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Abstract

S. Kusuoka [K 01, Theorem 4] gave an interesting dual characteriza-
tion of law invariant coherent risk measures, satisfying the Fatou prop-
erty. The latter property was introduced by F. Delbaen [D 02]. In the
present note we extend Kusuoka’s characterization in two directions, the
first one being rather standard, while the second one is somewhat sur-
prising. Firstly we generalize — similarly as M. Fritelli and E. Rossaza
Gianin [FG05] — from the notion of coherent risk measures to the more
general notion of convex risk measures as introduced by H. Föllmer and
A. Schied [FS 04]. Secondly — and more importantly — we show that
the hypothesis of Fatou property may actually be dropped as it is au-
tomatically implied by the hypothesis of law invariance.

We also introduce the notion of the Lebesgue property of a convex
risk measure, where the inequality in the definition of the Fatou property
is replaced by an equality, and give some dual characterizations of this
property.

1 Introduction

This paper is a twin to [JST 05] and we shall use similar notation. In particular
we rather use the language of “monetary utility functions” which — up to the
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F-75775 Paris Cedex 16, France.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6465096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sign — is identical to the notion of convex risk measures [FS 04]. We do so in
order to point out more directly how the present theory is embedded into the
framework of classical utility theory.

Throughout the paper we work on a standard probability space (Ω,F ,P),
i.e., we suppose that (Ω,F ,P) does not have atoms and that L2(Ω,F ,P) is
separable.

A monetary utility function is a concave non-decreasing map U :
L∞(Ω,F ,P) → [−∞,∞[ with dom(U) = {X | U(X) ∈ R} 6= ∅, and

U(X + c) = U(X) + c, for X ∈ L∞, c ∈ R.

Note that a monetary utility function is Lipschitz with respect to ‖ . ‖∞, and
that dom(U) = L∞. By adding a constant to U if necessary, we may and shall
always assume that U(0) = 0.

Defining ρ(X) = −U(X) the above definition of a monetary utility function
yields the definition of a convex risk measure [FS 04]. Convex risk measures are
in turn a generalization of the concept of coherent risk measures [ADEH97],
which are particularly relevant in applications, and where one imposes the
additional requirement of positive homogeneity ρ(λX) = λρ(X), for X ∈ L∞

and λ ≥ 0. A characterization of coherent (resp. convex) risk measures ρ :
L∞(Ω,F ,P) → R in terms of their Fenchel transform, defined on L1(Ω,F ,P),
was obtained in [D 02] under the condition that ρ satisfies the Fatou property,
i.e.,

ρ(X) ≤ lim inf
n→∞

ρ(Xn) whenever sup
n
‖Xn‖∞ < ∞ and Xn

P−→ X, (1)

where
P−→ denotes convergence in probability. In the present context, this

condition is equivalent to the upper semi-continuity condition with respect to
the σ(L∞, L1)-topology.

For fixed X ∈ L1(Ω,F ,P), we introduce the function

Uα(X) := α−1

∫ α

0

qX(β)dβ , α ∈]0, 1[ , (2)

U0(X) = ess inf(X), and U1(X) = E[X], where qX denotes the quantile func-
tion of the random variable X, i.e. the generalized inverse of its cumulative
distribution function (see (3) below). For every α ∈ [0, 1], Uα is a positively
homogeneous monetary utility function, which is in addition law invariant.
The corresponding coherent risk measure ρα = −Uα is the so-called average
value at risk at level α, sometimes denoted by AV@Rα (see [FS 04]). The fam-
ily {Uα, 0 ≤ α ≤ 1} plays an important role as any law invariant monetary
utility function U may be represented in terms of the utility functions Uα,
α ∈ [0, 1]. This result was obtained by [K 01] in the context of coherent risk
measures, and later extended by [FG 05] to the context of convex risk mea-
sures, see also [FS 04], Theorem 4.54 and 4.57 as well as Corollary 4.72. The
precise statement of this result is the following.
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Theorem 1.1 Suppose that (Ω,F ,P) is a standard probability space. For a
function U : L∞(Ω,F ,P) → R the following are equivalent:
(a) U is a law invariant monetary utility function satisfying the Fatou property.
(b) There is a convex function v : P([0, 1]) → [0,∞] such that

U(X) = inf
m∈P([0,1])

{∫ 1

0

Uα(X)dm(α) + v(m)

}
for every X ∈ L∞ .

Here, P([0, 1]) denotes the set of all Borel probability measures on the
compact space [0, 1]. The crucial observation of Kusuoka [K 01] is that, for law
invariant monetary utility functions, condition (b) is equivalent to

(c) There is a law invariant, lower semi-continuous, convex function V :
L1(Ω,F ,P) → [0,∞] such that dom(V ) ⊆ P(Ω,F ,P) and

U(X) = inf
Y ∈L1

{E[XY ] + V (Y )} for every X ∈ L∞ ,

where P(Ω,F ,P) denotes the set of P−absolutely continuous probability mea-
sures on (Ω,F ,P), which we identify with a subset of L1(Ω,F ,P). For com-
pleteness, we report a proof of the equivalence between conditions (b) and (c)
in Section 3.

The equivalence of (a) and (c) is due to F. Delbaen in the framework of (not
necessarily law invariant) coherent risk measures [D 02], and was extended to
convex risk measures in [FS 04].

The first main contribution of this paper is to drop the Fatou property in
condition (a) of the above Theorem 1.1 by proving that it is automatically
satisfied by law-invariant monetary utility functions. In fact, we prove more
generally that the Fatou property is implied by the concavity, the L∞-u.s.c.
and the law-invariance properties. This result is stated in Section 2 and proved
in Section 4. The reader only interested in this result may directly proceed to
these sections.

We next introduce the following natural notion.

Definition 1.2 A utility function U : L∞ → R∪{−∞} satisfies the Lebesgue
property if for every uniformly bounded sequence (Xn)∞n=1 tending a.s. to X
we have

U(X) = lim
n→∞

U(Xn) .

Clearly the Lebesgue property is a stronger condition than the Fatou prop-
erty defined in (1), as the inequality has been replaced by an equality. In
fact, this property was — under different names — already investigated in the
previous literature, as was kindly pointed out to us by A. Schied.
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The second contribution of this paper is a characterization of the Lebesgue
property for a monetary utility function U in terms of the corresponding
Fenchel transform V introduced in condition (c) of Theorem 1.1. If in addition
U is law-invariant, this implies a characterization in terms of the function v
introduced in the above Theorem 1.1 (b). These results are stated in Section
2 and proved in Section 5.

2 AV@R representation of law-invariant mon-

etary utilities

2.1 Definitions

Let (Ω,F ,P) be an atomless probability space, and assume that L2(Ω,F ,P)
is separable. The assumption of F being free of atoms is crucial (otherwise
one is led to combinatorial problems which are irrelevant from the economic
point of view). On the other hand, the separability assumption is convenient
for the arguments below, but does not reduce the generality: indeed in all the
arguments below we shall only encounter (at most) countably many random
variables (Xn)∞n=1; hence we may assume w.l.g. that the σ-algebra F is gener-
ated by countably many random variables, i.e., that L2(Ω,F ,P) is separable.

We denote by P(Ω,F ,P) the set of P-absolutely continuous probability
measures on (Ω,F ,P), which we identify with a subset of L1(Ω,F ,P). We also
denote by P([0, 1]) (resp. P(]0, 1])) the set of all Borel probability measures
on the compact space [0, 1] (resp. on the locally compact space ]0, 1]).

A measure preserving transformation of (Ω,F ,P) is a bi-measurable bi-
jection τ : Ω → Ω leaving P invariant, i.e., τ(P) = P. For 1 ≤ p ≤ ∞,
the transformation τ induces an isometric isomorphism, still denoted by τ , on
Lp(Ω,F ,P), mapping X to X ◦ τ .

A map f : L∞ → R is called law invariant, if f(X) depends only on the
law of X for every X ∈ L∞. The function f is called transformation invariant
if f ◦ τ = f for every measure preserving transformation τ , where we abuse
notations by writing f ◦ τ(X) := f(X ◦ τ).

We shall verify in Lemma A.4 that these notions of law invariance and
transformation invariance may be used in a synonymous way in the present
context of monetary utility function, as a consequence of the concavity and
the ‖ . ‖∞-continuity property of monetary utility functions.

An important example of law invariant and transformation invariant func-
tion is the so-called quantile function defined by

qX(α) := inf {x ∈ R | P[X ≤ x] ≥ α} , X ∈ L∞, α ∈ [0, 1] . (3)

The functions Uα, 0 ≤ α ≤ 1, introduced in (2) provide the simplest example
of law invariant monetary utility functions, which correspond to the so-called
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average value at risk.

2.2 Strong and weak upper semi-continuity of law in-
variant maps

We now have assembled all the concepts that are needed to formulate our first
main result.

Theorem 2.1 Suppose that (Ω,F ,P) is a standard probability space. For a
function U : L∞(Ω,F ,P) → R the following are equivalent:
(i) U is a law invariant monetary utility function.
(ii) There is a law invariant, lower semi-continuous, convex function V :
L1(Ω,F ,P) → [0,∞] such that dom(V ) ⊆ P(Ω,F ,P) and

U(X) = inf
Y ∈L1

{E[XY ] + V (Y )} for X ∈ L∞ .

(iii) There is a convex function v : P([0, 1]) → [0,∞] such that

U(X) = inf
m∈P([0,1])

{∫ 1

0

Uα(X)dm(α) + v(m)

}
for X ∈ L∞ .

If any of these conditions is satisfied, then U satisfies the Fatou property.

This result shows that law invariant monetary utility functions admit a
representation in terms of the corresponding Fenchel transform without any
further assumption. In particular the AV@R representation of such utility
functions holds without any further condition. Our novel contribution is that
the Fatou property is automatically implied by the law invariance and the
strong upper semi-continuity; recall that monetary utility functions are L∞-
Lipschitz continuous. We state this fact in a slightly more general framework:

Theorem 2.2 Suppose that (Ω,F ,P) is a standard probability space. Let U :
L∞ → R∪{−∞} be a concave function, which is law invariant and u.s.c. with
respect to the topology induced by ‖ . ‖∞. Then U is u.s.c. with respect to the
σ(L∞, L1)-topology.

We prove this result, which we consider as the main contribution of this
paper, in section 4. The reader only interested in Theorem 2.2 may directly
proceed to this section.

Finally we observe that Theorem 2.1 implies in particular that in Theorem 7
of [K 01] the assumption of the Fatou property may also be dropped. For the
sake of completeness we formulate this result.

A monetary utility function U : L∞ → R is called comonotone if U(X1 +
X2) = U(X1) + U(X2), for comonotone X1, X2 ∈ L∞ (compare [JST05]).
Note that this implies in particular that U is positively homogeneous, i.e.,
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U(λX) = λU(X), for λ ≥ 0, so that ρ(X) := −U(X) is a coherent risk
measure.

Theorem 2.3 Suppose that (Ω,F ,P) is a standard probability space. For a
function U : L∞(Ω,F ,P) → R the following are equivalent:
(i) U is a comonotone, law invariant, monetary utility function.
(ii) There is a probability measure m on [0, 1] such that

U(X) =

∫ 1

0

Uα(X)dm(α), X ∈ L∞.

In fact, this latter result is known, and may be found in [FS 04], Theo-
rem 4.87, as was kindly pointed out to us by A. Schied.

2.3 Dual characterization of the Lebesgue property

Under the additional assumption of U satisfying the Lebesgue property of
Definition 1.2, we have the following variant of Theorem 2.1.

Theorem 2.4 For a function U : L∞(Ω,F ,P) → R the following are equiva-
lent:
(i) U is a law invariant monetary utility function satisfying the Lebesgue
property.
(ii) There is a law invariant, lower semi-continuous, convex function V :
L1(Ω,F ,P) → [0,∞] such that dom(V ) ⊆ P(Ω,F ,P),

U(X) = inf
Y ∈L1

{E[XY ] + V (Y )} , X ∈ L∞ , (4)

and {V ≤ c} is uniformly integrable, for each c > 0.
(iii) There is a convex function v : P(]0, 1]) → [0,∞] such that

U(X) = inf
m∈P(]0,1])

{∫ 1

0

Uα(X)dm(α) + v(m)

}
, X ∈ L∞, (5)

and such that, for c > 0, {v ≤ c} is relatively compact in the Prokhorov
topology on P(]0, 1]), i.e., for c > 0 and ε > 0 there exists α > 0 such that
m(]0, α]) < ε, whenever v(m) ≤ c.

To relate Theorem 2.4 to Theorem 2.1 it is instructive to consider a very
easy example, namely U0(X) = ess inf(X), which is a law invariant monetary
utility function. It is straight-forward to verify that U0 fails the Lebesgue
property. In this case the functions V (resp. v) appearing in (ii) and (iii) of
Theorem 2.1 simply are identically zero on P(Ω,F ,P) (resp. on P(]0, 1])), so
that they do not satisfy the uniform integrability (resp. relative compactness)
requirements in (ii) and (iii) of Theorem 2.1.
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We also stress the difference of P([0, 1]) versus P(]0, 1]) in Theorem 2.1 and
2.4 respectively. The above formulation of Theorem 2.1 using P([0, 1]) was
stated by S. Kusuoka and seems more natural (although it would be possible
to also formulate Theorem 2.1 using P(]0, 1]) instead of P([0, 1]). For the
formulation of Theorem 2.3, however, it is indispensable to pass to P([0, 1])).
Think again of U0(X) = ess inf(X). In this case, the measure m appearing in
Theorem 2.3 (ii) equals the Dirac-measure δ0.

3 Reduction of the probability space by law

invariance

In this section we shall show the equivalence of (ii) and (iii) in Theorem 2.1. We
shall see that a rather straight-forward application of the formula of integration
by parts translates (ii) into (iii) and vice versa. To do so rigourously, it will
be convenient to develop some functional analytic machinery.

As in [JST05] we denote by D↘ the set of non-increasing, right continuous,
R+-valued functions f on ]0, 1] such that f(1) = 0 and

‖f‖1 =

∫ 1

0

f(x)dx = 1.

We define the map T : D↘ → M(]0, 1]) by T (f) = m where the measure m
on the locally compact space ]0, 1] is defined by

dm(x) = −xdf(x), x ∈]0, 1]. (6)

To verify that (6) well-defines a probability measure on ]0, 1] suppose first
that f is differentiable and bounded on ]0, 1]. We then may apply the classical
formula of integration by parts to obtain

‖m‖1 = m(]0, 1]) =

∫ 1

0

dm(x)

= −
∫ 1

0

xf ′(x)dx

= −
[
xf(x)

]1

0
+

∫ 1

0

f(x)dx = ‖f‖1 = 1. (7)

This isometric identity also remains valid for arbitrary f ∈ D↘: indeed,
by considering f ∧ c, for c > 0 renormalizing and letting c → ∞, one reduces
to the case of bounded f ; for general bounded f ∈ D↘ it suffices to interpret
the above partial integration formula in a generalized sense, using Stieltjes
integration.

In fact, the map T : D↘ →M(]0, 1]) defines a bijection between D↘ and
the set P(]0, 1]) of probability measures on the locally compact space ]0, 1].
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Indeed, one may interpret (6) just as well as a definition of the function f
(right-continuous and satisfying f(1)= 0) for given m ∈ P(]0, 1]).

We still observe that T maps, for α ∈]0, 1], the functions gα = α−11]0,α[ ∈
D↘ to the Dirac measure δα on ]0, 1]; this property could just as well have been
used to define the map T (extending subsequently the definition by linearity
and continuity).

Proof of Theorem 2.1 (ii) ⇔ (iii)
Step 1: Given a convex function v : P(]0, 1]) → [0,∞] as in (iii) we define the
function V : L1(Ω,F ,P) → [0,∞] by

V (Y ) = v(T (−q−Y )), Y ∈ P(Ω,F ,P) and V (Y ) = +∞ otherwise,(8)

where T is defined in (6). This is a convex law invariant function on L1.
Conversely, given a law invariant convex function V : L1(Ω,F ,P) → [0,∞]

we may well-define V : D↘ → [0,∞] by

V(−q−Y ) := V (Y ), (9)

where −q−Y runs through D↘ when Y ranges through P(Ω,F ,P). We then
define v : P(]0, 1]) → [0,∞] by

v(m) = V(T−1(m)), m ∈ P(]0, 1]). (10)

This establishes a bijective correspondence between the functions V and v
as appearing in items (ii) and (iii) of Theorem 2.4. We have to show that two
such functions V and v define the same function U : L∞ → R via (4) and (5)
respectively.

So fix v and V satisfying (10). Write UV for the function defined by (4)
and U v for the function defined by (5).

First note that

UV (X) = inf
Y ∈L1

{∫ 1

0

qX(α) (−q−Y (α)) dα− V (Y )

}
= inf

f∈D↘

{∫ 1

0

qX(α)f(α)dα− V(f)

}
. (11)

Indeed, looking at the right hand side of (4), the term V (Y ) is invariant,
when Y runs through all elements of L1(Ω,F ,P) with fixed quantile function
−q−Y ( . ) ∈ D↘. On the other hand the term E[XY ] becomes minimal, for
fixed X and law of Y , if X and Y are anti-comonotonic (compare [JST05]),
in which case

E[XY ] =

∫ 1

0

qX(α) (−q−Y (α)) dα,
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which readily shows (11). Suppose now that f(α) = −q−Y (α) is bounded
and differentiable on ]0, 1] to again apply integration by parts. Let F (α) =∫ α

0
qX(β)dβ so that Uα(X) = α−1F (α), for α ∈]0, 1]. We then have∫ 1

0

qX(α)f(α)dα =
[
F (α)f(α)

]1

0
−

∫ 1

0

F (α)f ′(α)dα

= −
∫ 1

0

Uα(X)αf ′(α)dα

=

∫ 1

0

Uα(X)dm(α). (12)

Note that the latter integral is just the term appearing in (5). Similarly as
in (7) one verifies that (12) in fact holds true for arbitrary f ∈ D↘, which
readily shows that the functions UV and U v defined by (4) and (5) respectively
coincide.

We still have to verify that the function V in Theorem 2.1 (ii) may be
assumed to be lower semi-continuous with respect to ‖ . ‖1. In fact, this is

a triviality: we may always pass from a law invariant, convex function Ṽ :
L1 → [0,∞] to its lower semi-continuous envelope V , i.e., the largest lower
semi-continuous function dominated by V . It now suffices to note that the
passage from Ṽ to V does not affect the conjugate function U defined in (1),

in other words UV (X) = U Ṽ (X).
Step 2: We now show that we may choose the function v in (iii) to be defined
on P([0, 1]). Given a convex, lower semi-continuous, law invariant function
V : L1 → [0,∞] as in (ii), define the corresponding function v : P(]0, 1]) →
[0,∞] as in the above step 1. We define the lower semi-continuous envelope v
of v on P([0, 1]) by

v(m) := inf
{

lim
n→∞

v(mn) | (mn)∞n=1 ∈ P(]0, 1]) and lim
n→∞

mn = m
}

,

where the limit is taken with respect to the weak topology on P([0, 1]), i.e.,
the one generated by the continuous functions on [0, 1]. Noting that, for X ∈
L∞(Ω,F ,P), the function α 7→ Uα(X) is continuous on [0, 1], we get

inf
m∈P(]0,1])

{∫ 1

0

Uα(X)dm(α) + v(m)

}
(13)

= inf
m∈P([0,1])

{∫ 1

0

Uα(X)dm(α) + v(m)

}
.

Hence we have found a (lower semi-continuous, convex) function v, defined
on P([0, 1]), such that the above infima coincide. We note in passing that, if
v satisfies the Prokhorov condition of (iii) of Theorem 2.4, then v(m) = ∞,
whenever m({0}) > 0.
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Conversely starting with a function v : P([0, 1]) → [0,∞], which we assume
w.l.g. convex and l.s.c. by passing to this envelope, we may associate a convex,
l.s.c., law invariant function V : L1(Ω,F ,P) → [0,∞] as in the above step 1.
Note that the definition of V only uses the restriction of v to P(]0, 1]). By
(13) and the arguments in step 1, we conclude again that

inf
m∈P([0,1])

{∫ 1

0

Uα(X)dm(α) + v(m)

}
= inf

Y ∈L1
{E[XY ] + V (Y )}.

This finishes the proof of Theorem 2.1.

We observe that, in the above proof of Theorem 2.1 (ii)⇔(iii), we have in
fact translated statement (iii) of Theorem 2.1 into the subsequent equivalent
form:

(iii’) There is a convex function V : D↘ → [0,∞] such that

U(X) = inf
f∈D↘

{∫ 1

0

qX(α)f(α)dα− V(f)

}
. (14)

Indeed, the translation of the law invariant function V on L1 into the function
V on D↘ was done in (9) above and in (11) it was shown that the function
U(X) in (14) indeed equals the function UV (X).

We also remark that the above proof also shows that in item (ii) above
one may equivalently drop the word “convex” and/or the word “lower semi-
continuous”.

We have imposed in item (ii) the condition of lower semi-continuity of
the function V in order to make sure that the terms “law invariant” and
“transformation invariant” are equivalent (see Lemma A.4 below).

4 The Fatou property for law invariant utility

functions

In this section we shall prove Theorem 2.2 which will follow from the subse-
quent result whose proof will be reported at the end of this section.

Proposition 4.1 Let C be a convex, σ∗-closed, law invariant subset of
L∞(Ω,F ,P)∗. Then C ∩ L1(Ω,F ,P) is σ∗-dense in C.

10



Hence for a law invariant convex σ∗-lower semi-continuous function
V : L∞(Ω,F ,P)∗ → [0,∞], V equals the σ∗-lower semi-continuous extension
of the restriction of V to L1(Ω,F ,P), i.e.

V (µ) = inf

{
lim
α∈I

V (fα)

∣∣∣∣ (fα)α∈I ∈ L1, σ∗- lim
α∈I

fα = µ

}
, µ ∈ (L∞)∗.

Some explanation seems in order. On (L∞)∗ we consider the
σ∗ = σ((L∞)∗, L∞) topology and identify L1(Ω,F ,P) with a subspace of
L∞(Ω,F ,P)∗. A measure preserving transformation τ : (Ω,F ,P) → (Ω,F ,P)
defines an isometry, denoted again by τ , on Lp(Ω,F ,P), for 1 ≤ p ≤ ∞, via

τ : Lp → Lp

f 7→ f ◦ τ. (15)

The transpose of τ : L∞ → L∞, denoted by τ ∗, defines an isometry on (L∞)∗

via

τ ∗ : (L∞)∗ → (L∞)∗

〈τ ∗(µ), f〉 = 〈µ, τ(f)〉, µ ∈ (L∞)∗, f ∈ L∞. (16)

A function V on (L∞)∗ is called transformation invariant if V = V ◦ τ ∗ for
every measure preserving transformation τ : (Ω,F ,P) → (Ω,F ,P). A similar
definition applies to subsets of (L∞)∗.

A σ∗-closed convex subset C of (L∞)∗ is called law invariant if, for X1, X2 ∈
L∞ with law(X1) = law(X2) we have

{〈µ, X1〉 | µ ∈ C} = {〈µ, X2〉 | µ ∈ C}.

A convex σ∗-lower semi-continuous function V : (L∞)∗ → R ∪ {+∞} is
called law invariant if, for each c ∈ R, the level set {V ≤ c} is law invariant.

In Lemma A.5 below we justify that in our setting we may use the notions
of law invariance and transformation invariance synonymously.

Admitting the above Proposition 4.1 the proof of Theorem 2.2 is straight-
forward.

Proof of Theorem 2.2 Given a concave, u.s.c. (w.r. to ‖ . ‖∞) function
U : L∞(Ω,F ,P) → R ∪ {−∞} we may define the conjugate

V : L∞(Ω,F ,P)∗ → R ∪ {+∞} (17)

V (µ) = sup
X∈L∞

{U(X)− 〈µ, X〉} , µ ∈ (L∞)∗. (18)

We know from the general theory [R 97] and [ET74] that V is convex and
l.s.c. with respect to σ((L∞)∗, L∞) and

U(X) = inf
µ∈(L∞)∗

{V (µ) + 〈µ, X〉} , X ∈ L∞.
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If U is transformation invariant then V is so too. Admitting the above Propo-
sition 4.1 we conclude that V equals the σ∗-lower semi-continuous extension
of its restriction to L1, so that

U(X) = inf
Y ∈L1

{V (Y ) + E[Y X]}, X ∈ L∞.

Hence U is σ∗ upper semi-continuous as it is the infimum of a family of σ∗

continuous functions.

To prepare the proof of Proposition 4.1 we need some auxiliary results.

Lemma 4.2 For p ∈ [1,∞], Let D be a convex, ‖ . ‖p-closed, law invariant
subset of Lp(Ω,F ,P), and let X ∈ D. Then, for any sub-sigma-algebra G of
F , we have E[X|G] ∈ D.

We provide two somewhat alternative arguments for the cases p = ∞ and
p < ∞.

Proof of Lemma 4.2 (p = ∞)
Step 1: We first suppose that G is trivial so that E[X|G] = E[X].

Given X ∈ L∞ and ε > 0, we may find natural numbers M ≤ N and
a partition A1, . . . , AN of Ω into F -measurable sets of probability N−1, such
that

(i) osc{X|Ai} < ε, for i = M + 1, . . . , N ,

(ii) M/N < ε.

Here osc{X|Ai} denotes the essential oscillation of X on Ai, i.e. the differ-
ence of the essential sup and the essential inf of X on Ai.

For 1 ≤ i < j ≤ N fix a measure-preserving map τi,j : Ai → Aj and let
τj,i = τ−1

i,j . For τi,i we choose the identity on Ai.
For a permutation π : {1, . . . , N} → {1, . . . , N} we denote by τπ : Ω → Ω

the measure preserving transformation defined via τπ|Ai
= τi,π(i).

Denoting by ΠN the set of permutations of {1, . . . , N}, the element

X :=
1

N !

∑
π∈ΠN

X ◦ τπ

is in D, as D is convex and transformation invariant (Lemma A.4). An ele-
mentary estimate yields∥∥X − E[X]

∥∥
∞ ≤ ε +

M

N
osc(X).

As D is ‖ . ‖∞-closed we infer that E[X] is in D too.
Step 2: Now suppose that G is finite, hence generated by a partition
{B1, . . . , Bn} of Ω with P[Bj] > 0.

12



In this case it suffices to apply step 1 on each atom Bj to obtain the
conclusion of the lemma.
Step 3: For a general sub-sigma-algebra G of F and given X ∈ L∞, we may
find, for ε > 0, a finite sub-sigma-algebra H of G such that

‖E[X|G]− E[X|H]‖∞ < ε.

Hence the general case follows from step 2.

Proof of Lemma 4.2 (p ∈ [1,∞[) Assume to the contrary that E[X|G] does
not lie in the ‖ . ‖p−closed convex hull of the set D. Then, it follows from the
Hahn-Banach separation Theorem that

E {ZE[X|G]} > sup
Y ∈D

E [ZY ] for some Z ∈ Lq(Ω,F ,P), (19)

where p−1 + q−1 = 1. Let FZ|G(x) := P[Z ≤ x|G] be the G-conditional cumu-
lative distribution function of Z, and let qZ|G(α) := inf

{
x | FZ|G(x) ≥ α

}
be

its inverse. Let ν be a random variable on (Ω,F ,P) with uniform distribution
on (0, 1) conditionally on G, and define

νZ := FZ|G(Z)1{∆FZ|G(Z)=0} +
(
FZ|G(Z−) + ν∆FZ|G(Z)

)
1{∆FZ|G(Z)>0} , (20)

so that Z = qZ|G (νZ) a.s. Next, set X̂ := qX|G(νZ), and observe that X̂ has

the same G-conditional distribution as X (in particular X̂ ∈ D), and X̂ is
comonotone to Z conditionally to G, see [JN 04]. It then follows from (19)
that

E {ZE[X|G]} > E
[
ZX̂

]
= E

{
E

[
ZX̂|G

]}
. (21)

From the G-conditional comonotonicity of X̂ and Z, we have E[ZX̂|G] ≥
E[Z|G]E[X̂|G], see Proposition 4 in [JN 04]. Recalling that X̂ and X
have the same G-conditional distribution, this provides E {ZE[X|G]} >

E
{
E [Z|G]E

[
X̂|G

]}
= E {ZE[X|G]}, which is the required contradiction.

For µ ∈ L∞(Ω,F ,P)∗ and a sub-σ-algebra G of F , we define the conditional
expectation

µ ∈ L∞(Ω,F ,P)∗ 7−→ E[µ|G] ∈ L∞(Ω,F ,P)∗ (22)

as the transpose of the G-conditional expectation operator on L∞(Ω,F ,P),
i.e.

〈E[µ|G], ξ〉 = 〈µ,E[ξ|G]〉 for µ ∈ L∞(Ω,F ,P)∗ and ξ ∈ L∞(Ω,F ,P) . (23)

If the singular part of µ is zero, i.e. µ is absolutely continuous with respect to
P with density dµ/dP = Z, then it is immediately checked that this definition
coincides with the classical notion of conditional expectation in the sense that
E[µ|G] = E[Z|G] ·P.
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Lemma 4.3 If C is a σ∗-closed, convex law invariant subset of L∞(Ω,F ,P)∗,
µ ∈ C, and G is a sub-sigma-algebra of F , then E[µ|G] ∈ C.
Hence C ∩ L1 is σ∗-dense in C.

Proof Fix µ ∈ C and the sigma-algebra G, and suppose that E[µ|G] 6∈ C. By
the Hahn-Banach theorem there is X ∈ L∞ such that

a := sup
ν∈C

〈X, ν〉 < 〈X,E[µ|G]〉 =: b.

Let DX denote the ‖ . ‖∞-closed convex hull of the set {X ◦ τ |
τ measure preserving transformation of Ω}. As C is law invariant and there-
fore transformation invariant by Lemma A.5, we get

a = sup
ν∈C, Z∈DX

〈Z, ν〉.

By the previous Lemma 4.2 we conclude that

a ≥ sup
ν∈C

〈E[X|G], ν〉 ≥ 〈E[X|G], µ〉.

Whence
〈E[X|G], µ〉 ≤ a < b = 〈X,E[µ|G]〉 = 〈E[X|G], µ〉 ,

a contradiction proving the first assertion of the lemma.
As regards the final assertion, note that the net E[µ|G], when G runs

through the finite sub-sigma-algebras of F converges to µ with respect to
σ((L∞)∗, L∞).

Proof of Proposition 4.1 The first assertion is proved in Lemma 4.3, and
the second one follows by applying it to the level sets {V ≤ c}, for c ∈ R.

Remark 4.4 Proposition 4.1 can be re-phrased as follows: an ‖ . ‖∞-closed,
convex, law invariant subset C ⊆ L∞(Ω,F ,P) is σ(L∞, L1)-closed. Indeed,
consider the polar C◦ = {µ ∈ (L∞)∗ | 〈µ, f〉 ≤ 1 for f ∈ C}, which is a
σ((L∞)∗, L∞)-closed, convex, law invariant subset of (L∞)∗. The assertion
that C◦ ∩ L1 is σ((L∞)∗, L∞)-dense in C◦ is tantamount to the σ(L∞, L1)-
closedness of C.

5 The Lebesgue property for law invariant

utility functions

In this section, we provide a proof of Theorem 2.4. We first state (without
proof) an easy result from measure theory which will be used in the implication
(ii) =⇒ (i) below.

14



Lemma 5.1 Let C be a uniformly integrable subset of L1(Ω,F ,P) and
(Xn)∞n=1 a uniformly bounded sequence in L∞(Ω,F ,P) tending a.s. to X. Then

lim
n→∞

inf
Y ∈C

E[XnY ] = inf
Y ∈C

E[XY ].

Proof of Theorem 2.4
(i)⇒(ii): As the Lebesgue property implies the Fatou property we know from
the general theory ([D 02] and [FS 04]) that the function

V (Y ) = sup
X∈L∞

{U(X)− E[XY ]} , Y ∈ L1,

defines the conjugate function of U , for which we then have the dual relation

U(X) = inf
Y ∈L1

{V (Y ) + E[XY ]} , X ∈ L∞.

Clearly V is lower semi-continuous and V is law invariant iff U is so.
We have to show that {V ≤ c} is uniformly integrable, for each c > 0.

Suppose to the contrary that for some c > 0 the set {V ≤ c} fails to be
uniformly integrable. Then there exists α > 0, a sequence (Yn)∞n=1 in {V ≤ c},
and a sequence (An)∞n=1 in F , such that limn→∞ 1An = 0 a.s. and

E [1AnYn] ≥ α > 0.

For Xn = −2c
α
1An we find

U(Xn) ≤ V (Yn) + E[XnYn]

≤ c− α
2c

α
= −c (24)

while U(limn→∞ Xn) = U(0) = 0, a contradiction to the Lebesgue property of
U .

(ii)⇒(i): For given V : L1 → [0,∞], we know from the general theory ([D 02]
and [FS 04]) that U as defined in (4) is a monetary utility function satisfying
the Fatou property, i.e., for uniformly bounded (Xn)∞n=1 tending a.s. to X we
have

U(X) ≥ lim
n→∞

U(Xn), (25)

where we may assume w.l.g. that the limit on the right hand side exists. Hence
we only have to show the reverse inequality of (25).

So let (Xn)∞n=1 be as above such that (U(Xn))∞n=1 converges. As U is a
monetary utility function and (Xn)∞n=1 is uniformly bounded, this limit is finite.

For ε > 0 and n ∈ N we may use (4) to find cn ≥ 0 such that

U(Xn) ≥ inf
V (Y )≤cn

E[XnY ] + cn − ε. (26)
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Using again the fact that (Xn)∞n=1 is uniformly bounded we conclude that
(cn)∞n=1 is bounded, so that we may find a cluster point c ≥ 0 and there is an
infinite subset I of N such that for n ∈ I we have |cn − c| < ε. We then may
apply the preceding Lemma 5.1 to estimate

U(X) ≤ inf
V (Y )≤c+ε

E[XY ] + (c + ε)

= lim
n∈I

inf
V (Y )≤c+ε

E[XnY ] + c + ε

≤ lim
n∈I

inf
V (Y )≤cn

E[XnY ] + c + ε

≤ lim
n→∞

U(Xn) + 3ε. (27)

(ii) ⇐⇒ (iii) In view of the first step of the proof of Theorem 2.1 (ii) ⇔ (iii)
in Section 3, it only remains to show that the notion of uniform integrability
in (ii) corresponds to the notion of relative compactness with respect to the
Prokhorov topology in (iii). To do so, note that if m ∈ P(]0, 1]) and f ∈ D↘
are related via T (f) = m, see (6), we have for α ∈]0, 1] (arguing once more by
approximation with bounded, differentiable functions f)

m(]0, α[) =

∫ α

0

dm(x)

= −
∫ α

0

xf ′(x)dx

= −
[
xf(x)

]α

0
+

∫ α

0

f(x)dx

=

∫ α

0

(f(x)− f(α)) dx. (28)

The set {Y ∈ L1 | V (Y ) ≤ c} is uniformly integrable iff the integral
∫ α

0
(f(x)−

f(α))dx tends to zero, for α → 0, uniformly over the set {f = −q−Y ∈ D↘ |
V (Y ) ≤ c}. In view of (28) this is tantamount to the fact that m(]0, α[) tends
to zero, for α → 0, uniformly over the set {m ∈ P(]0, 1]) | v(m) ≤ c}.

In the above proof of the equivalence of (i) and (ii) of Theorem 2.4 we have
not used the law invariance of U and V respectively, which is irrelevant for this
equivalence (while for the formulation of (iii) it is, of course, indispensable).

In fact this is part of a more general characterization of the Lebesgue
property in equivalent terms as mentioned in the beginning of this section. As
these results are somewhat scattered in the previous literature [D 03], [FS 04],
[K 05] we resume them in the subsequent theorem and give proofs. In the
subsequent theorem, we identify L1(Ω,F ,P) with a subspace of L∞(Ω,F ,P)∗.

Theorem 5.2 Suppose that L1(Ω,F ,P) is separable, let U : L∞(Ω,F ,P) →
R be a monetary utility function satisfying the Fatou property and let

16



V : L∞(Ω,F ,P)∗ → [0,∞] be its conjugate function defined on the dual
L∞(Ω,F ,P)∗, i.e.

V (µ) := sup
X∈L∞

{U(X)− 〈µ, X〉} , µ ∈ L∞(Ω,F ,P)∗ . (29)

The following assertions are equivalent:
(i) U satisfies the Lebesgue property.
(ii) U(x) is continuous from below in the sense of [FS 04], i.e. for ev-
ery sequence (Xn)∞n=1 ∈ L∞ increasing monotonically to X ∈ L∞ we have
limn→∞ U(Xn) = U(X).
(iii) dom(V ) = {V < ∞} ⊆ L1(Ω,F ,P).
(iv) For each c ∈ R, {V ≤ c} is
(v) For every X ∈ L∞(Ω,F ,P) the infimum in the equality

U(X) = inf
Y ∈L1

{V (Y ) + E[XY ]} ,

is attained.

Remark 5.3 In the above theorem, the only requirement on the probabil-
ity space is that L1(Ω,F ,P) is separable (we need this assumption for the
implication (v)⇒(iv)). In particular, (Ω,F ,P) need not be atomless.

Remark 5.4 The notion of continuity from below was introduced in [FS 04,
Proposition 4.21], where the equivalence of (ii) and (iii) was shown. Property
(v) was studied in [D 03] where, applying James’ theorem, F. Delbaen showed
the equivalence of (iv) and (v) in the context of coherent risk measures. After
finishing the paper we were kindly informed by F. Delbaen that he has an
argument to directly deduce the above implication (v)⇒(iv) from James’ the-
orem also for the case of convex risk measures without referring to a variant
of this theorem such as Theorem A.1 below [D 05].

Proof of Theorem 5.2
(i)⇔(iv): We have shown this equivalence in the proof of Theorem 2.4 above.
(iii)⇔(iv): the implication (iv)⇒(iii) being obvious note for the converse that
a subset C ⊆ L1(Ω,F ,P) is relatively weakly compact iff its σ((L∞)∗, L∞)-
closure is contained in L1(Ω,F ,P). As the level sets {µ ∈ (L∞)∗ | V (µ) ≤ c}
are the σ((L∞)∗, L∞) closure of {Y ∈ L1 | V (Y ) ≤ c} in view of the Fatou
property of U , we obtain (iii)⇒(iv).
(i)⇒(ii) obvious.
(ii)⇒(iv): This implication was shown in (i)⇒(ii) of Theorem 2.4.
(iv)⇒(v): For X ∈ L∞(Ω,F ,P) the function

c 7→ inf
V (Y )≤c

E[XY ]
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is decreasing, convex and bounded on [0,∞[ so that the function

c 7→ inf
V (Y )≤c

E[XY ] + c

attains its minimum at some c ∈ [0,∞[. Hence

U(X) = inf
V (Y )≤c

E[XY ] + c. (30)

As {V (Y ) ≤ c} is a weakly compact set in L1(Ω,F ,P) the infimum in (30) is
attained.
(v)⇒(iv) To prove this implication first suppose that U is positively homoge-
nous, i.e. ρ = −U is a coherent risk measure. In this case {V < ∞} = {V =
0}.

If {Y ∈ L1 | V (Y ) = 0} fails to be weakly compact, then we deduce
from James’ theorem (see, e.g., [FLP 01], [FHMPZ 01]) that there is some X ∈
L∞(Ω,F ,P) such that X does not attain its infimum on {Y ∈ L1 | V (Y ) = 0}.
Hence in the equation

U(X) = inf
Y ∈L1,V (Y )=0

E[XY ]

the infimum is not attained.
Now we drop the assumption that U is positively homogenous. In this case

one needs to apply a variant of James’ theorem, which was shown to us by
P. Orihuela — following closely the arguments of [G 87] — and which we state
and prove in the appendix A.1. This theorem implies that, whenever (iv) fails,
we may find X ∈ L∞(Ω,F ,P) such that in

U(X) = inf
Y ∈L1

{E[XY ] + V (Y )}

the infimum is not attained.

We still note that we may rephrase condition (iii) of Theorem 2.1 again in
terms of the set D↘ (similarly as in (14) above for the case of Theorem 2.1):

(iii’) There is a convex function V : D↘ → [0, 1] such that

U(X) = inf
f∈D↘

{∫ 1

0

qX(α)f(α)dα− V(f)

}
.

The verification that this condition is indeed equivalent to condition (ii)
and (iii) in Theorem 2.1 is similar as for (14) above.
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A Appendix

The proof of the variant of James’ theorem below was communicated to us by
P. Orihuela. We sincerely thank him for allowing us to include it in this paper.

Theorem A.1 Let (E, ‖ . ‖) be a separable Banach space and V : E → R ∪
{∞} a proper convex l.s.c. function such that dom(V ) = {V < ∞} is a bounded
subset of E. Suppose that there is c ∈ R such that the level set Lc = {V ≤ c}
fails to be weakly compact.

Then there is x∗ ∈ E∗ such that, for

U(x∗) = inf
x∈E

{〈x, x∗〉+ V (x)} (31)

the infimum is not attained.

To prove the theorem we recall the inequality of Simons which isolates the
combinatorial part in James’ theorem.

Proposition A.2 ([S 72], [G 87]): Let B be a set and (fn)∞n=1 a sequence of
functions on B taking their values in a compact interval [a, b]. Denote by C
the convex set

C =

{
∞∑

n=1

cnfn

∣∣∣∣∣ cn ≥ 0,
∞∑

n=1

cn = 1

}
,

and suppose that every element f ∈ C attains its infimum on B. Then

inf
b∈B

lim inf
n→∞

fn(b) ≤ sup
f∈C

inf
b∈B

f(b). (32)

We also need an elementary estimate.

Lemma A.3 Let V : E → R ∪ {∞} be as in Theorem A.1; suppose that
dom(V ) is contained in the unit ball of E and that infx∈E V (x) < 0.

Denoting by

Epi(V ) = {(x, t) ∈ E × R | V (x) ≤ t} , (33)

and Epi(V, µ) = {(x, t) ∈ E × R | V (x) ≤ t ≤ µ} , µ ∈ R, (34)

let (x∗, λ) ∈ E∗ × R, ‖x∗‖ ≤ 1, λ > 0.
Then, for µ ≥ 2λ−1, we have

inf
(x,t)∈Epi(V )

〈(x∗, λ), (x, t)〉 = inf
(x,t)∈Epi(V,µ)

〈(x∗, λ), (x, t)〉 .

Proof Fix x0 ∈ X, ‖x0‖ ≤ 1, such that V (x0) ≤ 0. Then, for every (x, t) ∈
Epi(V ) such that

〈(x∗, λ), (x, t)〉 ≤ 〈(x∗, λ), (x0, 0)〉 ,
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we have
λt ≤ 〈x∗, x0 − x〉 ≤ 2.

Proof of Theorem A.1 Assume w.l.g. that dom(V ) is contained in the unit
ball of E and that infx∈E V (x) = −1 . Assume that for every x∗ ∈ E∗ the
infimum in

U(x∗) := inf
x∈E

{〈x, x∗〉+ V (x)} (35)

is attained and let us work towards a contradiction.
Consider the Banach space E∗∗ × R, in which the epigraph (33) of V , is a

norm-closed convex set.
Note that the optimisation problem (35) may be rewritten as

U(x∗) = inf
(x,t)∈Epi(V )

{〈(x∗, 1), (x, t)〉} , (36)

and that, for x∗ ∈ E∗, the inf in (35) is attained iff the inf in (36) is attained.
Hence the inf in (35) is attained for each x∗ ∈ E∗ iff each (x∗, λ), where x∗ ∈ E∗

and λ > 0, attains its inf on Epi(V ).
By hypothesis there is some level c > 0 such that Lc = {V ≤ c} is not

weakly compact in E.
By the convexity of V this holds true for every c > infx∈E V (x) = −1 so

that we may choose c = 0.
Hence there is (x∗∗, 0) ∈ (E∗∗×R)\(E×R) which is in the σ(E∗∗×R, E∗×

R)-closure of Epi(V ). We may apply Hahn-Banach to separate Epi(V ) strictly
from (x∗∗, 0), i.e. there are (x∗∗∗, λ) ∈ E∗∗∗ × R with ‖x∗∗∗‖ ≤ 1 and α < β
such that

〈(x∗∗∗, λ), (x∗∗, 0)〉 < α < β < inf
(x,t)∈Epi(V )

〈(x∗∗∗, λ), (x, t)〉. (37)

Clearly we must have λ ≥ 0. In fact, we may assume that λ > 0. Indeed if
(37) holds true for some (x∗∗∗, λ) then it also holds true for (x∗∗∗, λ′) provided
that λ ≤ λ′ < inf(x,t)∈Epi(V )〈(x∗∗∗, λ), (x, t)〉−β. Indeed, the passage from λ to
λ′ does not affect the first inequality of (37) while the last one remains valid
in view of t ≥ −1, for (x, t) ∈ Epi(V ).

Fix a dense sequence (xj)
∞
j=1 in E and use the σ(E∗∗∗, E∗∗)-densitiy of the

unit ball of E∗ in the unit ball of E∗∗∗ to find a sequence (x∗n)∞n=1 with ‖x∗n‖ ≤ 1
such that

|〈x∗n − x∗∗∗, xj〉| < n−1, j = 1, . . . , n,

and 〈x∗n, x∗∗〉 < α.
By hypothesis each (x∗n, λ) as well as any countable convex combination of

this sequence attains its inf at some (x, µ) ∈ Epi(V ) for which we find µ ≤ 2λ−1
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by Lemma A.3. Let µ0 = 2λ−1 and define B as the truncated epigraph (34) of
V at level µ0, i.e.

B = Epi(V, µ0) = {(x, t) ∈ E × R | V (x) ≤ t ≤ µ0},

which is a bounded subset of E × R.
We now are in a position to apply Simons’ inequality. Letting C =

{
∑∞

n=1 cn(x∗n, λ) | cn ≥ 0,
∑∞

n=1 cn = 1} we have

a := sup
(x∗,λ)∈C

inf
(x,t)∈B

〈(x∗, λ), (x, t)〉 ≤ α. (38)

Indeed, for every (x∗, λ) ∈ C we have 〈(x∗, λ), (x∗∗, 0)〉 ≤ α; noting that (x∗∗, 0)
is in the σ(E∗∗×R, E∗×R)-closure of B = Epi(V, µ0) and (x∗, λ) is continuous
with respect to this topology, we obtain (38).

On the other hand

b := inf
(x,t)∈B

lim inf
n→∞

〈(x∗n, λ), (x, t)〉 ≥ β. (39)

Indeed, by construction we have limn→∞〈x∗n, x〉 = 〈x∗∗∗, x〉, for every x ∈ E,
so that (39) follows from (37). Hence (32) yields the desired contradiction

b ≤ a ≤ α < β ≤ b.

We finish the paper by two easy measure theoretic results.

Lemma A.4 Let (Ω,F ,P) be a standard probability space, 1 ≤ p ≤ ∞, and
C a norm closed subset of Lp(Ω,F ,P). T.f.a.e.
(i) C is law invariant, i.e., X1 ∈ C and law(X1) = law(X2) implies that
X2 ∈ C.
(ii) C is transformation invariant, i.e., for X ∈ C and a bi-measurable measure
preserving transformation τ : (Ω,F ,P) → (Ω,F ,P) we have X ◦ τ ∈ C.

Proof (i)⇒(ii): Note that law(X) = law(X ◦ τ) for X and τ as in (ii).
(ii)⇒(i): Let X1, X2 ∈ Lp with law(X1) = law(X2). For ε > 0 let (Ai)

∞
i=1 be a

partition of R into countably many sets of diameter less than ε; for example,
one may choose the half-open intervals

{]
k
2n , k+1

2n

]}
k∈Z, for n sufficiently large.

The sets
B1

i = {X1 ∈ Ai}, B2
i = {X2 ∈ Ai},

satisfy P[B1
i ] = P[B2

i ], for each i ∈ N. Using the hypothesis that (Ω,F ,P) is
a standard probability space, we may find a bi-measurable measure preserving
transformation τ : (Ω,F ,P) → (Ω,F ,P) mapping each B1

i onto B2
i . We then

have
‖X2 −X1 ◦ τ‖∞ ≤ ε.
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Assumption (ii) and X1 ∈ C implies that X1 ◦ τ ∈ C. The ‖ . ‖p-closedness of
C then implies that X2 ∈ C.

In the next lemma we formulate an analogous result for the case of
L∞(Ω,F ,P)∗.

Lemma A.5 Let (Ω,F ,P) be a standard probability space and C a σ∗-closed,
convex subset of L∞(Ω,F ,P)∗. T.f.a.e.
(i) C is law invariant, i.e., for X1, X2 ∈ L∞ with law(X1) = law(X2), we
have

{〈µ, X1〉 | µ ∈ C} = {〈µ, X2〉 | µ ∈ C}.

(ii) C is transformation invariant, i.e., C = τ ∗(C) for each measure preserv-
ing transformation τ : (Ω,F ,P) → (Ω,F ,P) (see (16)).
(iii) The conjugate function Φ of C defined by

Φ(X) = sup
µ∈C

〈µ, X〉, X ∈ L∞,

is law invariant.

Proof (i)⇔(iii): W.l.g. assume C 6= ∅. As C is σ∗-closed and convex, for
X ∈ L∞ the set I(X) := {〈µ, X〉 | µ ∈ C} is the closed non-empty interval
[−Φ(−X), Φ(X)]. Obviously C is law invariant iff Φ is law invariant.
(ii)⇔(iii): By Lemma A.4 the function Φ is law invariant iff it is transfor-
mation invariant, i.e., Φ = Φ ◦ τ for each bi-measurable measure preserving
τ : (Ω,F ,P) → (Ω,F ,P). Hence the equivalence of (ii) and (iii) is obvious.
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