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Abstract

We show in this paper that the treatment of conditional heteroskedas-
ticity inside nonlinear systems of simultaneous equations is a sufficiently
manageable matter for some types of multivariate ARCH error structures.
Reparameterization makes it possible to estimate the model by means of
the (nearly) standard algorithms developed in the past and widely used
for estimating nonlinear simultaneous equations where the error struc-
ture is of the i.i.d. type with unrestricted contemporaneous covariance
matrix. The method is discussed in this paper and empirical applications
exemplify the efficiency gains.
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1 Introduction

Various and more or less sophisticated versions of Arcy models are now rou-
tinely applied, with controversial results, to long financial time series in the
attempt of modelling the time varying variance {and passibly covariance) of the
error process. It is sometimes observed that even when a moderate amount of
conditional heteroskedasticity is present, a simple ARCH structure can success-
fully be employed.

Monthly monetary models based on simultaneous equations are employed
by several institutions {e.g. Banca d’Italia, see Angeloni et al., 1992, or Giovan-
nim et al., 1994). In the functional form specification of this type of models, it
is customary that endogenous variables are subject to some ponlinear transfor-
mation, For example the log of a price index may be involved as explanatory
variable in a log-linear equation, while the price index level can be used to
deflate variables of interest in some other equation and in turn it can be an en-
dogenous variable being explained by another equation elsewhere in the system
{or in another system when monetary and real models are kept separated).

When prices or monetary variables such as money supply and interest
rates are involved in a model, even if the series are observed quarterly (e.g.
Engle, 1982) or monthly {e.g. Bianchi, Calzolari and Sterbenz, 1991, Fiorentini
and Maravall, 1994}, it is common to find evidence of possible heteroskedasticity
that can successfuily be removed with Arcl models.

The purpose of this paper is to introduce a simple and yet usefull way of
managing conditional heteroskedasticity in nonlinear systems of simultaneous
equations. The method proposed is a type of multivariate ArcH that, after
an appropriate reparameterization, can suitably be handled with the (necarly)
standard techniques developed in the past and used for estimating nonlinear
sitnultaneous equations with 1.1.d. error terms.

While the hypothesis of conditionally multivariate normal disturbances
leads to a sort of Nonlinear FivL {Amemiya, 1977), if no assumpticn is made
on the conditional density function resort to techniques like Nonlinear 2sis,
Noulinear 3sLs, or Best Nonlinear 3si.s could lead to a kind of semiparametric
multivariate Arcu for simultaneous equations.

The few results available in the literature for estimation of simultanecus
equations with Arcn-Garcl errors are confined to linear systems (and to the
best of our knowledge no exarple of application is available, either with simu-
lated or with real data). They are briefly summarized at the beginning of section



2. We then propose, for ARCH errors, a reparameterization that 1s illustrated
first 10 the context of a single equation {unlvariate case}, vhen for linear simul-
tanecus equations, finally for nonhuear sicultaneous equations, with a vaified
treatment.

Two applications are presented, the first of which 15 an application to
a simple pollinear model, with simulated data. lts purpose is to show the
benefits involved by the appropriate joint treatment of endogeneity and ARrcH
error structure in a nonlinear system of sisultaneous equations (section 3). In
seciion 4 we present the resuits of an application to 8 demand-supply model for
the long term Treasury bonds in [taly based on monthly data.

2 Model Specification and Estimator Proper-
ties

Multiple equation mode!s with multivariate Anci structure of the errors iatro-
duced by Kraft and Engle (1983) and Bollerslev, Engle, and Wooldridge (1988)
are exempiified in che literature. On the contrary, simultaneous equation med-
els with bime varying covarianoe matrix has received only bitle attention. Baba,
Engle, Kraft, and Kroner (1991}, and Harmon (1988) introduced the geaeral
theoretical framework for the SEM-GarcH model.

In a multivariate context the general Ganrch error specification is given by
e=H" e 1id  E(e)=0 Var(e)=1 (1)

where ¢, denotes the n x 1 error vector at time ¢ (n being the nuwober of equa-
tions) and &, is the n x n time varying condstional covariance matrix that is
parameterized as
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by =wech(H) = e+ Y A vech(ei6_) + 3 B, vech(H,_) (2)
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In the siraplest case of n = 2 and Garcua(1.1) error process, the variance
equation becomes
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where Lhere are 21 parameters, and many complicated restrictions need
be 1mpased to guarantee positive definiteness of #, for any ¢,

When the general multivariate conditjonal heteroskedastic covariance ma-
terx is imoposed on the error process, the mimber of Arcu {or GaReH) parameters
increases dramatically with the number of equations (for 5 equaticns still with
GanrcH(1,1) there would be 465 parameters, as obscrved by Harmon, 1988).

To guarantee a more efficient inference some restrictions are usually as-
sumed on the conditional variance parameters. Bollerslev, Engle, and Wooldridge
{1988) proposed the so-called diagonal representation, that still suffers from the
need of imposing restrictions to guarantee positive definiteness of H,.

The set of constraints that, in an unrestricted model, guarantees the vari-
ance covariance roatrix to be positive-definite is in general very hurd 1o denve
analytically, Baba el al. {1991} proposed a representation (Brex} where the
number of parameters is slightly larger than for the diagonal representation,
but a positive definite covariance matrix 15 implied by the pecubar type of pa-
rameterization adopted.

Bollerslev {1980) reduced even more the number of variation free param-
eters introducing the fixed cofrelation Garch, where the covariance matrix is
time varying but the correlation structure remains constant over time.

in this paper we propose another approach. We stari from a system of
simultaneous equations and we generalize it to allow the tractability of some
multivariate ARCH error structure. We shaw that a linear Sem with AreH errozs
can be transformed in a switable way in a nonlinear SgM with constant covariance
roatrix; while if we start with a system of nonlinear stmuitaneous equation with
conditional heteroskedasticity the reparameterization we adopt leads to another
svstem of nonlinear equations, which has a more compheated struciural form,
but the error term are no more heteroskedastic. The important point 1o be
stressed is that the introduction of ArcH errors I 2 nonlinear Sgm does not
affect very much the analytical tractability of these type of models and some of
the usual estimation techniques remain essentially the same

2.1 The univariate case

In the simple upivariate linear case, with ArcH(L) errors, we have

= b+ 0220+ & € II{—!, o] N(u.h;} Ny = g + Qj{ll_-l (4)



$0 that ¢, can be written as

€ = \ﬂQ’O‘}‘Qlf?ﬁl € € iid. N(O,l) (5)

Inserting the above expression in equation (4), and rearranging terms, we get

Ye — by — bz _
Ny el ©)

Let us call ag = 0%, @1/a0 = b3, and oe, = u, 1i.d. N(0,¢%). Equation (6) is
reparameterized as

Wb bz
\/T-F bg(y;_l — b — bgz,;,)z

where z is the vector of all exogenous and lagged dependent variables (r, =
(1, 2, %1|"), and @ = [by,bg, by]" is the vector of coefficients, two of which (b,
and b;) come from the mean equation and one (b3) comes from the variance
equation. The ervor terms u, are i.id. N(0,0?), with ¢2 unknown.

=1 — f(yt,xha) =11 (7)

For an ArcH(2) specification of the error structure, a similar reparameterization
with as/ag = by would lead to

e — b] - b2zz
V14 bs{yecr — by — bazem1)? + belyios — by - byzi_o)?

=U — f(ya.:r:, 0-) =1u

(8)
where T, = |1, 2, Yoy, Ye—al’, @ = [by, by, bs, byl and v, i.iid. N(0,¢?). Analogous
result follows from reparameterization of a general Arcu(q).

in all cases we get a nonlinear implicit equation with additive i.i.d. error terms
with unknown variance. The characteristics of this equation are such that
it cannot be viewed as a nonlinear regression model. In fact the Jacobian
Jo = 8u, /8y = 8f. /Oy is a time dependent function of the coefficients, while
foc the standard univariate nonlinear regression y, = q(z¢, 6} + w, the Jacobian
Jo would be equal to 1 for every t, and therefore M.L. would be equal to L.S..

As an alternative to maximum likelihood, Engle and Gonzdlez-Rivera (1991)
consider a semiparametric extension of GArcH models, retaining Bollerslev’s as
a general form for heteroskedasticity, yet allowing the density of e to be of
an unknown form, and using nonparametric estimates of the score function of

¢, to estimate the parameters of & Garcu process. They report Monte Carle
simulation results showing that their method outperforms the Gaussian pseudo-
maximum likelihood, but it does not seem to be adaptive, in the sense that it
is not fully efficient with respect tc the GarcH process parameters.

Gonzdlez-Rivera (1993} develops sufficient conditions under which the former
estirnator behaves better then QML and derives a family of distribution fune-
tions in which the variance equation parameters can be estimated adaptively.
Linton (1993) examines this semiparametric model further, considering only the
sitnation where the unknown error density is symmetric about zero and con-
structing an estimator asymptotically equivalent to Mie. Drost and Klaassen
{1993) point out that a complete adaptive estimation of the conditional variance
parameters is not feasible for the original Garch formulation due to the pres-
ence of & scale parameter (the unconditional variance of the disturbance term);
they present a reparameterization of the model, which resembles the GarcH-m
model and allows for a semiparametric estimator which performs better then
Qmr and whose difference from the MLe becomes negligible if the sample size
is large.

2.2 The linear simultaneous equations case

Let us suppose to deal with a linear system of simultaneous equations and t¢
impose some sort of muitivariate ARCE structure on the error terms (without yet
specifying the type of multivariate structure). For example, we may consider a
standard textbook model for demand and supply (y; is price and y, is quantity)

yre =bii 4+ bioyae + bisa, e

You = bay Fboouns + 023272 teay

where both €; and ¢, are Arcu(1)}

\101,0+Q‘1'1€%,t;1 81'; = 1,‘1 +b1‘46‘f‘t_1 Uit Uy i..i.d. N(O;o'l,l)

(10)

v 20+ Clg‘légJ_l €y = J1+ bZ.df%,:fl Ua, Uz i.id. N(O, 02’2)
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having posed o1 = @i, 022 = 020, b4 = @11 /a0 g, and by = ag /@20

If we do not assume wu;,, and uz, to be contemporaneously uncorrelated, sub-
stitution of (10) into (9) gives

Yre—bii ot 321

5 — Uiyt
V I+ alyni—1—b11—b1 2y, —b1 321 -1)? ! (a1
yoe—ba1—baow i —be 3224 =y,
\/1+5'2,4(92,t—1—52.1—5'2.231,1-1 ~bo,322,1-1)* '
U a a
“liaa N|O, [T T (12)
(37 a1 O22

We have thus obtaned two equations still simultanecus, but nonlinear, each
with 4 coefficients instead of the 3 it had at the beginning, with error terms
that are additive i.i.d. multivariate normal with unrestricted contemporanecus
covariance matrix. This turns out to be a particular type of multivariate ArcH
error siructure introduced ioto the criginal model.

The advantage of this reparameterization 1s that the final notation is the one
traditionally adopted for simultaneous systems of nonlinear implicit equations
with 1.i.d. error terms, that is a notation usually employed for macroeconometric
models in structural form, and for which a huge literature is available. For
example our two reparameterized equations {11) would perfecily fit the notation
by Amemiya (1977)

S = Nilgesea) = [“‘-‘ ] iid N(0,Z) (13)
S = folp @) = [ uz,

where a) = [b||1,b[r2, b1_3,b|_4]’, ay = |bg.l‘b212,b2(3,bg_4]", and ¥ is the unrestricted

contemporanéous covariance matrix, constant over time, that can be estimated

in the usual way from the structural form residuals. We observe that the two

equations do not share common coefficients, that is to say there are no cross-

equation restriclions.

Asswming for a model like (13) a multivariate normal distribution of the error
terms, Amemiya {1977) shows that a fully efficient estimate of the coefficients
(nonlinear FiML) can be obtained by iterating to convergence an instrumental
variables method

by = b — [ Gy (Bl ® 1) G TGl (B0, 0 1) vecUem  (19)

where ¢ = [a},a4|" 15 the vector of coefficients {(which in our case are 8), G is
a block-diagonal matrix whose blocks G, (i = 1,2) have rows g,, {obtained as
gi. = 8f,./8a.); the block-diagonal matrix of instruments ¢ has blocks

(£

where 9g../0ui; = (8g:¢/ 0y} (31 /0%) ", “, all derivatives being evaluated at agm)
and U(,,.) {this choice for G is not unique, as shown in Calzolari and Sampoli,
1993).

When no assumption is made on the functional form of the density of the error
vectar, for general systems of nonlinear simultaneous equations one could build
other instruments G that, if used in equation (14), would produce some kind of
semiparametric estimator, such as Nonlinear 3sts (G is essentially G evaluated
at U = 0), or Amemiya’s Best Nonlinear 3sts (G is the conditional expecta-
tion of G, whose feasible forms were proposed by Newey, 1990 and Robinson,
1991). These forms of instruments for semiparametric estimation seern to be
not suitable for our case. The problem of semiparametric estimation and of the
semiparametric efficiency bound in this context deserves further investigation.

2.3 'The nonlinear simultaneous equations case

[n the previous section we started with a linear model with some form of con-
ditional heteroskedasticity and, after reparameterization, we ended up with a
nonlinear model without heteroskedasticity. When the model specification 1s
nonlinear at the outset, the same ARrcH structure of the disturbances does
not imply any further complication, provided that our reparameterization is
adopted.

Suppose that our model is made of two simultaneous nonlinear implicit equa-
tions, whose structural form will be indicated as

thy = U—'l(yuItabl) =€

16
wye = wallh, ¥, b2) = €y (16)

where y, = [y1s, y2.]' 15 the vector of jontly dependent endogenous variables at
time ¢, x, is the vector of exogenous and lagged endogenous variables, b, and b,

7



are the vectors of model coefficients, and ¢, is the vector of Arcu(1) disturbances
as specified in the previous section.

After reparameterization, defining the additional coefficient for the first equa-
tion b} = o, /a0, and for the second equation b3 = og,fazp, we get the
structural form equations

wh (y0,2e, 00 ) —
A R TPl L e (17)
wo (Yo, Te b2) — gy o1 T2
V hbilwa (g1, 2o b))
that can be written as
fie = filye, g, a1) = ue (18)

for = falye, 3o, 02) = ugy

where a, = |b}, &[], and a; = [b}, b3], that Is two nonlinear simultanecus implicit
equations, whose additive errors are i.i.d. normal with unrestricted covariance
matrix .

An Arcn(2) error structure would simply introduce an additional coefficient in
the two equations (18); Arcii(q) is analogous.

2.4 Fixed correlation multivariate ARCH

Proposition 1: Let wi(y, 2., b) = €, with h;y = a0 + O,’JE?,[_E denote a
generic equation in the original nonlinear system. After reparameterization the
equation becomes f,(y, z, %) = w,, being the vector of all error terms in the
systemn u, i.i.d. N{0,%). Apart from simultaneity, the error structure in the
reparameterized model is equivalent to the Bollerslev (1990) fixed-correlation
multivariate ARCH with p,; = ¢:3/,/0:.0, ;. o

All we have to show is that

O hige _
= =4 t=1,...,T 19
SIS, v high Pig Vel (19)

that is, conditional correlation is constant over time.

We have in fact

) l(fi,t ai0 it 0;,0)
oij  _ Eialwip uge) _ hiy hjt (20)
V24,i95,5 V&, 05,0 V4,095,0

and, since F,_(hie) = ki, the proof follows immediately.

A time varying conditional covariance with a constant correlation was found to
be a quite plausible hypothesis in many empirical situations and it considerably
simplifies estimation and inference. For a related application (in a multivariate
but not simultanecus context) see Baillie and Bollerslev (1990), or Ng(1991).

3 Estimation Efficiency: An Example

A simulation experiment has been performed in order to appreciate the be-
haviour of the estimators previously discussed.

Let us suppose to have a nonlinear version of the demand-supply model already
used (eq. 9)

logpd = b+ bizloggl +biaz, +eny

@ = by +baa2p; + bz +eg

d __ 3 (21)
p.l_ - P: - 1033,:
= ¢

The demand function is log-linear, while the supply equation is linear. The last
equation is the standard market-clearing condition, while the prices for demand
and supply are allowed to differ for the presence of exogenous institutional
intervention such as incentive or subsidies to preduction, taxes, tariffs, etc.

A sample period of 2000 observations has been adopted, to ensure a behaviour
of estimators close to asymptotic. Strictly exogenous variables have been gen-
erated as

Z[)[ 1 5 .
z, | Lid N[O, |5 1 5 (22)
23 S8 1

As usual for maximum likelihood estimation of simultaneous equation, the def-
initional equations must first be substituted cut into the stochastic equations



{at least in principle). Let 3 and y, denote the price p; and the quantity ¢
respectively, we obtain a nonlinear structural system in the form of eq. {16)

wye = log{yre — 1023,) =&y —bi2logya, — biazie = €1y

(23)
Wy = Y2, —bog — baatne — bapza, =€

The coefficient values used in the simulation experiment are displayed in the
first column of table 1. In particular the values b2 = —1 and 835 = 1 have
been chosen to ensure the proper slopes of the demand and supply curves.

For the generation of ¢; and e; we have adopted a fixed-correlation multivariate
ArcH(1) specification with ay o = 0.025, a;; = 0.7, a9 =10.0, o2, = 0.7, and
=0.9.

Hence, the reparameterized model becomes

fl,c
f’z_a

-1/2
Uy X (1 + b1_41U¥.¢_1) = U,

9 12 Uy i.4.d. N(O, E) (24)
Wy X (1 + bgi.;wz!h,) = Uz,

{as there are 3 coefficients in each of the two equations, the additional coeffi-
cients b} and bj have been labelled b, 4 and b, 4, respectively).

We have obtained, in this way, two nounlinear simultaneous implicit equations,
each of which has 4 coefficients, with the last one derived from the conditional
variance parameters (with the a’s adopted in the generation process, the “true”
b4 and by are by 4 = 28.0 and by 4 = 0.07, see table 1, first column}. The error
terms are additive, i.i.d. and with unrestricted covariance matrix L.

Simultaneity ignored: we may estimale the two stochastic equations of the orig-
inal model {eq. 21} ignoring both simultaneity (or regressors’ endogeneity) and
heteroskedasticity, and just apply Ous. As expected, the resulting estimates are
completely misleading (for example, the estimated slope of the demand equation
is equal to 0.417 instead of -1.0).

We may properly consider heteroskedasticity, but still ignore simultaneity (or
regressors’ endogeneity), and estimate, by maximum Jikelihood, a traditional
univariate Arcu(1) for each of the two stochastic equations in the original model
{eq. 21 or 23). The results change, but are still completely misleading (the slope
of the demand equation is 0.321 instead of -1.0).

Simultaneity considered: let us now take into account simultaneity. Again, we
may ignore heteroskedasticity by estimating the model in its original form (the

1G

Table 1: Estimation of nonlinear demand-supply model

Simultaneity Simultaneity Considered
Ignored Ignoring ARCH Considering ARCH
Coeff. True ©Ous Arcr{l) DIv  NusLs FiML  Semipar. methods FidL
b 90 2630 3.069 9228 9.204 85070 — — 8.853
(084) (109}  (.430) (.318) (.357) (—) (—) (.123)
b -1.0 0417 0.321 -1.045 -1.043 -1.013 — — -0.966
(ot4) (024} (.096) (.Q71) (.124) (—) (—} (.027)
ba 010 -0.049 -0.038 0100 0099 0087 — — 099
(003) (003} (012) (.007) (.008) (—) (—) {.003)
bia 280 — 1312 — — - - — 32.34
(=) @49y (= =) =) () {(—) (2.54)
2.1 0.0 -17.28 -16.32 2742 2876 6.292 — — -0.12
{545) (898) (1.76) (1.27) (2.82) (—) (—) (.455)
b2 1.0 1.18% 1.175 0.972 0970 0933 — — 1.00
(006) (008) (019) (014} (031} (—) (—) {.005)
by 100 10.1 0.1 9926 993 98 — — 10.1
(099)  (068)  (.130) (.118) (.231) (—) (—) {.050)
bas 007 — 0103 — — R — — 0.072
(= 03 (=) =) =) =) (=) (.006)
11



choice between equations 21 or 23 is determined only by computational sim-
plicity), or we may consider heteroskedasticity estimating the reparameterized
model (eq. 24). In both cases we may take into account the normal density
function of the error terms (correctly or not}, or ignore it. And, again, we may
apply a limited information or a full information method.

Thus we have a variety of alternative estimates, some of which are exemplified
in table 1.

Heteroskedasticity and normality ignored: we may apply Iterative Instrumental
Variables (TIiv) to the model (21 or 23), instrumeats being obtained from the
simultaneous solution of the model without error terms, ignoring correlation
between equations (thus in a Hmited information framework, see Dutta and
Lyttkens, 1974, for lincar systems, or Angeloni et al., 1992, for an application
to a large scale nonlinear model). The results are in the corresponding column
of the table, showing that the estimation method properly considers regressors’
endogeneity and provides consistent estimates of the coefficients (the slopes of
the two curves are properly estimated with values -1.045 and 0.972; the constant
term of the second equation is net very satisfactory, 2.742, but its large standard
error shows that it is pot significantly different from zero, that would be the
“truc” value).

Suill ignoring heteroskedasticity and normality, we may now take advantage of
the cquations’ cross-corrclation. Thus we estimate the model still in the form 21
or 23, still calculating instruments from the simultanecus solution of the system
without error terms, as above, but then apply a Full Information formula, thus
obtaining an cstimate of the NtasLs class (Amemiya, 1977). The estimator may
also be viewed as an itcrated version of Brundy and Jorgenson’s (1971) Five
methed, recalling that (Amemiya, 1977) the nonlinearity of the model would
prevent iterations to converge to FimL even if the error terms were normally
distributed (Durbin, 1963 and 1988, Hausman, 1974).

The numerical results are consistent with expectation, being coefficients quite
close to those of the limited information method (the previous colummn), but
standard errors considerably smaller, as the estimation method Lakes advantage
of the larpe correlation between the two equations.

Hoteroskedasticity ignored, norinality erroneously considered: we may apply Full
Information Maximum Likelihood to the model 21 or 23, as if the error terms of
the two equations were i.i.d. normal. This would be an mnappropriate applica-
tion of FivL (Amemiya, 1977) because the error terms had been generated with
a conditionally heteroskedastic structure and are therefore not normal {high

12

kurtosis). We still get good estimates of the coefficients, but the standard et-
rors are larger than for the previous case {and most of them also larger than for
Iiv). We must remark that we are operating in a Qui framework, so the stan-
dard errors must properly be calculated as in White (1982, 1683) using jointly
Hessian and outer products of first derivatives of the log-likelihoods. It would be
interesting to observe that if standard errors were incorrectly calculated only
from the Hessian or only from the matrix of outer products, they would be
smaller than those of Niists, coherently with the theoretical result that, when
the mode! is nonlinear, FimL is more efficient than any estimator of the Nussts
class (these smaller but incorrect standard errors have been calculated, but are
not displayed in the table).

Heteroskedasticity considered, normality ignored: we may estimate the model
after reparameterization, that is in the form 24. Instrumental variables of the
limited information or full information type could be applied, thus providing
some sort of semiparametric estimates that do not exploit information from the
distribution of the error terms. This part deserves further investigation; resuits
are not displayed in the table.

Heteroskedasticity and normality corcectly considered: we may estimate the repa-
rameterized model 24 with Nonlinear FimMr, as the error terms are i.i.d normal
with unrestricted covariance matrix. Estimation is performed by iterating ttw
instrumental variables method swnmarized in section (2.2), and taking adwvia-
tage of the computational tools discussed in Calzolari, Panattoni and Weihs
{1987). Again the results are consistent with the theory: the estimated coeffi-
cients are good and the standard errors are the smallest among all consistent
estimators (these are in fact expected to be the most efficient estimates). We
note in particular that only this method provides accurate estimates of the
parameters derived from the variance equations (b 4 and bo4).

4 An Example Based on Real Data

A monthly econometric model of the financial sector has been recently pro-
posed for Italy in Reale and Tirelli (1994), (see alse Giovannini, Reale and
Tirelll, 1994). The block modelling the Treasury security market consists of
two simultancous linear equations where the dependent variables are net de-
mand and supply of long term Treasury bonds measured in billions of Italian
lire. The bid mechanism for the bonds in the primary market, based on a com-
petitive system of auction, is such that demand is an explanatory variable for

13



supply and viceversa.

The two equations in the original model exhibit significant conditional het-
eroskedasticity. Several 0-1 durnmy variables have been inserted in the original
equations. One of the effects is the reduction of outliers and the reduction of
the heteroskedasticity effect.

The mode! used in our experiments has been derived from the block of equa-
tions modelling the Treasury security market, with the following changes. Net
demand and supply have been substituted by gross demand and supply; botk
endogenous variables became strictly positive in the sample period. The lin-
ear demand equation has been substituted by a log-linear equation. Durnmy
variables have been suppressed. The moedel is the following:

Brs, = bl'l + by 2Brs,_, + b;_;;BTDt + b1 4Bro,  Hupy (25)
log BtD, =  ba; + bao log BT + 30 Jog Brs,+
baglog Dra,y + by sDiRe_ ) + b glTDRe—z Uy (26)

Bts = Supply of long term Treasury bonds
Brp = Demand of long term Treasury bonds
Brq = Treasury borrowing requirment
Dra = first differences of the stock of financial assets held by the private sector
Dir = first differences of the inflation raie
It = Net interest rate on Treasury bonds in the secondary market
Dr = Discount rate

ITpr = IT - Dr

Estimation resuits are displayed in Table 2, for the sample period 1986.2-1993.7
(90 observations).

From the values estimated for b, 5, b27 and for the matrix T, values of a, for the
two equations and values of the cross equation correlation {p o) are displayed
in Table 3 for the various estimation methods.

5 Conclusion

Treatment of conditional heteroskedasticity inside nonlinear systems of simul-
taneous equations is a sufficiently manageable matter for multivariate ArcH
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Table 2: Nonlinear demand-supply model of Italian T-Bills market

Simultaneity Sirnultaneity Considered
Ignored Ignoring ARCH Considering ARCI
Coeff. Ous  ARcH(1) Uv Nuasts FiML  Semipar. methods FiML
by, 10250 9322 1254, 1261 15759 — — 8625
(423.) (d84) {482.) (480.) (784} (—) (—) (779.)
b2 0.083 0.057 0.264 0260 0482 — — 0.627
(080} (.065) (.085) {(086) (.113) (—) (—) {223}
s 0466 0461 0283 0.285 0063 — — 0.016
(035)  (038) (.059) (.061) (094) (=) (—) (.144)
b4 -0.038 0050 -0.060 -0.060 -0.085 — — -0.108
TG0 (019)  (026) (026) (045) (=) (=) (.042)
b1s —  147ET — — - - — 0.48E-7
(=) (BT (=) ) (=) () (—) (5E-T)
bgy -1.622 -0D.80F -1.470 -1430 -1.76 — — -2.16
(663)  (429) (103} (1.03) (L17) (—) {(—) (.603)
bap 0.085 0.096 0108 0.124 0.074 — — 0.119
(.038) (.038) {057) (.057) (0667 (—) {(—) (.045)
b2y  1.037 1.065 0.989 0966 1.063 — — 1.008
((043) (.043) (.148) (.150) (.128) (—) {(—} {.074)
beq 0115  -004 0118 0138 0117 — — 0.170
(068) (.037) (069) (.068) (.094) {—) (—) (.053}
bys 0156  -070  -0.172 -0.186 -0.152 — — 0.104
121y (132)  (122) {121) (.125) (—) {(—) (.157)
bag 0.275 0273  0.269 0.255 0.282 — — 0.318
(.057)  (.053) {G61) (.060) (086} (—) {(—) (.068)
ba7 — 13.51 — — - = — 9.57
=) ©8) (=) (= =) = (=) (5.01)
15



Table 3: Conditional govariance coefficients

Coei. ArcH(1) NL3sLS Frm F1ML-ARCH

Gl 32 — — 31
a2, .68 — — AT
P12 — -.18 -13 .05

error structures, with time varying conditional variances and covariances, but
a constant conditional correlation. Reparameterization makes it possible to es-
timate the model by means of (nearly) standard algorithms widely used in the
past for estimating nonlinear siroultaneous equations where the error structure
was of the i.id. type with unrestricted contemporaneous covariance matrix.
The method has been discussed in this paper and empirical applications have
exemplified the efficiency gains.
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