 18 to briefly describe some analytic
simulation techniqﬁes {combination of numerical gimulation and
analytical methods, according to the definition by Howrey and Klein
{10) and by Klein [12]) feor the analysis of the reduced fcrm and of
the dynamic properties of the models. The proposed techniquea, which
integrate the program for stochastic simulation described in (2],
extend, to nonlinear models, methods that are available in the
literature for linear econometric models only. Also for 1linear
models, however, these methods can be sometimes preferred, both for
their greater simplicity in the input of data and for their
computational performances. In particular, these techniques allow a
fast and reliable computation of the following:

- Standargd errors of the reduced form eguations.

- Reduced form coefficients (impact multipliers, in particular) and



covariance matrix of their asymptotic distribution,
- Dynami¢ {interim) multipliers and related asymptetic covariance
matrices.
- Asymptotic variances of the forecast errors.
An example of the application of the above menticned technigues to a
"test" model will be presented in section 2; in this section, dealing
with the standard errors of the reduced form eguations, the analytic
simulation methodology will also be briefly described. The extension
¢f the methodology to the computation of the covariance matrices of
impact and dynamic multipliers and of forecast errors will be shortly
discugsed in sections 3, Y and 5, together with a short comment on the
computational performances; finally, in section 6 the main features of
the package implemented by the authors at the IBM Scientific Center of
Pisa will be presented.

2. Standard Erreors of the Reduced Form Eguatiaons

Let

(z.1) Ay, + Bz, = u, S oe=1,2,....,T

be a linear econometric model in its structural form, where Y, 0 % and
u, are, respectively, the vectors of the endogenous and predetermined
variables and of the structural stochastic disturbancea at time t, A

and B are matrices of structural coefficients (A nonsingular sguare

matrix), Furthermore, let u, be digtributed as
{(2.2) u, ~ N(0,I); cov (u,,u,) = § F all t,s
4, being the Kronecker delta; in other words the vectors u, are

supposed to be independent and identically distributed, with a
multivariate normal distributicon, zero mean and covariance matrix
constant over time,

The estimated structural model is
2.5 Ay, + Bz, = q,
where Gt are the estimated residuals and
(2.4) o= o1/00%4,9,)
is an estimate of the covariance matrix of the structural disturbances
(or, that is the same, of the structural form equaticns).

The restricted reduced form (i.e. the reduced form dexived from the
structural, which takes into account all the restrictions on
coefficients} is:

- -t
(2.5) Y, = A'Bz, + v,
where -
{2.86) v, = A'u,

T
is the vector ¢f the reduced form disturbances at time t. It 4is

clearly
(2.7) v, ~ N(0,A'ZA'Y
50 that an estimate of the reduced form covariance matrix {2} is
immediately available as
{2.8) 9 = AEA
provided the estimated A is nonsingular,
If the model is nonlinear, equation (2.8) cannot be applied. 1In
fact, in the nonlinear case, for the structural econometric model

(2.9} f(n ,zr,a) =,

{where a is a vector including all the structural ceoefficients,
because a clear distincticn between coefficients of Y, and
coefficients of z, , i.e. between the elements of A and B, is no more

pessible}, an explicit analytic expression cf the reduced form

(2.10) vy, = gtz .a,u,)

i8, in general, unknown. Nevertheless, the covariance matrix of the
reduced form equations can be computed by an analytic simulation
procedure. This procedure is based on a nonexplicit linearization of
the model in the neighbourhood of the solution peint corresponding to
the period t under examination. Tt 1is clear from eguatiocns (2.5) and
{(2.6) that the elements of the matrix X' (such that A'u,=v, are the
raduced form disturbances) are the vartial derivatives of the
endogenous variables with regpect to the structural disturbances at
time t (elements of the vector ur]. These derjivatives c¢an be computed
via numerical simulation, stored in a matrix 5: and the reduced form
covariance matrix (0) at time t can be computed as:

(2.1} fi, = D,ED}

where I is estimated as in (2.4), given the additive hypothesis on the
structural disturbances in (2.9). It must be pointed out that, while
in case of linear models, being D,=A”, b, will be constant, for
nonlinear models D, (and consequently ©,) will be time-varving, so
that, in egqguation (2.11), the subscript t has been introduced, The
computation of the ﬁ, matrix (partial derivatives of the endogenous
variables, with respect to the structural disturbances, in the
solution point at time t) required by the analytic simulation methed,
can be performed using. finite increments on the structural
diaturbances. More exactly, first a deterministic contrel solution is
computed, at time t, with all the 4, set to zero. Then a value ¢ is
assigned to the disturbance cof the first eguatien, all the other being
still zero, and the model is solved again. The procedure is then
repeated for all the structural stochastic equations and the
differences between the disturbed solutions and the control solution,

divided by the values adopted for ¢, supply the numerical values of



the partial derivatives. The way in which b: is computed ({by
numerical simulation) and the use of equation (2.11) define the
analytic simulation procedure as a combination of numerical simulation
and analytical methods. The proposed procedure, when applied to
linear models, is an alternative to the use of equation (2.8). The
advantages in using analytic simulation technigues are related to the
fact that, for medium or large-size models, the econometricians
generally uge the standard Gauss-~Seidel iterative algqorithm for the
solution, expressing the model as a set of equations, each equation
being normalized with respect tc a different endogencus variable. In
such a case it is much easier to compute the ﬁ‘ (=K'} matrix by
simulation, rather than to invert A; in fact, for the inversion of the
© A matrix, the model should be expressed according to (2.1}, which
involves the practical preblem of the correct correspondence between
variables and coefficients.

For nonlinear models, an alternative way of estimating the reduced
form covariance matrix (ﬁ‘) is based on the satochastic simulation of
the model [#]. Without entering into the details of this methodology,
it is important to remark that, by means of stochastic simulation, the
accuracy of the estimates (asymptotically exact), increases with the
number of replications; the analytic simulation procedure, on the
contrary, is not exact, but involves (via linearization) a systematic
approximation,

In order to check the size of this approximation, for some
variables of the nonlinear Klein-Goldberger model (revised version by
Klein [11], estimated by 25L5 with U4 principal components), the
standard errors of the reduced form equations have been computed by
means of the analytic simulation' procedure and by means of the
stochastic simulation approach after 50, 500, 5000 and 50000
replications. The results are displayed in table 1.

From table 1 one c¢ould get the atrong impression that the
stochastic simulation results converge to those of analytic simulation
as the number of replications goes tc infinity. This is of course
impossible, due to the nonlinearity of the model, but clearly gives an
idea of the great accuracy of the analytic simulaticn mwethed, which
requires one control sclution and as many disturbed solutions as the
numpber of stochastic equaticns (16, for this mecdel).

In regard to the computational performances of the analytic
simulation procedure in estimating the ) matrix, it must be remarked
that, in case of linear models, the computation time required by the
procedure is comparable with that reguired ky the use of the

fanalytic) formula (2.8). TIn case of nonlinear models, the comparisen

ke’

Table 1
Klein-Goldberger Model
Reduced Form Standard Errors at 1965

¢d = consumption of durables; X = gross national product;
W = wages and salaries and supplements to wages and
salarieg; Pc = corporate profits including inventory
valuation adjustment; p = implicit GNP geflator.

Standard Exrors

Variab. Computed Stochastic Simulation Analytic
Name Value Number of Replications Simulation
50 500 5000 50000
cd 55.33 2.78 2,49 2.44 2,42 2.42
X 530.1 9.05 8.4 8,52 8§.50 8.53
3190.8 5.24 4,77 4,73 4.77 4,78
Pc 41,97 6.4 6£.,2% 6.16 6,11 6.11
P 1,225 .080 .035 ,036 .036 .036

between analytic and stcchastic simulation is, in general, largely in
favour of the analytic simulation procedure; in fact, this procedure
supplies results whose accuracy 1is similar to that of the results
obtained, in a much more expenaive way, wvia stochastic simulation
after a very large number of replications, For example, the results
displayed in table 1 require, on a computer IBM/370 model 168, less
than one second of CPU time for analytic simulation, 6 zeconds for 500
replications of stochastic aimulation and about 10 minutes £or 50000
replications.

3. Impact Multipliers and Asymptotic Standard Errorsa

Following ©Dhrymes [6] and Goldberger (8], the reduced form
coefficients are defined as the partial derivatives of the conditional
expectation of each current endcgenous variable with respect to each
predetermined variable, with all other z's held constant; properly
apeaking, the impact multipliers are the subset of the reduced feorm
coefficients correaponding to the current exogenous variables, but in
this section the two terms will be indifferently used.

For linear models, the matrix of the reduced form coefficients (M



can be directly estimated by the matrix preduct -A'B, as follows from
equation (2.5). For nonlinear models, as pointed out in the previous
section, the reduced form is unknown; disregarding the effects of
nonlinearitiea on the conditional expectation of the endogenocus

variables (effects which are always very small, according to the

experience of the authors), the computation at time t, of the
multiplier of the j-th exogencus variable with respect to the i-th
endogenous variable (ﬁﬁt)' can be performed, as in [12], wusing
simulation techniques, by the ratio:

S 4 __c
(3.1) T = WY Vo )/ 2 g )

whare 95 is the deterministic control solution corresponding to the
control value z; and i: is the disturbed sclution corresponding to the
value z; =zL +¢, all the other predetermined variables being equal to
their control values.

Attempts to derive the small-sample distribution of the impact
multipliers have been performed using Monte Carlc methods (see, for
example, (15)). These methods, however, have a major drawback in the
possible non-existence cf finite moments in the small-zample
distripution of the structural and reduced form coefficients, even for

linear models when estimated with simultaneous consistent methods

{131, (14]. Truncation must be, therefore, performed on the
distribution of the pseudo-random disturbances to be wused in the
Monte Carlo experiment {17,p.70047], thus involwving some
arbitrarineass.

As suggested by Theil [18,p.377], resort to asymptotic distribution
could be sometimes preferable; under quite general asasumptions, it can
be shown that the asymptotic covariance matrix of the reduced form
coefficients ia given by
(3.2) ¥, o= g2,
where J, is the matrix of the second order derivatives, properly
arranged, of (2.10) with respect to z; and a, (379‘/3216ak), computed
in the point (zh,a,u,=0], and A is the asymptotic covariance matrix of
all the structural coefficients.

The problem of computing the asymptotic covariance matrix of impact
multipliers (¥) was dealt with in 1961 by Geldberger, «Nagar and Cdeh
{9) for linear models (in which case ¥ is not time varying): they have
proposed the explicit formula
(3.3) Vo= (A'e(r 110 A (K'e(fr 1)
where ¢ denotes Kronecker product; the above formula, In order to be
applicable to nonlinear models, would require an explicit
linearization of the model, thus making extremely laborious the

process also for small models. Even in case of linear models the

procedure is guite laborious; this is probably one of the reasons of
the guite different and contradictory results displayed in the
literature, for the same test model (3], [5!, (7), [%81, (16]).

Analytic simulation cverccmes most of the difficulties, allowing a
fast and reliable computation, even for moderately complex models and
with no difference between linear and nonlinear models: (aqu/aszak),
in fact, can be simply computed in the point (zﬂ,é,ut=0), using finite
increments, as
(3.4) Olag, /b8,) /ag;
thus requiring, for the complete computation of the j: matrix,
approximately as many solutions of the model at time t asg the product
of the number of exogenous variables with the number of estimated
structural coefficients,

4, Dynamic Multipliers and Asymptotic Standard Errcrs

The dynamic properties of an econometric model are related to the

presence of lagged endogenous variables in z, {(vector of the
predetermined variables): in thig case equatfion (2.1) could be more
properly rewritten as:
(4.%) Ay, + Bx, +Cy_  =u,
where B is the matrix of the structural coefficients of the exogenous
variables x, and C is the matrix of the structural coefficients of the
lagged endogenous variables Y, -

In analeogy with the impact multiplier, the k-lag dynamic (delay asg
in [8], or interim as in (16)) multiplier, could be defined a3z the
partial derivative of the conditional expectation of an endogencus
variable at time t with respect to an exogenous variable at time t-k.

The k~lag interim multipliers in linear models could be computed in
the following way:

(.2) fi, = (-A'EM-R'B);

for nonlinear models, the computation of the elements of ﬁ, is always
performed using simulation techniques, by the simple ratio ({3.1),
where instead of zﬂ and zﬁ, the values of x; at time t-k are used.

Analytic simulation can be profitably wused for estimating the
covariance matrix of the asymptotic distribution of dynamic
multipliers. 1In fact, even if Schmidt ({[16) gave an analytic solution
to the problem, the proposed method (revised by Brissimis and Gill
{51, (7]1) is applicable to linear models only, and has the practical
drawbacks of requiring the use of large sparse matrices whose non-zero
elements are hard to be filled automatically and of requiring a large

computation time. For example, for the Klein-T model, the computation



of the standard errors of interim multipliers up to lag 15 using the
method proposed by Gill and Brissimis (7] requires about 6 minutes of
CPU time on a computer IBM/370 model 168; an ad-hag program which uses
the analytic simulation approach performs the same computation in less
than one second.

The analytic simulation procedure used for this purpose, is quite
similar to the one discussed in the previous section; the only
difference is that the partial numerical derivatives must be computed
with respect tc the values of x; at cime t-k,

5. Asymptotic Covariance Matrix of the Forecast Errors

Under the assumpticn ¢f independence among structural disturbances
in different perieds, the analysis of the forecast error, or briefly
of the forecast, can be performed decomposing the error into two
independent components: a first component that depends only on errors
on the estimated coefficients and a second component that depends oﬁly
cn the vector of the structural disturbances.

Following the mentioned decomposition, for linear models and in
cne-step simulation, Goldberger, Nagar and Odeh [%]) have proposed, for
the estimation of the covariance matrix of forecasts @, the following
formula:

(5.1 ® = FPF' + 9

where F is a matrix ccntaining, in a convenient crder, the values of
the predetermined wvariables in the forecast period, ¢ is the
asymptotic covariance matrix of the reduced form coefficients defined
in (3.3) and 0 is the covariance matrix of the reduced form
disturbances defined in {(2.8).

The previous formula could be applied also to nonlinear models: in
fact, using analytic simulation techniques, eqs. (3.2,3.4) and (2,11)
will provide, respectively, an estimation of the matrices ¢ and Q to
be used in (5.1}, It ig, however, much simpler and more precise, asa
suggested in [1], to compute directly the asymptotic covariance matrix
cf the component due to the errors on the structural coefficients
{i.e. F¥F'), using an analytic simulation approach, without the
intermediate step of the computation of §, covariance matrix of the
reduced form coefficients. This method is simply based on the
numerical computation of first order derivatives of the endogenous
variables with respect to the structural ccefficients. In this way it
is not necessary +to ccmpute the second order derivatives involved by
the matrix ¥, thus ensuring a greater numerical accuracy and a

considerable shortening of execution time (for example, 0.05 seconds,

instead of 10 seconds of CPU time, for the linear Klein-I model).

6. Main Features of the Package

The package is written in FORTRAN IV and ASSEMBLER languages; its
basic structure is similar to that described in [2].

For each model, two data sets must be prepared: one is a FORTRAN
subroutine containing the model's equaticns in suitable form for the
Gaugs-Seidel solution algorithm; the cther 1is a data set containing
the time series of the endogenous and exogenous variables, the
estimated coefficients, residuals and asymptotic covariance matrix of
the structural coefficients.

The additional analytic simulation techniques have been introduced
into the pregram in form of four separate subroutines ({(less than 1000
FORTRAN statements on the whole} which perform, respectively, the
computations described in sections 2, 3, 4 and 5. 512K of main
storage are generally sufficient for the simulation of medium-size
models (for example, the already mentioned Klein-Goldberger model).
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