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THE ASYMPTOTIC DISTRIBUTION OF POWER SPECTRA
IN DYNAMIC ECONOMETRIC MODELS

1)

by Giorgio Calzolari

Centro Scientifico IBRM, Pisa

ABSTRACT

Starting from a consistent and asymptotically normally distri-
buted structural estimate of a dynamic econcmetric model, this
paper provides an analytical derivation of the asymptotic distri-
bution of spectra and cross spectra of the jointly dependent

variables.

A numerical example is provided on the Klein-I model estimated

by Full Information Maximum Likelihood.

1) This work has been partially carried out by the author at
the University of Bonn, Institub fir Gesellschafts- und Wirt-
schaftswissenschaften, with a grant of the German Research

Foundation (DFG - SFB 21).



7. Introduction

Spectral analysis technigques are often applied to econometric
models to investigate their dynamic properties and for linear
models 1t is a well-known matter that there are advantages applying
analytical methods which are not subject to the sampling varia-

‘bility typical of simulation experiments [3, p. 311].

However, considering that the computatlion generally starts from
estimated values of the structural parameters, thus invclving
estimation sampling errcrs, it 1s c<¢lear that errors are trans-—
mitted to the computed spectrum matrix even through an exact

analytical algorithm.

It will be shown in this paper that, 1f the structural parameter
estimates are consistent and have an asymptcotic multivariate
distribution, also the power spectra and cross-spectra of the
endogenous variables have, asymptotically, a Jjoint multivariate
normal distributicn (section 2) and explic¢it analytical formulae

will be derived fro theilr asymptotic covariance matrix (secticn 3).

These formulae are applied to the Klein-I medel, estimated by
Full Information Maximum Likelihood, and the results are displayed

in section 4,

Statistical inference and test of hypotheses is, however, quite
difficult from the results of section 4, as the estimated values
ot the power spectrum of an endogenous variable at different

fregquencies are not independent random variables. Furthermore,



the infermation which most interests the applied econcmist is,
usually, not the value of spectrum at various freguencies but
the value of the frequency corresponding to the peaks (relative
maxima)of the spectrum. ror these reasons 1n section 5 a method
to compute the asymptotic standard errors of the "peak frequen-

cies" is described and applied to Klein's model I.



2. Main assumptions

Let

+ = =
(1) Ayt + th Cth1 Uy t 1.2,...,T
be the representation of a linear dynamic¢ model in its structural

form, where:

Y. and Y _q are the (m x 1) vectors of the jointly dependent
2)

endogenous variables at time t and t-1 respectively (d=m are
stochastic equations and the remaining m-g are nonstochastic
definitional eguations);

X, is the (n x 1) vector of the exogenous variables;

u, is the (m x 1} vector of the structural disturbances at time t
(the (m-gx1) subvector, corresponding to the definitional non-

stochastic equaticns, if any, is identically zero};

A, B und C are matrices of structural coefficients with dimensions,

respectively, {(mxm}, (mxn) and {(mxm).

The mcocdel is supposed to be stable and the disturbance terms are

supposed to be distributed as:

2) There is no loss of generality in this representation, as alsc
higher order lags can be reccnducted to the first order by the
appropriate insertion of definitional nonstochastic equations
[7]; this assumption, however, is only to simplify notations

but is not strictly necessary in what follows, if the formulae

are conveniently modified.



(2) U ~ N{(O,%); Coviu

‘ 8 z

g tt!

The (gxg) submatrix of I, corresponding to the disturbances which
are not identically zero, is supposed to be a positive definite
symmetric matrix, so that £, in its entirety, can be represented
as £ = $'S, where S is a lower triangular (mxm) matrix with not

more than q(g+1)/2 nonzero real elements.

The spectrum matrix of the disturbance process is:

= - 1 gg,
(3y F (w) =51 5y S5

defining

(4) P = P(w) = (Ate “YC) and its conjugate P=P(w) = (a+e *C),

the (mxm) spectrum matrix of the jointly dependent endogenous

variables is given by:

1oy " lg g (pret)

(5) F=Fu) = o

(more exactly it is the component of the spectrum matrix contri-
buted by the structural error process, disregarding from any

random process associated with the exogenous variables [2, p. 526]).

If estimates of the structural parameters A, B and I {(and there-

fore S) are availlable, the estimated spectrum matrix is given by:

(6) F = Flu) = $® o= Sbaeto) TTa st aretey T



Let © be the (3m2X1) vector of all the structural parameters in-
volved in the previous equation (obtained by stacking the columns

of A, C and 8):

vec A vec A
(7) 8 = vec C ;9 = vec C
vec S vec é

and let be, asymptctically as T =+ =

(8) T (6 - @) ~ N(O,¥).

Rescort can be made to the theorem on the asymptotic distribution
cf functions of random variables to prove immediately that,
asymptotically as T+= [5, p. 322]:

{9) VETvec F(w) - vec F(w)] ~ N(O,0(w))

(10} ¢(w) = G(w)¥ G'(w),

where G(w) is the (m2X3m2) matrix of partial derivatives of the

elements of F(w} with respect to the elements of 6:

g {vec Flw))
a8’

(11) Glw) =

An explicit expression for G{(w) must now be derived.



3. The asymptotic covariance matrix of spectra and cross spectra’

Let fl,j = fl,j(w) be the 1,J-th element of Flw}, ar,s the r,s-th

V,W

element of A, pV w and p the generic elements of P(w) and,

respectively, P_1(w) and © the generic element of %; then,

h,k
from eguaticn (5), it follows that

af
1,3 1 9 lrh j!k —
(12} — [ Lo p , 1 =
3 ' 27 Bar’S - h,k
= - s 5 5 (pl,r ps,h éj,k . pl,h gj,r és,k).
2n . h,k

With matrix notation, equation (12) can be represented as:

1

= - {F'e p + (B

3 (vec F)

m
a(VeC A)r ®F)'I } r

(13}
where I™ is the column (or row) permutation of the (m2Xm2) unit

matrix, obtained as:
T =[I1 e 1 I » iy, e 1 ® lm] ,

where i im are the columns of the (mxm) unit matrix I.

‘Il 12!"'!‘

The differentiation with respect to the elements of C can be
performed in a similar way and leads to:
3 (vec F)

(1) 3{vecC) " ~ - le

“luge pTT Lt 5T TRy 1™

and the differentiation with respect to the elements of 5 leads to:




3{vec F) _ 1 =—1 =1 1 m}

T == ' - .
{15) 3(vec &) 21 @(P S';+[{(P S")eP ]-I

Equations (13), (14) and (15) provide an explicit expression to

G{w), which is simply

B I_a(vec F{w)) 8{vec F(w)) d(vec Flw))
(18) G (w) B(vec A) " 3 (vec C}' 3 (vec S)' ]

and, consequently, to the matrix ¢ (w).

A consistent estimate ¢{(w) can be computed as

-~ -~ o~

(17) P(w) = GlwyY G' (w),

where G(w) is obtained from eguations (13), (14), (15) and (16)
by replacing the structural parameters with their consistent
estimates; the division for the sample period length provides
d{w) /T, estimated asymptotic covariance matrix of the spectra

and cross spectra at frequency w.



4. A numerical i1llustration on the Klein-I model

The procedure above discussed has been applied to the Klein-I
model estimated by Full Inforxrmation Maximum Likelihood (FIML).
The estimation method requires some additional details. The
reader, in fact, has perhaps noticed that the procedure developed
in sections 2 and 3 requires, among the input data, an estimate

-~

of the asymptotic covariance matrix (¥) of the complete vector of

structural parameters involved in the computatiocons (é, whfch
includes the elements of A, E and g (or E). Such a matrix is not

a "standard outcome" of the estimation methods generally adopted
for simultaneous equation systems, whose outcomes are generally
the elements of i, g and é,an estimate of thelr asymptotic co-
variance matrix (a diagonal block of ;, apart from the elements
corresponding to é) and the matrix E (which can be simply computed
from the structural residuals); in particular, this hoclds fqr

Full Informaticn Maxirmum Likelihood, when, as usual, estimatiocon is
performed by maximizing the concentrated log-likelihood function.
1f, however, FIML estimates are performed by maximizing the
complete log-likelihood function with respect to all the structural
parameters, the desired estimate of @ follows (as ensursd by the

general theorems on maximum likelihood; see, for example, [ 6,

pp. 392 - 3961).

This procedure has been applied to the Klein-I model, where the

structural parauneters to be estimated are 18 3).



With the so obtained é and ;, the power spectra of all the endo-
genous variables, and thelr asymptotic standard errors have been
computed at 24 values of w from ¢ to w; the results for the
variable Y (National Income) are displayed in table 1. It
is clear that, while the estimated spectrum shows a well defined
peak, very little can be
said about significance of such an estimate, since the asymptotic
standard errors are always very large.

Onercannot, however, infer from the
results displaved in table 7 that a peak c¢ould be expected at
any value of w between O and w. The values of the power spectra
computed at different frequencies are, in fact, non-independent
random variables. It is therefore possible that, even in presence
of very large errors on the values of the power spectra, the shape
of the spectrum and, in particular, the positicn <of the peak
{or peaks ) do not change very much. Since this last seems to be
the information which mainly interests the applied economists, an

explicit algorithm is proposed.

3) 12 structural coefficients and 6 elements of the 3x3 lower
triangular matrix é; the use of g, such that é'é = %, has
been preferred to the direct use of 5 tc avoid the problems
connected with the symmetry of £ in the computation of the
partial derivatives [ 6, p. 39 1; of course & and the diagonal
block of @ corresponding te the structural coefficients are
exactly egual to those obtained by the maximization of the
concentrated log-likelihood function; the numerical results

are avallable on request from the author.
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5. Peak frequency and its asymptotic standard error

This section deals with the random variable "pesak frequency".

It shows that, for each endogenous variable, it has an asymptotic
normal distribution and, finally, shows how to estimate its
asymptotic standard error.

*

1

endogenous variable presents a relative maximum (peak ; mdltiple

Let w, be the frequency at which the power spectrum of the l-th
peaks are allowed, since the procedure below can be applicd in

a neighborhood of each of them). It will be
3f (w,O)

1,1

' ) & =0,
Jw

dw (_k)l

(18) [

where use has been made of the notation f (w,8), instead of

l'l
fl l(w), to put into evidence the functional dependence on the

structural parameters.

*

Also wy is clearly a function of the structural parameters 6; let
(19) T o= w, (8)
Lul = wl

denote this {(unknown) scalar function.

Since asymptotically, as T-o«, VT(6-0)~N(0,¥), it will be,

asymptotically,

(20) v%kizww*

1) ~N(O,d,¥d ),

1



where

(21) d, =

An explicit expression for dl can be derived as follows.

For any value of the structural parameters, due to the previous

definition of wl(e), it is identically

(22)

Differentiation of equation (22) with respect to the structural

parameters 6 provides

6
) 3 fl,l . 3 fl,l Bwl( ) 6
dwas' 2 a8 d
Jw
5o that
2 -1.2
2a) 4 - awl(e) _ a fl,l 3 fl,l
s’ 5 2 Jwaoa'
w
Bzfl .
2’ is the 1,1-th (diagonal} term of
dw
2
(25) 2 E_ g 470,
2
Jw
. . o -iw -1 . BF o
where, defining R = ie P CF, s0 that ™ = R+R',
. 4]
(26) 2z = 9B _de-tup=ToiopsRyin

dw



2

a fll
éwael is the (m(l—1)+l) —-th row of
az(vecF)
(27) TR TN = [WA(U«):G) Wc(w,e) WS(LU;G)]:

P
where, defining Q@ =P CP °,

(28)  Wy(w,8) = —(R*K)e P ~1 e "WEF' @0+
+ [1e* D @F-B e (R+R') 1-1M
(29) W (w,8) = e "{ifle BT -(RR)e BT -1 e VFs o }-
e [i(P er)-i ¥ O eF+P '®(R+R")1-1M)
(30)  Wglw,®) = gre U (©s)+[(F 'se Q  1-1"-
—3§ieiw{ Q @(P 5"+ ({0 sep '1-1M)

A value wj which satisfies equation (18) can be easily found by
means of a numerical algorithm, such as Newton. Cnce such a value
has bheen computed, it can be introduced 1ntco equations (25) and
(27) and the resulting él can be used to ccompute the estimated
asymptotic variance of ;1, which is éi @ al/T.

The application tO the Klein-I model has led to the results dis-
pliayed in table 2; for 5 wvariables the estimated spectrum pre-
sent only one relative maximum (which is also the absolute

maximum) and the corresponding frequency is displayed together

with the estimate <f its asymptotic standard error.
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For the wvariable Capital Stock, K, the procedure cannot be applied,

as the estimated spectrum nas nc peak (it is just declining from

w =0 to w= I).

It is clear from table 2 that, even if the peak freguencies have
sUfficiently large standard errors, the position of the peaks 1is
not so indefinite as it could appear from a first glance at the

standard errors of table 1.
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TABLE 2

Klein-I model estimated by FIML. Bstimated Peak Freguencies and

Asymptotic Standard Errors

Variable ;* aw*
C L2926 L1214
I -3224 .096
W, L2987 114
Y L3067 . 106

P .3193 .094



Appendix 1: An alternative numerical algorithm

The relative complexity of the formulae in sections 3 and 5 sug-
gests to be quite careful before "releasing" numerical results
that could be completely wrong {(the literature is rich of exam-
ples) : Even 1if no absolute certainty can be reached, to make
assurance double sure the computations have been also performed
by means of an alternative numerical algorithm, which makes no
use of explicit formulae. This alternative method 1s simply based
on the numerical computation of the partial derivatives of the
elements of the spectrum matrix (and of the peak frequency) with
respect to the structural parameters as ratios of finite incre-
ments; it requires to repeat the computation of E(m) (and of @i)
each time giving an increment to one different structural para-
meter [(the procedure i1s analogous to one of those successfully
experimented, for other purposes, in [1]). The algorithm empi-
rically showed a great stabkility, as far as the choice of the
finite increments to compute derivatives was concerned. In the
case of the Klein-T-model, this method has led to the same results
as the analytical method up to, at least, 5 decimal digits; it
takes a shorter computation time and, what is much more important,
the input data and the program are considerably simpler. The
FORTRAN Program ("ad hoc" for the Klein-I-model, consisting of
approximately 200 statements) is available on reguest from the

author.



Appendix 2:

a) Procf of equation (13)

Equation (12) follows from the differentiation of the 1,Jj-th element
of the matrix F {eguaticn (5)) with respect to an element of A, sim-

ply recalling that [6,p.33]

5 1,h
(31) ap_ _ _
IPr,s

l1,r s.,h
P B

The equivalence of equations (12) and (13) c¢an be easily proved

element by element, recalling that afl j/aa is the {((4-1)m+1,

r,s

{s=1)m+r)—-th element of the matrix on the left hand side of (13)

and that:
1 s,h =3,k

(32) —=— ¢ = G ! ! = f
2T hok h,k P P S,
1 i,h =5,k _

(33) 55 ; i h,x PP =6

The multiplication by the I™ matrix produces, on the second term of
equation (13), the column (or row ) permutation which ensures the
element by element equality with the second term on the right hand

side of equation (12).

Equations {14) and (15) can be proved analogously.

b) Proof of equaticns (25), (26) and (28)
‘ -1 ——1
3F _ 8 =1 o,z =1,,, _ 0P ==1.,, =1. 3(P ) _
(34) re - e [P (P y'] o= o T (P })'+ P I o
_ o, 5-1 3P -1 =1, -1 5-1 8P -1, _ =
= (=P R Yy (P )" + P L{-P ™ P })' = R+ R



where use have been done of [6,p.33):

-1 9P 1

(35) . To = =P YN P
‘and

ap L —iw
(36) 55 = ie C

The further differentiation of R with respect to w leads to % of

equation [26) .

Equation (28) follows immediately from the differentiation of egua-
tion {13) with respect to w. Analogous 1s the derivation of (29) from

{14) and (30) from (15).
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