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Abstract

This paper focuses on nonparametric efficiency analysis based on robust estimation of partial

frontiers in a complete multivariate setup (multiple inputs and multiple outputs). It introduces

a-quantile efficiency scores. A nonparametric estimator is proposed achieving strong consistency and

asymptotic normality. Then if a increases to one as a function of the sample size we recover the

properties of the FDH estimator. But our estimator is more robust to the perturbations in data, since

it attains a finite gross-error sensitivity. Environmental variables can be introduced to evaluate

efficiencies and a consistent estimator is proposed. Numerical examples illustrate the usefulness of the

approach.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction and basic concepts

Foundations of the economic theory on productivity and efficiency analysis date back to
the works of Koopmans (1951) on activity analysis. Shephard (1970) proposes a modern
formulation of the problem. Following these lines, we consider a production technology
see front matter r 2006 Elsevier B.V. All rights reserved.
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where the activity of the production units is characterized by a set of inputs x 2 R
p
þ used to

produce a set of outputs y 2 R
q
þ. In this framework the production set is the set of

technically feasible combinations of ðx; yÞ. It is defined as

C ¼ fðx; yÞ 2 R
pþq
þ jx can produce yg.

Assumptions are usually done on this set, such as free disposability of inputs and outputs,
meaning that if ðx; yÞ 2 C, then ðx0; y0Þ 2 C, as soon as1 x0Xx and y0py. Often convexity of
C is also assumed, and no free lunches (if yX0 with ya0, ð0; yÞeC, see Shephard, 1970,
for more details). The production set can be described in terms of its sections

Input requirement sets: 8y 2 R
q
þ; X ðyÞ ¼ fx 2 R

p
þ j ðx; yÞ 2 Cg,

Output requirement sets: 8x 2 Rp
þ; Y ðxÞ ¼ fy 2 R

q
þ j ðx; yÞ 2 Cg.

As far as efficiency is of concern, the boundaries of C are of interest. The efficient
boundary (frontier) of C is the locus of optimal production scenarios (minimal achievable
input level for a given output or maximal achievable output given the input). The Farrell
efficient frontier is defined in a ‘‘radial sense’’. It can be described in the output space:2

8x 2 R
p
þ;Y

qðxÞ ¼ fðx; yqðxÞÞ j yqðxÞ 2 Y ðxÞ : lyqðxÞeY ðxÞ; 8l41g

¼ fðx; yqðxÞÞ j yqðxÞ 2 Y ðxÞ : ðx; lyqðxÞÞeC; 8l41g,

where the points yqðxÞ are the maximal outputs a unit operating at the level x can produce.
Finally the Farrell efficiency scores for a given production unit ðx; yÞ 2 C, are defined as

lðx; yÞ ¼ supfl j ðx; lyÞ 2 Cg ¼ supfl j ly 2 Y ðxÞg. (1)

We have lðx; yÞX1 represents the proportionate increase of outputs the unit operating at
level ðx; yÞ should attain to be considered as being efficient. Here, yqðxÞ ¼ lðx; yÞ y is the
radial projection of ðx; yÞ on the frontier, in the output direction (orthogonal to the vector
x). Note that for the input orientation, the Farrell efficiency scores are defined as

yðx; yÞ ¼ inffy j ðyx; yÞ 2 Cg ¼ inffy j yx 2 X ðyÞg (2)

with an analog interpretation.
In practice C is unknown and so has to be estimated from a random sample of

production units fðX i;Y iÞ j i ¼ 1; . . . ; ng, where we assume that ProbððX i;Y iÞ 2 CÞ ¼ 1
(refereed in the literature as deterministic frontier models). So the problem is related to the
problem of estimating the support of the random variable ðX ;Y Þ where, for mathematical
convenience, we will assume that C is compact. The most popular nonparametric
estimators are based on the envelopment ideas: we search for estimators of C which
envelops at best the observed data points. The statistical properties of these estimators are
now well established (see e.g. Simar and Wilson, 2000, for a recent survey).
The most flexible nonparametric estimator, initiated by Deprins et al. (1984), is the free

disposal hull (FDH) estimator. It is provided by the FDH of the sample pointsbCFDH ¼ fðx; yÞ 2 R
pþq
þ j ypY i; xXX i; i ¼ 1; . . . ; ng.
1From here and below inequalities between vectors a; b 2 Rk have to be understood element by element. Writing

apb means aipbi, for i ¼ 1; . . . ; k.
2In what follows, we will make the presentation in the output orientation and we will only give the main results

for the input orientation.
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The FDH efficiency scores are obtained by plugging bCFDH in Eqs. (1) and (2) in place of the
unknown C. The asymptotic properties of the resulting estimators are provided by Park et al.
(2000). In summary, the error of estimation converges at a rate n1=ðpþqÞ to a limiting Weibull
distribution. If we assume that C is convex, the convex hull of bCFDH provides the data
envelopment analysis (DEA) estimator of C introduced by Farrell (1957). Its error of
estimation converges at a rate n2=ðpþqþ1Þ to a nondegenerate distribution.

The FDH/DEA estimators envelop all the data points and so are very sensitive to
outliers and/or to extreme values. Cazals et al. (2002) have introduced the concept of
partial frontiers (order-m frontiers) with a nonparametric estimator which does not
envelop all the data points. It is shown that by selecting the value of m as an appropriate
function of n, the estimator of the partial order-m efficiency scores provides a robust
estimator of the full Farrell efficiency scores sharing the same asymptotic properties as the
FDH estimators but being less sensitive to outliers and/or extreme values. These properties
have been investigated from the robustness perspective by Daouia and Ruiz Gazen (2006).

Recently Aragon et al. (2005) have proposed an alternative to order-m partial frontiers
by introducing quantile based partial frontiers. The idea is to replace this concept of
‘‘discrete’’ order-m partial frontier by a ‘‘continuous’’ order-a partial frontier where a 2
½0; 1� corresponds to the level of an appropriate non-standard conditional quantile frontier.
A nonparametric estimator of the frontier is proposed which shares similar properties than
the order-m estimators. As pointed out in Aragon et al. (2005) and in Daouia and Ruiz
Gazen (2006), partial frontiers based on a-quantile estimators have better robustness
properties than the ones based on the order-m estimators.

Unlike the order-m partial frontiers, due to the absence of natural ordering of Euclidean
spaces for dimension greater than one, the a-quantile approach is limited to one-dimensional
input for the input oriented frontier and to one-dimensional output for the output oriented
frontier. In this paper, we overcome this difficulty and we propose an extension to the full
multivariate case, introducing the concept of a-quantile efficiency scores and the correspond-
ing a-quantile frontier set. We provide the asymptotic properties of our estimator, we
investigate its robustness characteristics and show how to introduce environmental factors.

The paper is organized as follows: in the next section, we reformulate the concept of
frontier and efficiency in a probabilistic framework, in the lines of Daraio and Simar
(2006). We characterize the monotonicity properties of the resulting efficiency scores and
show that in the case of free disposability of C, these scores coincide with the Farrell
efficiency scores defined above. Due to this unifying presentation it is then easy to define a
concept of a-quantile efficiency scores in a full multivariate framework and to investigate
its properties. Section 3 analyzes the asymptotic properties of the corresponding
nonparametric estimators and Section 4 investigates their reliability from the robustness
theory point of view. Then Section 5 shows how environmental variables can be introduced
to evaluate efficiencies and analyzes the properties of the resulting estimator. Section 6
illustrates with some numerical examples and Section 7 concludes.

2. Multivariate quantile-type efficiency scores

2.1. Probabilistic formulation

Daraio and Simar (2006), extending previous works of Cazals et al. (2002), propose a
probabilistic formulation of efficiency concepts. The data generating process (DGP) of
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ðX ;Y Þ is completely characterized by the knowledge of the probability function HXY ð�; �Þ
defined as

HXY ðx; yÞ ¼ ProbðXpx;YXyÞ.

The support of HXY ð�; �Þ is C and HXY ðx; yÞ can be interpreted as the probability for a unit
operating at the level ðx; yÞ to be dominated. Note that this function is a nonstandard
distribution function, having a cumulative distribution form for X and a survival form for
Y. So HXY ð�; �Þ is monotone nondecreasing with x and monotone nonincreasing3 with y.
This joint probability can be decomposed as follows:

HXY ðx; yÞ ¼ ProbðXpx jYXyÞProbðYXyÞ ¼ FX jY ðxjyÞSY ðyÞ

¼ ProbðYXy jXpxÞProbðXpxÞ ¼ SY jX ðyjxÞF X ðxÞ,

where we suppose the conditional probabilities exits (i.e., when needed, F X ðxÞ40 or
SY ðyÞ40). Note that the conditional distribution FX jY and the conditional survival SY jX

are nonstandard due to the event describing the condition. We can now define, as in
Daraio and Simar (2006) efficiency scores in terms of the support of these probabilities.
For the output oriented case, for all x such that F X ðxÞ40, we define the output efficiency
score aselðx; yÞ ¼ supfl jSY jX ðlyjxÞ40g ¼ supfl jHXY ðx; lyÞ40g: ð3Þ

This output efficiency score can be interpreted as the proportionate increase of outputs a
unit working at the level ðx; yÞ should perform to be dominated with probability zero.
These efficiency scores share the following properties.

Proposition 2.1. Whenever defined, elðx; yÞ is monotone nondecreasing with x and monotone

nonincreasing with y.

If we now define eyq
ðxÞ ¼ elðx; yÞ y, for fixed y, this is monotone nondecreasing with x.

This result can be seen as a multivariate extension of Theorem 2.1 of Cazals et al. (2002).
The efficient frontier, according to this probabilistic definition of efficiency, can be
described for all x such that F X ðxÞ40 by the set fðx;elðx; yÞ yÞ j ðx; yÞ 2 Cg. By construction
and by Proposition 2.1, the set bounded by this frontier is the FDH of C. If C is free
disposal, the two sets coincide and elðx; yÞ ¼ lðx; yÞ. The same could be done in the input
orientation. From now on, we will assume that C is free disposal.
Natural nonparametric estimators of yðx; yÞ and of lðx; yÞ are obtained by pluggingbHXY ;n in place of HXY in the definition of the efficiency scores. Defining

bHXY ;nðx; yÞ ¼
1

n

Xn

i¼1

1ðX ipx;Y iXyÞ

the most natural nonparametric estimators of the efficiency scores are given for the input
orientation,4 bybynðx; yÞ ¼ inffy j bFX jY ;nðyxjyÞ40g ¼ min

ijY iXy
max

j¼1;...;p
X

j
i=xj,
3A function f from Rk to R is monotone nonincreasing if a1pa2 implies f ða1ÞXf ða2Þ. We will say that f is

monotone decreasing, if a1pa2 and a1aa2 implies f ða1Þ4f ða2Þ.
4For a vector a 2 Rk, we denote by aj its jth component.
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where bF X jY ;nðxjyÞ ¼ bHXY ;nðx; yÞ= bHXY ;nð1; yÞ. For the output oriented case we have

blnðx; yÞ ¼ supfl j bSY jX ;nðlyjxÞ40g ¼ max
ijX ipx

min
j¼1;...;q

Y
j
i=yj,

where bSY jX ;nðyjxÞ ¼ bHXY ;nðx; yÞ= bHXY ;nðx; 0Þ. As pointed out in Daraio and Simar (2006),
these estimators are the FDH estimators of the Farrell efficiency scores. Note also that the
FDH efficiency scores share the properties of Proposition 2.1.
2.2. Conditional quantile-based efficiency scores

Aragon et al. (2005) have introduced the conditional quantile frontier function for a
production (output) function when the output is unidimensional and for a cost (input)
function when the input is one-dimensional. We extend the ideas to a full multivariate
setup. Since a natural ordering of Euclidean spaces of dimension greater than one does not
exist, we overcome the difficulty by defining a-quantile efficiency scores as follows.

Definition 2.1. For all y such that SY ðyÞ40 and for a 2�0; 1�, the a-quantile input efficiency
score for the unit ðx; yÞ 2 C is defined as

yaðx; yÞ ¼ inffy jF X jY ðyxjyÞ41� ag.

For all x such that FX ðxÞ40 and for a 2�0; 1�, the a-quantile output efficiency score for the
unit ðx; yÞ 2 C is defined as

laðx; yÞ ¼ supfl jSY jX ðlyjxÞ41� ag. (4)

For instance, in the output direction, laðx; yÞ is the proportionate reduction (if o1) or
increase (if 41) of outputs, a unit working at the level ðx; yÞ should perform to be
dominated by firms using less input than the level x with probability 1� a. Clearly when
a ¼ 1, this is, under free disposability of C, the Farrell output efficiency score and roughly
said, laðx; yÞ is the output efficiency score of ðx; yÞ at the level a� 100%.

We can now for all x such that F X ðxÞ40 define the a-quantile efficient frontier in the
output direction as the set

Y q
aðxÞ ¼ fðx; laðx; yÞ yÞ j ðx; yÞ 2 Cg.

The points yq
aðxÞ ¼ laðx; yÞ y represent the efficient outputs for the input x at the level

a� 100% and the pairs ðx; yq
aðxÞÞ have a probability HXY ðx; yq

aðxÞÞ ¼ ð1� aÞFX ðxÞp1� a
of being dominated if HXY ð�; �Þ is continuous on C.

Note that in the particular case of q ¼ 1, for any x such that F X ðxÞ40, the output
efficient frontier at the level a� 100% may be described as the set Y q

aðxÞ ¼ fðx;jðxÞÞg
where jaðxÞ ¼ laðx; 1Þ is the conditional quantile production function of order a of Aragon
et al. (2005).

As shown below, the a-quantile efficiency scores share most of the properties of their
univariate correspondent. We remind here that C is assumed to be free disposal. We define
C� ¼ fðx; yÞ 2 C j 0oHXY ðx; yÞoSY ðyÞ ^ FX ðxÞg as being the interior of C.

Proposition 2.2. Assume that FX jY is continuous and monotone increasing in x and that SY jX

is continuous and monotone decreasing in y. Then, for all ðx; yÞ 2 C�, there exist a and b
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in �0; 1� such that

yaðx; yÞ ¼ 1 where a ¼ 1� F X jY ðxjyÞ,

lbðx; yÞ ¼ 1 where b ¼ 1� SY jX ðyjxÞ.

Proposition 2.2 shows that any point ðx; yÞ in the interior of C, belongs to an
appropriate a-quantile efficient frontier in both directions (input and output). For instance
in the output orientation, it can be described as the set Y q

aðxÞ where a ¼ 1� SY jX ðyjxÞ.
Since for any ðx; yÞ belonging to the efficient frontier of C, yðx; yÞ ¼ y1ðx; yÞ ¼ 1 and
lðx; yÞ ¼ l1ðx; yÞ ¼ 1, we can use the value of a ¼ aðx; yÞ and of b ¼ bðx; yÞ of the
proposition to define a new concept of input and output efficiency score. This is in the
same spirit as in Aragon et al. (2003), this will not be pursued here.

Proposition 2.3. For all y such that SY ðyÞ40, we have lima!1 & yaðx; yÞ ¼ yðx; yÞ and for

all x such that FX ðxÞ40, lima!1 % laðx; yÞ ¼ lðx; yÞ.

The a-quantile input efficiency score yaðx; yÞ is clearly monotone nonincreasing with x

but it is in general not monotone in y, unless we add an assumption on FX jY .

Proposition 2.4. Assume that F X jY ð�jyÞ is continuous for any y. Then, for points ðx; yÞ such

that FX jY ðxjyÞo1, the two following properties are equivalent.

F X jY ðxjyÞ is monotone nonincreasing with y, ð5Þ

yaðx; yÞ is monotone nondecreasing with y for all a. ð6Þ

Note that both conditions of the proposition are quite reasonable in production
analysis. The first relation (5) says that there is less probability to observe a level of input
lower than a fixed value x for firms producing more than a level y2, than for firms
producing more than a level y1py2. It is more difficult to reduce inputs when producing
higher level of outputs. Whereas (6) states that everything else being kept constant,
the a-quantile input efficiency score cannot decrease when the output increases.
Of course, mutatis mutandis, we have the same property in the output direction. laðx; yÞ

is monotone nonincreasing with y, but for the monotonicity with respect to x, we have:

Proposition 2.5. Assume that SY jX ð�jxÞ is continuous for any x. Then, for points ðx; yÞ such

that SY jX ðyjxÞo1, the two following properties are equivalent.

SY jX ðyjxÞ is monotone nondecreasing with x,

laðx; yÞ is monotone nondecreasing with x for all a.
3. Nonparametric estimator

A natural nonparametric estimator of the a-quantile efficiency scores is obtained by
plugging the empirical bHXY ;nðx; yÞ in the above formulas so we have:bya;nðx; yÞ ¼ inffy j bFX jY ;nðyxjyÞ41� ag,bla;nðx; yÞ ¼ supfl j bSY jX ;nðlyjxÞ41� ag,

where bFX jY ;n and bSY jX ;n were defined in Section 2.
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These nonparametric estimators can be computed very easily. Indeed, define

Yi ¼ min
k¼1;...;q

Y k
i

yk
; i ¼ 1; . . . ; n

and let Nx ¼ n bHXY ;nðx; 0Þ be nonnull. For j ¼ 1; . . . ;Nx, denote by Yx
ðjÞ the jth order

statistic of the observations Yi such that X ipx: Yx
ð1ÞpYx

ð2Þp � � �pYx
ðNxÞ

. Then

bla;nðx; yÞ ¼ Yx
ðaNxÞ

if aNx 2 N�;

Yx
ð½aNx�þ1Þ

otherwise;

(
(7)

where N� denotes the set of positive integers and ½aNx� denotes the integral part of aNx.
Likewise, let My ¼ n bHXY ;nð1; yÞ40, and define

Xi ¼ max
k¼1;...;p

X k
i

xk
; i ¼ 1; . . . ; n.

For j ¼ 1; . . . ;My, denoted by X
y
ðjÞ the jth order statistic of the observations Xi such that

Y iXy: X
y
ð1ÞpX

y
ð2Þp � � �pX

y
ðMyÞ

. Then

bya;nðx; yÞ ¼ X
y
ðð1�aÞMyÞ

if ð1� aÞMy 2 N;

X
y
ð½ð1�aÞMy�þ1Þ

otherwise;

8<:
where N denotes the set of all nonnegative integers.

The nonparametric a-quantile efficiency scores bya;nðx; yÞ and bla;nðx; yÞ share the following
properties:

Proposition 3.1. For all y such that bHXY ;nð1; yÞ40, we have lima!1 &
bya;nðx; yÞ ¼ bynðx; yÞ

and for all x such that bHXY ;nðx; 0Þ40, lima!1 %
bla;nðx; yÞ ¼ blnðx; yÞ.

Now we investigate some of the asymptotic properties of our estimators. In what
follows, we limit the presentation for the nonparametric estimator in the output oriented
case. The same properties hold for the input oriented case.

Theorem 3.1. Let ðx; yÞ 2 C be such that F X ðxÞ40 and let 0oao1. Assume that

l 7!SY jX ðlyjxÞ is decreasing in a neighborhood of laðx; yÞ. Then, for every e40,

Probðjbla;nðx; yÞ � laðx; yÞj4eÞp2e�2nd2a;e;x;y for all nX1,

where

da;e;x;y ¼
FX ðxÞ

2� a
minfð1� aÞ � SY jX ððlaðx; yÞ þ eÞyjxÞ;

SY jX ððlaðx; yÞ � eÞyjxÞ � ð1� aÞg.

Proof. Let e40. We have Probðjbla;nðx; yÞ � laðx; yÞj4eÞ ¼ Probðbla;nðx; yÞ4laðx; yÞ þ eÞþ

Probðbla;nðx; yÞolaðx; yÞ � eÞ. By applying the fact that bla;nðx; yÞ4l implies bSY jX ;nðlyjxÞ4

1� a, we get Probðbla;nðx; yÞ4laðx; yÞ þ eÞpProbð
Pn

i¼1V i �
Pn

i¼1EðV iÞ4nd1Þ; where

V i ¼ 1ðX ipx;Y iXðlaðx; yÞ þ eÞyÞ � ð1� aÞ1ðX ipxÞ and d1 ¼ �EðV1Þ ¼ FX ðxÞ½ð1� aÞ�
SY jX ððlaðx; yÞ þ eÞyjxÞ�40. Since Probða� 1pV ip1Þ ¼ 1, for each i, we obtain by
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applying Hoeffding’s Inequality (Hoeffding, 1963),

Probðbla;nðx; yÞ4laðx; yÞ þ eÞpe�2nd21=ð2�aÞ
2

.

Likewise, by applying the fact that bla;nðx; yÞol implies bSY jX ;nðlyjxÞp1� a, we get

Probðbla;nðx; yÞolaðx; yÞ � eÞpe�2nd22=ð2�aÞ
2

, where d2 ¼ FX ðxÞ½SY jX ððlaðx; yÞ � eÞyjxÞ � ð1�
aÞ�40. Putting da;e;x;y ¼ minfd1; d2g=ð2� aÞ, the proof is complete. &

Thus Probðjbla;nðx; yÞ � laðx; yÞj4eÞ ! 0 exponentially fast, which implies that bla;nðx; yÞ
converges completely to laðx; yÞ. This generalizes the exponential probability inequality
obtained in Daouia (2005, see Theorem 2.3) for the nonparametric a-quantile frontierbyq
a;nðxÞ ¼

bla;nðx; yÞy in the univariate case where pX1 and q ¼ 1.

We also obtain the following asymptotic normality result which extends the one
established in Aragon et al. (2005, see Theorem 4.1) to the more general case where p; qX1.

Theorem 3.2. Let 0oao1 be a fixed order and let ðx; yÞ 2 C be a fixed unit such that

FX ðxÞ40. Assume that GðlÞ ¼ SY jX ðlyjxÞ is differentiable at laðx; yÞ with negative

derivative G0ðlaðx; yÞÞ. Then,ffiffiffi
n
p
ðbla;nðx; yÞ � laðx; yÞÞ�!

L
Nð0;s2aðx; yÞÞ as n!1,

where s2aðx; yÞ ¼ að1� aÞ=½G0ðlaðx; yÞÞ�2FX ðxÞ:

Note that this theorem requires a slightly stronger hypothesis on the function GðlÞ ¼
SY jX ðlyjxÞ than in the preceding theorem. This assumption is standard in quantile theory
for the generalized inverse of the cdf SY jX ðlyjxÞ to coincide with the reciprocal.

Proof. Let V n ¼
ffiffiffi
n
p
ðbla;nðx; yÞ � laðx; yÞÞ and write

W n ¼
1ffiffiffi
n
p
Xn

i¼1

ð1� aÞ1ðX ipxÞ � 1ðX ipx;Y iXlaðx; yÞyÞ
G0ðlaðx; yÞÞFX ðxÞ

.

By using the fact that HXY ðx; laðx; yÞyÞ ¼ ð1� aÞFX ðxÞ, we obtain in view of the central

limit theorem that W n�!
L

Nð0; s2aðx; yÞÞ. To show that V n has the same asymptotic normal

distribution, it suffices to prove that

Rn ¼ Vn �W n�!
p

0. (8)

Using bla;nðx; yÞXl3bSY jX ;nðlyjxÞ41� a (this can be easily proved from the definition

of bla;n and by using the left-continuity of l 7!bSY jX ;nðlyjxÞ), we get for any real t

fV nXtg ¼ bSY jX ;n laðx; yÞ þ
tffiffiffi
n
p

� �
yjx

� �
41� a

� �
¼ fZt;n4Tng, (9)

where

Zt;n ¼

ffiffiffi
n
p bHXY ;nðx; 0Þ

G0ðlaðx; yÞÞFX ðxÞ
G laðx; yÞ þ

tffiffiffi
n
p

� �
� bSY jX ;n laðx; yÞ þ

tffiffiffi
n
p

� �
yjx

� �� �
,

Tn ¼

ffiffiffi
n
p bHXY ;nðx; 0Þ

G0ðlaðx; yÞÞFX ðxÞ
G laðx; yÞ þ

tffiffiffi
n
p

� �
� ð1� aÞ

� �
.
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Since G laðx; yÞ þ tffiffi
n
p

	 

� ð1� aÞ ¼ tffiffi

n
p G0ðlaðx; yÞÞ þ tffiffi

n
p oð1Þ and bHXY ;nðx; 0Þ!

p
F X ðxÞ, as

n!1, we obtain

Tn!
p

t as n!1. (10)

We also have

Zt;n �W n ¼

ffiffiffi
n
p bHXY ;nðx; 0Þ

G0ðlaðx; yÞÞFX ðxÞ
G laðx; yÞ þ

tffiffiffi
n
p

� �
� bSY jX ;n laðx; yÞ þ

tffiffiffi
n
p

� �
yjx

� �� ��
�ðð1� aÞ � bSY jX ;nððlaðx; yÞyjxÞÞ

�
.

An easy computation shows that

E½ðZt;n �W nÞ
2
�fG0ðlaðx; yÞÞF X ðxÞg

2

¼ ð1� aÞFX ðxÞ � ð1� aÞ2FX ðxÞ

� F X ðxÞG
2 laðx; yÞ þ

tffiffiffi
n
p

� �
þ ð1þ 2ð1� aÞÞFX ðxÞG laðx; yÞ þ

tffiffiffi
n
p

� �
� 2F X ðxÞG laðx; yÞ þ

tffiffiffi
n
p _ 0

� �� �
.

Using the continuity of Gð�Þ in laðx; yÞ, we then obtain E½ðZt;n �W nÞ
2
� ! 0, and so

Zt;n �W n!
p
0 as n!1. (11)

To prove (8), it suffices to show that fVng and fW ng satisfy the two conditions of Ghosh
(1971, Lemma 1, p. 1958). Since W n converges in law in view of the central limit theorem,
it is uniformly tight and thus the first Ghosh’s condition is satisfied. On the other hand, for
any k and any e40, putting t ¼ k þ e, we obtain in view of (9),

ProbðV nXk þ e;W npkÞ ¼ ProbðZt;n4Tn;W npt� eÞ

pProbðjðZt;n �W nÞ � ðTn � tÞjXeÞ.

Then it follows immediately from (10) to (11) that limn!1 ProbðVnXk þ e;W npkÞ ¼ 0.
Similarly, by applying (9) to t ¼ k, we get

ProbðV nok;W nXk þ eÞpProbðjðW n � Zt;nÞ þ ðTn � tÞjXeÞ�!0 as n!1,

and so the second Ghosh’s condition is also satisfied, which completes the proof. &

Note that this convergence result can be extended to the analysis of the asymptotic

properties of a vector ð
ffiffiffi
n
p
ðbla;nðx1; y1Þ � laðx1; y1ÞÞ; . . . ;

ffiffiffi
n
p
ðbla;nðxr; yrÞ � laðxr; yrÞÞÞ. We still

have the asymptotic r-variate normal distribution with asymptotic covariances given by

Sk;l ¼ E½Gðxk; yk;X ;Y ÞGðxl ; yl ;X ;Y Þ�, where

Gðx; y;X ;Y Þ ¼
ð1� aÞ1ðXpxÞ � 1ðXpx;YXlaðx; yÞyÞ

G0ðlaðx; yÞÞF X ðxÞ
. (12)

The expression of the variance factors can be used to derive asymptotic confidence
intervals for the order-a efficiency scores. For instance, consistent estimators for the

factors s2aðx; yÞ and Sk;l can be obtained by plugging nonparametric estimators for G0ðlÞ
and FX ðxÞ and taking the empirical mean for the expectation.



ARTICLE IN PRESS
A. Daouia, L. Simar / Journal of Econometrics 140 (2007) 375–400384
A more robust estimator of the Farrell efficiency scores lðx; yÞ than the standard FDH
estimator blnðx; yÞ, which however shares the same asymptotic distribution with this later
one, can be derived as follows.

Lemma 3.1. Assume that the support of Y is bounded. Then, for any ðx; yÞ 2 C,

n1=ðpþqÞðblnðx; yÞ � blaðnÞ;nðx; yÞÞ�!a:s: 0 as n!1,

where the order aðnÞ40 is such that: nðpþqþ1Þ=ðpþqÞð1� aðnÞÞ ! 0 as n!1:

Proof. We have from (7),blnðx; yÞ � blaðnÞ;nðx; yÞ ¼ ðYx
ðNxÞ
�Yx

ðaðnÞNxÞ
Þ1ðaðnÞNx 2 N�Þ

þ ðYx
ðNxÞ
�Yx

ð½aðnÞNx�þ1Þ
Þ1ðaðnÞNxeN�Þ.

Let Cx;y;kðnÞ ¼
Yx
ðNxÞ
�Yx

ðkÞ

1�k=Nx
for k 2 f1; . . . ;Nx � 1g, and let Cx;yðnÞ ¼ max1pkpNx�1 Cx;y;kðnÞ.

It can be then easily seen that

ðYx
ðNxÞ
�Yx

ðaðnÞNxÞ
Þ1ðaðnÞNx 2 N�ÞpCx;yðnÞð1� aðnÞÞ1ðaðnÞNx 2 N

�Þ,

ðYx
ðNxÞ
�Yx

ð½aðnÞNx�þ1Þ
Þ1ðaðnÞNxeN�ÞpCx;yðnÞð1� aðnÞÞ1ðaðnÞNxeN�Þ

which gives n1=ðpþqÞðblnðx; yÞ � blaðnÞ;nðx; yÞÞpn1=ðpþqÞCx;yðnÞð1� aðnÞÞ. Since the support of Y

is bounded, there exists a constant My40 (depending on y) such that YipMy almost
surely, for any i ¼ 1; . . . ; n. Hence, Yx

ðNxÞ
�Yx

ðkÞpYx
ðNxÞ

pMy almost surely, for any
k ¼ 1; . . . ;Nx � 1. Using the fact that 1

1�k=Nx
pNx, we therefore obtain Cx;yðnÞpMyNx

almost surely, and so

n1=ðpþqÞðblnðx; yÞ � blaðnÞ;nðx; yÞÞpn1=ðpþqÞMyNxð1� aðnÞÞ

¼My
bHXY ;nðx; 0Þn

ðpþqþ1Þ=ðpþqÞð1� aðnÞÞ

almost surely. The conclusion follows by applying the strong law of large numbers. &

Making use of this lemma and the following decomposition

n1=ðpþqÞðlðx; yÞ � blaðnÞ;nðx; yÞÞ
¼ n1=ðpþqÞðlðx; yÞ � blnðx; yÞÞ þ n1=ðpþqÞðblnðx; yÞ � blaðnÞ;nðx; yÞÞ

we get immediately from Corollary 3.2 of Park et al. (2000) the following result.

Theorem 3.3. Under Assumptions AI–AIII of Park et al. (2000), we have for any ðx; yÞ
interior to C,

n1=ðpþqÞðlðx; yÞ � blaðnÞ;nðx; yÞÞ �!L Weibullðmpþq
NW;0; pþ qÞ as n!1,

where mNW;0 is a constant.

An explicit expression of the Weibull parameter mNW;0 is given in Park et al. (2000, see
Definition A.2 of the appendix). A consistent estimator of this unknown parameter is also
provided (see Park et al., 2000, Theorem 3.4).
The nonparametric conditional quantile efficiency scores blaðnÞ;nðx; yÞ lead to an estimator

of the full frontier Y qðxÞ. For all x such that bHXY ;nðx; 0Þ40, we have

bY q
aðnÞ;nðxÞ ¼ fðx;

blaðnÞ;nðx; yÞ yÞ j ðx; yÞ 2 bCFDHg.
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This estimator does not envelop all the observed data points and so, is more resistant to
extremes than the usual nonparametric envelopment estimators (FDH, DEA).

4. Robustness properties

The most popular nonparametric estimators (FDH,DEA) of the Farrell technical
efficiency are not robust to the perturbations in data. A robust estimator has been
suggested recently by Cazals et al. (2002). It is based on a concept of expected order-m
efficiency scores, where m is a positive integer. For instance, in the output direction, in
place of looking for the full upper boundary of Y ðxÞ, as it is the case for defining lðx; yÞ,
the partial order-m efficiency score lmðx; yÞ can roughly be viewed as the expectation of the
maximal output efficiency score of the unit ðx; yÞ, when compared to m units randomly
drawn from the population of units using less inputs than the level x (see, e.g., Definition
2.2 and Theorem 2.2 of Daraio and Simar, 2006). In this section, we analyze and compare
the reliability of the nonparametric estimators based on the two concepts of order-m and
order-a efficiency measures from a theoretical point of view.

Let us start by the robustness properties of the order-a efficiency scores. From now on we
only focus on the output oriented case to save place. The same presentation can be done in the
input direction. The estimators bla;nðx; yÞ are representable as a functional Ta

xy of the empirical
version of the probability function HXY which characterizes completely the DGP:

laðx; yÞ ¼ sup l
HXY ðx; lyÞ

HXY ðx; 0Þ
41� a

���� �
¼ Ta

xyðHXY Þ

�
,

bla;nðx; yÞ ¼ sup l
bHXY ;nðx; lyÞbHXY ;nðx; 0Þ

41� a

�����
)
¼ Ta

xy

(
ð bHXY ;nÞ.

Therefore, the reliability of fbla;nðx; yÞgn in estimating laðx; yÞ can be analyzed from a
robustness theory point of view. The richest robustness information is provided by the
influence function ðX i;Y iÞ7!IF ððX i;Y iÞ;T

a
xy;HXY Þ of Ta

xy at HXY (Hampel, 1974). It is
defined as the first Gâteaux derivative of Ta

xy at HXY in the direction of
DX iY i

ð�; �Þ¼1ðX ip�;Y iX�Þ. Formally, IF ððX i;Y iÞ;T
a
xy;HXY Þ¼ðq=qdÞTa

xyðHXY þ dðDX iY i
�

HXY ÞÞjd¼0þ.
The importance of the IF lies in the fact that it allows to assess the relative influence of

individual observations towards the value of the estimate. If it is unbounded, even a single
outlier may cause trouble. Its maximum absolute value g�ðTa

xy;HXY Þ ¼

supu2Rpþq jIF ðu;Ta
xy;HXY Þj defines the gross-error sensitivity of Ta

xy at HXY . It measures
the effect of contamination of the data by gross-errors, whereby some of the observations
ðX i;Y iÞ may have a distribution grossly different from HXY . Specifically, g� is interpreted
as the worst possible influence which a fixed amount of contamination can have upon the
estimator.

Proposition 4.1. Under the same conditions of Theorem 3.2, the gross-error sensitivity of the

sequence of estimators fbla;nðx; yÞgn is given by

g�ðTa
xy;HXY Þ ¼

minð�a; a� 1Þ

G0ðlaðx; yÞÞFX ðxÞ
.

We have almost surely IF ððX i;Y iÞ;T
a
xy;HXY Þ ¼ Gðx; y;X i;Y iÞ, where G is described in (12).
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Proof. We have

Ta
xyðHXY þ d½DX iY i

�HXY �Þ

¼ sup ljSY jX ðlyjxÞ4ð1� aÞ þ
dð1� aÞ1ðX ipxÞ � dDX iY i

ðx; lyÞ

ð1� dÞF X ðxÞ

� �
¼ sup lpYijGðlÞ4ð1� aÞ �

ad1ðX ipxÞ

ð1� dÞFX ðxÞ

� �
_ sup l4YijGðlÞ4ð1� aÞ þ

dð1� aÞ1ðX ipxÞ

ð1� dÞFX ðxÞ

� �
.

The last equality is obtained by using the fact that Y iXly3YiXl. For d small enough, if
laðx; yÞpYi then the second supremum on the right-hand side of this equality is �1 and,
if laðx; yÞ4Yi, then the first supremum is Yi. Therefore, for d sufficiently small,

Ta
xyðHXY þ d½DX iY i

�HXY �Þ ¼ G�1 ð1� aÞ �
ad1ðX ipxÞ

ð1� dÞF X ðxÞ

� �
1ðlaðx; yÞoYiÞ

þ laðx; yÞ1ðlaðx; yÞ ¼ YiÞ

þ G�1 ð1� aÞ þ
dð1� aÞ1ðX ipxÞ

ð1� dÞFX ðxÞ

� �
1ðlaðx; yÞ4YiÞ.

Hence

IF ððX i;Y iÞ;T
a
xy;HXY Þ

¼
�a1ðX ipxÞ1ðlaðx; yÞoYiÞ þ ð1� aÞ1ðX ipxÞ1ðlaðx; yÞ4YiÞ

G0ðlaðx; yÞÞF X ðxÞ
.

More generally, we have for any ðx0; y0Þ 2 Rpþq

IF ððx0; y0Þ;T
a
xy;HXY Þ

¼
1ðx0pxÞ

G0ðlaðx; yÞÞF X ðxÞ
�a1 laðx; yÞo min

1pkpq

yk
0

yk

� ��
þð1� aÞ1 laðx; yÞ4 min

1pkpq

yk
0

yk

� ��
.

A simple computation gives then the desired conclusion. &

Thus the sequence of estimators fbla;nðx; yÞg is bias-robust (Rousseeuw, 1981) in
estimating laðx; yÞ since it possesses a finite gross-error sensitivity. The approximate
influence of the observations ðX i;Y iÞ toward the error of estimation is described by the
following asymptotic bias representation which follows from (8):

bla;nðx; yÞ � laðx; yÞ ¼
1

n

Xn

i¼1

IF ððX i;Y iÞ;T
a
xy;HXY Þ þ

1ffiffiffi
n
p Rn,

¼
bHXY ;nðx; 0Þ

G0ðlaðx; yÞÞFX ðxÞ
½ð1� aÞ � bSY jX ;nðlaðx; yÞyjxÞ� þ Ra;xy

n ,

where
ffiffiffi
n
p

Ra;xy
n ¼ opð1Þ as n!1. The fact that IF ððX i;Y iÞ;T

a
xy;HXY Þ is zero when

1ðX ipxÞ ¼ 0 ensures that the efficiency scores bla;nðx; yÞ are not influenced by outlying
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production units ðX i;Y iÞ whose inputs X i�x. Because of the irregularity of the IF due to
the discontinuity of the indicator functions, the local-shift sensitivity of fbla;nðx; yÞg defined
as the smallest Lipschitz constant the influence function obeys, i.e.,

l�ðTa
xy;HXY Þ ¼ sup

sat2Rpþq

jIF ðs;Ta
xy;HXY Þ � IF ðt;Ta

xy;HXY Þj=ks� tk

is infinite. By k � k we denote the usual Euclidean norm on Rpþq. This means that the
estimators fbla;nðx; yÞg may be sensitive to rounding errors. But this is much less important
than the fact that g�ðTa

xy;HXY Þ is finite. Note also that, if GðlÞ ¼ SY jX ðlyjxÞ is
continuously differentiable on its support with negative derivative G0ðlÞ, then

lim
a%1

g�ðTa
xy;HXY Þ ¼

1

jG0ðlðx; yÞÞjFX ðxÞ
. (13)

This implies that bla;nðx; yÞ can be resistant to outliers even for large values of a.
Let us now turn to robustness characteristics of the expected order-m efficiency scores:

lmðx; yÞ ¼

Z 1
0

1� 1�
HXY ðx; lyÞ

HXY ðx; 0Þ

� �m� �
dl ¼ Sm

xyðHXY Þ,

blm;nðx; yÞ ¼

Z 1
0

1� 1�
bHXY ;nðx; lyÞbHXY ;nðx; 0Þ

 !m" #
dl ¼ Sm

xyð
bHXY ;nÞ,

where the integrands are identically zero, respectively, for lXlðx; yÞ and lXblnðx; yÞ (see
Definition 2.2 and Theorem 2.2 of Daraio and Simar, 2006). It can be then easily seen that
the influence function ðx0; y0Þ 2 R

pþq
þ 7!ðq=qdÞS

m
xyðHXY þ dðDX iY i

�HXY ÞÞjd¼0þ of the
sequence of estimators fblm;nðx; yÞg is given by

IF ððx0; y0Þ;S
m
xy;HXY Þ

¼
m

FX ðxÞ
1ðx0pxÞ

Z 1
0

½1� SY jX ðlyjxÞ�m�1ð1ðy0XlyÞ � SY jX ðlyjxÞÞdl.

Like the order-a efficiency measure, blm;nðx; yÞ rejects outlying production units using inputs

X i�x, for any sample size n. But unlike bla;nðx; yÞ, the order-m efficiency measure is not

bias-robust since its gross-error sensitivity equals infinity. Indeed,

g�ðSm
xy;HXY Þ ¼

m

F X ðxÞ
sup

y02R
q
þ

Z 1
0

½1� SY jX ðlyjxÞ�m�1ð1ðy0XlyÞ � SY jX ðlyjxÞÞdl
���� ����

X
m

F X ðxÞ
sup

y02R
q
þjmin1pkpqðy

k
0
=ykÞ4lðx;yÞ

Z min1pkpq

yk
0

yk

0

½1� SY jX ðlyjxÞ�m dl

X
m

F X ðxÞ
sup

y02R
q
þjmin1pkpqðy

k
0
=ykÞ4lðx;yÞ

min
1pkpq

yk
0

yk
� lðx; yÞ

� �
¼ 1.

This reflects the fact that even a single outlier ðX i;Y iÞ with a level of inputs X ipx, if it is

far enough from the cloud of data points in the direction of Y, can attract ðx;blm;nðx; yÞyÞ
nearly to its outlying output Y i. Besides this deficiency, the local-shift sensitivity is infinite
too due to the discontinuity of the indicator function x0 7!1ðx0pxÞ.

However, if lðx; yÞ is majorized by a finite constant, then g�ðSm
xy;HXY Þ is finite.
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Proposition 4.2. Let mX1 be a fixed order and let ðx; yÞ 2 C such that F X ðxÞ40. If

lðx; yÞor, a finite positive constant, then the gross-error sensitivity of the sequence of

estimators fblm;nðx; yÞgn is such that

m

F X ðxÞ
ðr� lðx; yÞÞpg�ðSm

xy;HXY Þp
mr

F X ðxÞ
.

Proof. Let ðx0; y0Þ 2 R
pþq
þ and put hd ¼ HXY þ dðDX iY i

�HXY Þ. Then IF ððx0; y0Þ;S
m
xy;

HXY Þ ¼
q
qdS

m
xyðhdÞjd¼0þ, where

Sm
xyðhdÞ ¼

Z lhd
ðx;yÞ

0

1� 1�
hdðx; lyÞ

hdðx; 0Þ

� �m� �
dl

with lhd ðx; yÞ ¼ supfl j hdðx;lyÞ
hdðx;0Þ

40g. Here hdðx; 0Þ40 for all d small enough since
limd&0 hdðx; 0Þ ¼ FX ðxÞ40. It can be easily seen that limd&0 lhdðx; yÞ ¼ lðx; yÞ, which gives
lhd ðx; yÞor for d sufficiently small. Hence Sm

xyðhdÞ ¼
R r
0 ½1� ð1�

hdðx;lyÞ
hdðx;0Þ

Þ
m
�dl for d small

enough. Therefore

IF ððx0; y0Þ;S
m
xy;HXY Þ

¼
m

FX ðxÞ
1ðx0pxÞ

Z r

0

½1� SY jX ðlyjxÞ�m�1ð1ðy0XlyÞ � SY jX ðlyjxÞÞdl.

It is then immediate that g�ðSm
xy;HXY ÞX

m
F X ðxÞ

R r
lðx;yÞ½1� SY jX ðlyjxÞ�m dl ¼ m

FX ðxÞ
ðr� lðx; yÞÞ

and g�ðSm
xy;HXY Þp mr

FX ðxÞ
. &

The lower and upper bounds of g�ðSm
xy;HXY Þ indicate that the nonparametric expected

order-m efficiency scores are all the more sensitive to extreme values as the order m is large:

lim
m%1

g�ðSm
xy;HXY Þ ¼ 1. (14)

This means in particular that blm;nðx; yÞ, when considered as an estimator of the Farrell
efficiency score lðx; yÞ ¼ limm%1 lmðx; yÞ, may be very sensitive to extreme values.
It should be clear that the partial efficiency scores fSm

xyð
bHXY ;nÞg and fT

a
xyð
bHXY ;nÞg do not

estimate the same quantity. But in the limiting case where m tends to infinity and a to one,
both sequences coincide with fblnðx; yÞg and can be then viewed as estimators of the full
efficiency measure lðx; yÞ. Results (13) and (14) indicate then that extreme order-a
efficiencies are more robust than extreme order-m measures for estimating lðx; yÞ. It is also
important to note that by an appropriate choice of m and a as functions of n, the

functionals fSmðnÞ
xy ð

bHXY ;nÞg and fT
aðnÞ
xy ð

bHXY ;nÞg estimate the true efficiency measure lðx; yÞ.
The advantage of quantile-type efficiency scores can be then clearly showed by comparing

limn!1 g�ð�;HXY Þ of both estimators SmðnÞ
xy ð

bHXY ;nÞ and TaðnÞ
xy ð

bHXY ;nÞ of lðx; yÞ.

Theorem 4.1. Let ðx; yÞ 2 C such that FX ðxÞ40 and let faðnÞgnX1 and fmðnÞgnX1 be

nondecreasing sequences such that 0oaðnÞo1, limn!1 aðnÞ ¼ 1, mðnÞX1 and limn!1

mðnÞ ¼ 1.
1.
 g�ðSmðnÞ
xy ;HXY Þ is infinite for any n unless the condition of Proposition 4.2 holds.

Furthermore, limn%1 g�ðSmðnÞ
xy ;HXY Þ ¼ limm%1 g�ðSm

xy;HXY Þ ¼ 1.

2.
 If GðlÞ ¼ SY jX ðlyjxÞ is differentiable at laðnÞðx; yÞ with derivative G0ðlaðnÞðx; yÞÞo0,

then g�ðTaðnÞ
xy ;HXY Þ ¼ minð�aðnÞ; aðnÞ � 1Þ=G0ðlaðnÞðx; yÞÞFX ðxÞ. If furthermoreGð�Þ is



ARTICLE IN PRESS
A. Daouia, L. Simar / Journal of Econometrics 140 (2007) 375–400 389
continuously differentiable on its support with negative derivative G0ð�Þ, then limn%1

g�ðTaðnÞ
xy ;HXY Þ ¼ lima%1 g�ðTa

xy;HXY Þo1.

In both cases the local-shift sensitivity equals infinity.

5. Introducing environmental variables

The analysis of the preceding section can easily be extended to the case where additional
information is provided by other variables Z 2 Rr, exogenous to the production process
itself, but which may explain a part of it. The basic idea for introducing this additional
information in the model is to condition the production process to a given value of Z ¼ z.
Inspired from Cazals et al. (2002), Daraio and Simar (2006) introduce the concepts of
conditional efficiency measure and of partial conditional efficiency measure of discrete
order mX1. Similarly, we propose below the idea for conditional quantile efficiency
measure of continuous order a 2 ½0; 1�.

If the joint distribution of ðX ;Y Þ conditional on Z ¼ z defines the production process,
the efficiency measure lðx; yÞ defined in (1) and (3) has to be adapted to the condition
Z ¼ z as follows:

lðx; yjzÞ ¼ supfl jSY jX ;Zðlyjx; zÞ40g,

where SY jX ;Zðyjx; zÞ ¼ ProbðYXyjXpx;Z ¼ zÞ.
A nonparametric estimator of the conditional full-frontier efficiency lðx; yjzÞ is given by

plugging in its formula a nonparametric estimator of SY jX ;Zðyjx; zÞ. We can use the
following smoothed estimator:

bSY jX ;Z;nðyjx; zÞ ¼

Pn
i¼11ðX ipx;Y iXyÞKððz� ZiÞ=hnÞPn

i¼11ðX ipxÞKððz� ZiÞ=hnÞ
,

where K is the kernel and hn is the bandwidth of appropriate size. Practical bandwidth
selection issues, based on a k-nearest neighbor method, are addressed in Section 4 of
Daraio and Simar (2006) in the input oriented framework. As also pointed out there, the
estimate of the conditional full-frontier efficiency for kernels with unbounded support is
unable to detect any influence of the environmental factors. Therefore, kernels with
compact support have to be used. Let the observations ðX i;Y i;ZiÞ 2 Rpþqþr, i ¼ 1; . . . ; n,
be independent with the same distribution as ðX ;Y ;ZÞ.

Lemma 5.1. If the kernel K is of bounded variation with bounded support and the band

sequence hn ! 0 in such a way that
P

nX1 exp½�rnhr
n�o1 for all r40, thenbSY jX ;Z;nðlyjx; zÞ �!

a:s:
SY jX ;Zðlyjx; zÞ as n!1

for any l; y and any x interior to the support of X and for almost all z, i.e., for all zeN where

N is such that ProbðZ 2 NÞ ¼ 0.

Proof. Since the indicator functions 1ðXpxÞ and 1ðXpx;YXlyÞ are bounded, Theorem 1
of Stute (1986a) immediately implies almost sure convergence of the Nadaraya–Watson
estimates

Pn
i¼11ðX ipx;Y iXlyÞKððz� ZiÞ=hnÞ=

Pn
i¼1Kððz� ZiÞ=hnÞ and

Pn
i¼11ðX ipxÞ

Kððz� ZiÞ=hnÞ=
Pn

i¼1Kððz� ZiÞ=hnÞ to E½1ðXpx;YXlyÞjZ ¼ z� and E½1ðXpxÞjZ ¼ z�,
respectively, as n!1, for any l; x; y and for all zeN. Which implies the desired almost
sure convergence of bSY jX ;Z;nðlyjx; zÞ to SY jX ;Zðlyjx; zÞ. &
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By following the idea of Definition (4), we can define the conditional order-a output
efficiency measure as follows:

Definition 5.1. For any y 2 R
q
þ, the conditional order-a output efficiency measure given

that Z ¼ z, denoted by laðx; yjzÞ is defined for all x in the interior of the support of X as

laðx; yjzÞ ¼ supfl jSY jX ;Zðlyjx; zÞ41� ag.

Therefore, for any y 2 R
q
þ, the conditional order-a quantile frontier given that Z ¼ z, is

defined as the set of points yq
aðxjzÞ ¼ laðx; yjzÞy, y 2 R

q
þ. As above we have immediately the

following result.

Proposition 5.1. For any y 2 R
q
þ and for all x in the interior of the support of X,

lim
a!1
% laðx; yjzÞ ¼ lðx; yjzÞ.

A nonparametric estimator of laðx; yjzÞ is provided by plugging in its formula the
nonparametric estimator of SY jX ;Zðyjx; zÞ. Formally, it is defined asbla;nðx; yjzÞ ¼ supfl j bSY jX ;Z;nðlyjx; zÞ41� ag.

Here also we have

lim
a!1
% bla;nðx; yjzÞ ¼ blnðx; yjzÞ ¼ supfl j bSY jX ;Z;nðlyjx; zÞ40g.

These conditional nonparametric estimators are very easy to implement and very fast to
compute in practice. Indeed, for j ¼ 1; . . . ;Nx, denote by Zx

½j� the observation Zi

corresponding to the order statistic Yx
ðjÞ, and let Rx;z ¼

Pn
i¼11ðX ipxÞKðz�Zi

hn
Þ40. Then,

bSY jX ;Z;nðlyjx; zÞ ¼
1

Rx;z

XNx

j¼1

1ðlpYx
ðjÞÞKððz� Zx

½j�Þ=hnÞ

¼

1 if lpYx
ð1Þ;

Lkþ1 if Yx
ðkÞolpYx

ðkþ1Þ; k ¼ 1; . . . ;Nx � 1;

0 if l4Yx
ðNxÞ

;

8>><>>:
where Lkþ1 ¼ ð1=Rx;zÞ

PNx

j¼kþ1Kððz� Zx
½j�Þ=hnÞ. It follows

bla;nðx; yjzÞ ¼ Yx
ðkÞ if Lkþ1p1� aoLk; k ¼ 1; . . . ;Nx � 1;

Yx
ðNxÞ

if 0p1� aoLNx
:

(
Theorem 5.1. Let x 2 R

p
þ be an interior point of the support of X, y 2 R

q
þ, zeN and a 2�0; 1½.

If l 7!SY jX ;Zðlyjx; zÞ is decreasing in a neighborhood of laðx; yjzÞ, thenbla;nðx; yjzÞ �!a:s: laðx; yjzÞ as n!1.

Proof. Let e40 and GðlÞ ¼ SY jX ;Zðlyjx; zÞ. We have in view of the definition of laðx; yjzÞ
and the regularity condition

Gðlaðx; yjzÞ þ eÞo1� aoGðlaðx; yjzÞ � eÞ.

Let bGnðlÞ ¼ bSY jX ;Z;nðlyjx; zÞ. It follows from Lemma 5.1 that bGnðlaðx; yjzÞ þ
eÞ!

a:s:
Gðlaðx; yjzÞ þ eÞ and bGnðlaðx; yjzÞ � eÞ!

a:s:
Gðlaðx; yjzÞ � eÞ as n!1. This yields
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(see, e.g., Serfling (1980, p. 6), for an equivalent condition for the almost sure convergence)

8Z40 : Prob sup
mXn
j bGmðlaðx; yjzÞ þ eÞ � Gðlaðx; yjzÞ þ eÞj4Z

� �
! 0; n!1,

8d40 : Prob sup
mXn
j bGmðlaðx; yjzÞ � eÞ � Gðlaðx; yjzÞ � eÞj4d

� �
! 0; n!1.

Putting Z ¼ ð1� aÞ � Gðlaðx; yjzÞ þ eÞ and 0odoGðlaðx; yjzÞ � eÞ � ð1� aÞ, we get

Prob½ bGmðlaðx; yjzÞ þ eÞp1� ao bGmðlaðx; yjzÞ � eÞ for all mXn� ! 1; n!1.

Hence, by using the fact that bla;mðx; yjzÞXl if and only if bGmðlÞ4ð1� aÞ, we obtain

Prob½laðx; yjzÞ � epbla;mðx; yjzÞolaðx; yjzÞ þ e for all mXn� ! 1; n!1.

That is ProbðsupmXn j
bla;mðx; yjzÞ � laðx; yjzÞj4eÞ ! 0 as n!1. This is equivalent to the

almost sure convergence of bla;nðx; yjzÞ to laðx; yjzÞ as n!1. &

Note that the asymptotic properties of blnðx; yjzÞ have not yet been derived in the
literature. Its weak consistency can be easily derived from Theorem 5.1 as follows.

Corollary 5.1. Let x 2 R
p
þ be in the interior of the support of X, y 2 R

q
þ, zeN and let

kðx; yjzÞ ¼ supfl jSY jX ;Zðlyjx; zÞ ¼ 1g. If l 7!SY jX ;Zðlyjx; zÞ is decreasing on ½kðx; yjzÞ;
laðx; yjzÞ�, then

blnðx; yjzÞ �!
p

lðx; yjzÞ as n!1.

Proof. Let e40. Because lima%1laðx; yjzÞ ¼ lðx; yjzÞ, there exists 0oaeo1 such that

jlae ðx; yjzÞ � lðx; yjzÞjoe=2. Since blae;nðx; yjzÞpblnðx; yjzÞplðx; yjzÞ with probability 1,

we obtain jblnðx; yjzÞ � lðx; yjzÞjpjblae;nðx; yjzÞ � lðx; yjzÞjojblae;nðx; yjzÞ � lae ðx; yjzÞj þ e=2

with probability 1. Whence Prob½jblnðx; yjzÞ � lðx; yjzÞj4e�pProb½jblae;nðx; yjzÞ � laeðx;

yjzÞj4e=2�. Since bla;nðx; yjzÞ �!a:s: laðx; yjzÞ for all 0oao1, Prob½jblae;nðx; yjzÞ � laeðx;
yjzÞj4e=2� ! 0 as n!1. This ends the proof. &

A slightly different version of the estimator bSY jX ;Z;nðlyjx; zÞ can be adapted from a
proposal by Yang (1981) and is given by

eSY jX ;Z;nðlyjx; zÞ ¼

Pn
i¼11ðX ipx;Y iXlyÞKððbFZ;nðzÞ � bFZ;nðZiÞÞ=hnÞPn

i¼11ðX ipxÞKððbF Z;nðzÞ � bF Z;nðZiÞÞ=hnÞ
,

where bF Z;nð�Þ denotes the empirical distribution function of values of Z. It turns out that
this estimator is more efficient than bSY jX ;Z;nðlyjx; zÞ if there are few observations in
neighborhoods of z (see, e.g., Stute, 1984). Consistency of the resulting estimatorela;nðx; yjzÞ ¼ supfl j eSY jX ;Z;nðlyjx; zÞ41� ag can be easily derived from consistency ofeSY jX ;Z;nðlyjx; zÞ. Note also that the asymptotic normality of bla;nðx; yjzÞ and ela;nðx; yjzÞ as
estimators of laðx; yjzÞ can be established by using a similar method as for showing
asymptotic normality of unconditional quantiles (see, e.g., Wretman, 1978). Compared

with Wretman’s proof, the uniform tightness of f
ffiffiffiffiffiffiffi
nhr

n

p
ðbSY jX ;Z;nðlyjx; zÞ � SY jX ;Zðlyjx; zÞÞg

as a process indexed by l should be proved and used rather than Chebyshev’s inequality.
This prescription can be found, e.g., in Stute (1986b).
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5.1. Stressing the influence of Z on the production process

The comparison of blnðx; yjzÞ with blnðx; yÞ is certainly of interest for analyzing the global
influence of Z on the production process. When Z is univariate, Daraio and Simar (2006)
suggest that the use of a scatter plot of the ratios blnðx; yjzÞ=blnðx; yÞ against Z and its
smoothed nonparametric regression line would be helpful to describe the influence of Z on
efficiency. An increasing regression corresponds to favorable environmental factor
and a decreasing regression indicates an unfavorable factor. The correspondent
a-quantile efficiency scores provide a more robust analysis, robust to extremes or outliers.
Of course, we do not propose any inference here, but only an easy and useful descriptive
diagnostic tool.
In the input oriented case, the interpretation of the shape of the regression line of the

ratios bynðx; yjzÞ=bynðx; yÞ against Z (and of their correspondent a-quantile based measures),
is in the opposite direction.

6. Numerical illustrations

We illustrate first the estimation of the a-quantile frontiers in some simulated data sets
and compare with the FDH and the order-m frontiers and even with some traditional
parametric estimators. Then in a second part, we will show through a multivariate
simulated data set, the behavior of the estimators of the a-quantile efficiency scores,
conditional to environmental variables and compare with alternative nonparametric
estimators (FDH and order-m). Finally, we illustrate how our procedure works with a real
data set.

6.1. Estimation of the frontier functions

We will compare the estimators with two simulated data sets used in Florens and Simar
(2005) and one proposed in Simar (2003).

Example 1 (Cobb–Douglas with exponential). We choose here a concave frontier given by
the Cobb–Douglas model Y ¼ X 1=2 expð�UÞ, where X is uniform on ½0; 1� and U,
independent of X, is exponential with parameter l ¼ 3. Here the true frontier function is
given by jðxÞ ¼ x1=2. In this particular model, it can be shown that the true a-quantile
frontier is given by jaðxÞ ¼ x1=2la, where la ¼ cosðarccosð1�2aÞþ4p

3
Þ þ 1

2
, whereas the true

order-m frontier is given by jmðxÞ ¼ x1=2lm, where lm ¼ 1� Bm with Bm ¼
Pm

j¼0ð
m
j Þ

ð�2Þm�j3j=ð3m� j þ 1Þ. In general, these partial order frontiers are different, except for the
limiting case where m tends to infinity and a to one. But in this particular example, if
a ¼ 1

2
ð1� cos½3 arccosð1

2
� BmÞ � 4p�Þ, then la ¼ lm. We choose here m ¼ 20 and a ¼

0:9612 to compare the two estimates of the same object. We will then compare with the
FDH frontier, the deterministic Cobb–Douglas fit (shifted-OLS, so that all the residuals
are negative) and a stochastic parametric model with a correct specification for the frontier
and for the efficiency distribution (exponential) plus, as usual in these models, a normal
noise.
The results are illustrated in Fig. 1, for one sample of 100 observations generated by the

model above where we add three outliers. For this case, when ones estimates the true full
frontier jðxÞ ¼ x1=2, there is no way to obtain better results than the stochastic parametric
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Fig. 1. Results for Example 1. In solid black line, the true frontier y ¼ x0:5. In cyan solid, the FDH frontier

estimate, in blue dashed the estimated order-m frontier and in dash-dot red the estimate of the order-a frontier. In

black dotted, the shifted OLS estimate and in dash-dot black, the parametric stochastic fit.
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fit which is able to handle the three outliers by the normal noise term (estimated variance
of the noise is 0.0308). Note however, as well known in stochastic frontier models with
cross-sections, it is very difficult in these models to estimate the individual inefficiencies.
Remember that the two estimators of the partial frontier estimate another object, situated
below the full frontier (jm¼20ðxÞ ¼ ja¼0:9612ðxÞ ¼ 0:8815x1=2 is not reproduced on the
figure for clarity) and we see, as expected by the theoretical properties developed above,
that the order-a frontier estimate shows much more resistance to the outliers than the
order-m. It is also interesting to see how both partial order frontiers behave pretty well
even for estimating the full frontier in spite of not using any parametric assumption. As
expected, the parametric deterministic estimate and the nonparametric full frontier
estimate (FDH) are too sensitive to the outliers and miss the target.

Example 2 (Cobb–Douglas with uniform). We first consider a slightly different case where
the frontier is linear (particular case of a Cobb–Douglas) but the stochastic scenario is
different. We choose ðX ;Y Þ uniformly distributed over the region D ¼ fðx; yÞj0p
xp1; 0pypxg. Here the true frontier jðxÞ ¼ x. The true conditional a-quantile frontier
is jaðxÞ ¼ xð1�

ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

Þ, for 0oxp1, and the order-m frontier can be computed as
jmðxÞ ¼ xð1� AmÞ, where Am ¼

Pm
j¼0ð

m
j Þð�1Þ

m�j2j=ð2m� j þ 1Þ. Again, in this particular
example, if a ¼ 1� A2

m, then both partial frontiers coincide and we choose m ¼ 20 and
a ¼ 0:9622 to achieve this and facilitate the comparison of both estimators. We generate a
sample of n ¼ 100 observations and we add here four outliers, we use here for the
parametric estimators the same specification as in Example 1 and we do the same exercise
as above. The results are displayed in Fig. 2.

The comments are very similar to the preceding example: deterministic (parametric or
FDH) break down and the stochastic parametric estimate (same specification as in
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Fig. 2. Results for Example 2. In solid black line, the true frontier y ¼ x. In cyan solid, the FDH frontier estimate,

in blue dashed the estimated order-m frontier and in dash-dot red the estimate of the order-a frontier. In black

dotted, the shifted OLS estimate and in dash-dot black, the parametric stochastic fit.
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Example 1), behaves well but, as expected, not so well as above. This is due to the fact that
the parametric specification of the model is correct (Cobb–Douglas) but the stochastic
specification of the model is incorrect (as above we specified a normal noise minus an
exponential in the log scale). So the estimated stochastic parametric frontier under-
estimates the true frontier. Remember that both partial frontier estimates estimate a
different object, slightly below the full frontier. However, note again that even without any
parametric assumptions, the partial frontiers behave not so badly when considered as
estimates of the full frontier jðxÞ ¼ x, with again a clear advantage to the order-a frontier.
This is the main advantage of these robust nonparametric estimators.

Example 3 (Logit with exponential). As just noticed, the advantages of the nonparametric
estimators rely on the fact that no particular parametric specification is assumed for the
frontier and for the efficiency term. To illustrate further, we did the same exercise as the two
preceding examples but here the parametric specifications for the parametric models will be
wrong. We use a Cobb–Douglas with exponential inefficiency term specification, as above,
whereas the true model is Y ¼ expð10X � 5Þ=ð1þ expð10X � 5ÞÞ expð�UÞ, with X and U as
in Example 1. For the robust nonparametric estimators, we choose values of a ¼ 0:95 and
m ¼ 20, so that both order-a and order-m efficiency scores are very close. With little surprise,
the nonparametric estimators clearly show their superiority as shown in Fig. 3.
6.2. A multivariate simulated example

In this set-up, we cannot produce pictures of the frontier surfaces, so we will focus
on the detection of the effect of environmental variables on the efficiency scores
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Fig. 3. Results for Example 3. In solid black line, the true logit frontier. In cyan solid, the FDH frontier estimate,

in blue dashed the estimated order-m frontier and in dash-dot red the estimate of the order-a frontier. In black

dotted, the shifted OLS estimate and in dash-dot black, the parametric stochastic fit.
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and focusing on the comparison between the nonparametric estimators (full and
partial frontiers).

Here a multi-input (p ¼ 2) and multi-output (q ¼ 2) data set is simulated and the
function describing the efficient frontier is (as in Park et al., 2000)

yð2Þ ¼ 1:0845ðxð1ÞÞ0:3ðxð2ÞÞ0:4 � yð1Þ,

where yðjÞ, (xðjÞ), denotes the jth component of y, (of x), for j ¼ 1; 2. We draw X
ðjÞ
i

independent uniforms on ð1; 2Þ and ~Y
ðjÞ

i independent uniforms on ð0:2; 5Þ. Then the

generated random rays in the output space are characterized by the slopes Si ¼ ~Y
ð2Þ

i = ~Y
ð1Þ

i .

Finally, the generated random points on the frontier are defined by

Y
ð1Þ
i;eff ¼

1:0845ðX ð1Þi Þ
0:3
ðX
ð2Þ
i Þ

0:4

Si þ 1
,

Y
ð2Þ
i;eff ¼ 1:0845ðX ð1Þi Þ

0:3
ðX
ð2Þ
i Þ

0:4
� Y

ð1Þ
i;eff .

The efficiencies are generated by expð�UiÞ where Ui are drawn from an exponential with

mean m ¼ 1
3
. Finally, in a standard setup (without environmental factors), we define

Y i ¼ Y i;eff � expð�UiÞ.

Now we introduce the dependency on an favorable environmental factor Z (we adapt
Case 1 of Daraio and Simar, 2006): Z is uniform on ð0:5; 1:5Þ and

Y
ð1Þ
i ¼ Z � Y

ð1Þ
i;eff � expð�UiÞ,

Y
ð2Þ
i ¼ Z � Y

ð2Þ
i;eff � expð�UiÞ.
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For the nonparametric estimation, we have chosen a triangle kernel for the smoothing: the
results are very stable with respect to other choice of the kernel with compact support. For
the partial frontier we have chosen m ¼ 20 and a ¼ 0:90, just to illustrate the procedures.
In practice, the choice of these two ‘‘tunning’’ parameters may be governed by their
economic interpretation (a benchmark against the best of m virtual competitors, or against
a level of production with a probability ð1� aÞ � 100% of being dominated) but these
estimators are so fast to compute that in practice, a sensitivity analysis could be performed
to select an appropriate level for m and for a (see Simar, 2003 for more details). The values
chosen here are such that both order-a and order-m efficiency scores are very close in
absence of outliers.
We simulate n ¼ 100 observations according to this scenario and we will compare

our results with those obtained when adding five outliers. The latter are introduced
at the following values of X: ð1:25; 1:5Þ; ð1:25; 1:75Þ; ð1:5; 1:5Þ; ð1:75; 1:25Þ and ð1:5; 1:25Þ,
the corresponding values for the slopes in the Y space are ð0:25; 0:75; 1; 3; 5Þ.
The corresponding values of Z have been chosen in the range of Z as
ð0:6; 0:8; 1; 1:2; 1:4Þ. Finally the outliers in the output direction were projected outside
the true frontier by a factor 3 for the first three points and a factor of 2 for the remaining
two outliers.
The results are displayed in Fig. 4. On the left panels, we have the results for the regular

sample: we see that all the ratios allow to detect the favorable ‘‘linear’’ effect of Z on the
production process. On the right panels, we see the results when the five outliers have been
added. The comparison of the left to the right panel allows to appreciate the robustness of
the measures to the outliers. The FDH estimator fails to detect the correct effect when the
outliers are added and even shows a negative slope at the right. The order-m resists better
to the outliers, although after Z ¼ 1:1 indicate a flat slope. The a-quantile measures being
the more robust to extreme values, give the best picture: the difference between the left and
the right panels is the weakest; in both cases they indicate correctly the positive influence of
Z on the production process.

6.3. Mutual funds data

We also illustrate our methodology analyzing US Mutual Funds data. We use a cross-
section data set, collected by the reputed Morningstar, which consists of the US Mutual
Funds universe updated at 05-31-2002. Among this universe we select the aggressive-
growth (AG) category of mutual funds. These are funds that seek rapid growth of capital
and that may invest in emerging market growth companies. For details about the data, the
variables and references to this literature, see Daraio and Simar (2006), where the analysis
is also fully motivated.
We have a sample of 129 mutual funds and we apply an input oriented framework. The

traditional output in this framework is the total return of funds (the annual return
at the 05-31-2002, expressed in percentage terms). Most returns were negative in this
period, hence we shift them to get all positive returns by adding 100. This does not
change our input oriented analysis. The inputs are risk (standard deviation, or volatility
of the return), expense ratio (the percentage of fund assets paid for operating
expenses, management fees, administrative fees, and all other asset-based costs) and
turnover ratio (a measure of the fund’s trading activity). In our illustration we use the
market risks of mutual funds (the percentage of fund’s movements that can be explained
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Fig. 4. Simulated example, n ¼ 100: ‘‘positive’’ effect of Z on production efficiency (output oriented framework).

Left panels, regular data and right panels, same data plus with 5 outliers. Scatterplot and smoothed regression of

the ratios l̂nðx; yjzÞ=l̂nðx; yÞ on Z (top panels), of l̂m;nðx; yjzÞ=l̂m;nðx; yÞ on Z (middle panels) and of

l̂a;nðx; yjzÞ=l̂a;nðx; yÞ (bottom panels) on Z.
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by movements in its benchmark index) as environmental variable, to investigate its effect
on our data, i.e. if it is detrimental or favorable to the performance of mutual funds in the
period under consideration.
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We compare FDH, order-m (with m ¼ 25, chosen in Daraio and Simar, 2006) and
a-quantile efficiency scores, unconditional and conditional to Z. We have chosen four
values of a, from 0:80 to 0:975 for showing the sensitivity of the procedure to this choice.
The results are displayed in Fig. 5. We see indeed that for the order-a measures, the choice
of a is not so important (the case a ¼ 0:99 is not reproduced here but is very similar, as it
should be, to the FDH case). All the pictures confirm the global positive effect of the risk
market on the performance of the funds, as expected from the literature (Sengupta, 2000
used this variable as additional input in this framework), but here this interpretation is a
result of our analysis. We note also that the FDH measures fail to give this global
interpretation, but we know this data set contains a lot of outliers (see Daraio and Simar,
2006). The effect appears more clearly with the order-a measures, because they are less
sensitive to extreme values, and the robustness properties developed in Section 4 lead us to
favor this measure. We see also that the results are rather stable when choosing
‘‘reasonable’’ values for a not far from the standard level of 95% of the statistical
literature.
7. Conclusions

In this paper we develop a generalized concept of efficiency measure, the a-quantile
efficient scores, related to a nonstandard conditional a-quantile frontier in a full
multivariate set-up. The approach can be viewed as an alternative to the order-m
efficiency scores and order-m efficient frontier developed by Cazals et al. (2002) and Daraio
and Simar (2006).
Both approaches provide nonparametric estimators of the efficient frontier which are

more robust than the usual envelopment estimators (like FDH/DEA estimators). The a-
quantile approach is more easy to interpret since the parameter a is just the selected level of
the quantile. The choice of m in order-m efficient frontier is more delicate although it can
be interpreted as the number of potential firms against which the benchmark is done to
determine the efficiency score of a particular firm. The choice of m can also be indirectly
piloted by the percentage of observed firms staying above the frontier for a given m, but the
a-quantile approach seems to be more direct.
The asymptotic normality of our estimator is provided for a fixed order ao1. An

exponential probability inequality yielding the complete convergence of the estimator is
also established. Then, by letting the order a increase to 1 as a function of the sample size,
we derive an estimator of the full true Farrell efficiency scores which converges to a
limiting Weibull distribution with the same rate as the FDH estimator.
The estimation procedure is robust to the perturbations in data, which attains a

bounded influence function. A theoretical analysis shows that the multivariate quantile-
type efficiency scores are more robust to extremes than the nonparametric order-m
efficiency scores. Moreover, as for the order-m frontiers, the a-quantile frontiers can also
be used to detect outliers in the spirit of Simar (2003).
In this framework, it is also easy to introduce environmental factors and we propose

useful tools for detecting their influence on efficiencies. Here also, we derive some
asymptotic properties for the resulting estimator and we show how it can be easily
calculated. Numerical examples (with simulated data and with mutual funds data)
illustrate the usefulness of the approach.
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Fig. 5. Aggressive-growth US mutual funds. Scatterplot and smoothed regression of the ratios ŷnðx; yjzÞ=ŷnðx; yÞ
on Z (top left), of ŷm;nðx; yjzÞ=ŷm;nðx; yÞ on Z (top right, with m ¼ 25) and of ŷa;nðx; yjzÞ=ŷa;nðx; yÞ on Z (middle

panel, left a ¼ 0:80 and right a ¼ 0:90 and bottom panel, left a ¼ 0:95 and right a ¼ 0:975).
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Finally, since for every attainable point ðxi; yiÞ, there exists a a such that bya;n ¼ 1 (orbla;n ¼ 1), this a could serve as an alternative measure of input (or output) efficiency. In
other words, one may set the performance measure for the unit ðxi; yiÞ to be the order a of
the quantile frontier which passes through this unit. For instance, in the output
orientation, it can be easily seen that aðxi; yiÞ ¼ 1� bSY jX ;nðyijxiÞ þ ð1=n bHXY ;nðxi; 0ÞÞ.



ARTICLE IN PRESS
A. Daouia, L. Simar / Journal of Econometrics 140 (2007) 375–400400
Acknowledgments

Research support from the ‘‘Interuniversity Attraction Pole’’, Phase V (No. P5/24) from
the Belgian Science Policy is acknowledged.

References

Aragon, Y., Daouia, A., Thomas-Agnan, C., 2003. Efficiency measurement: a nonparametric approach.
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